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ABSTRACT. The aim of this work is to improve the accuracy, robustness and
efficiency of the compressed sensing reconstruction technique in magnetic reso-
nance imaging. We propose a novel variational model that enforces the sparsity
of the underlying image in terms of its spatial finite differences and represen-
tation with respect to a dictionary. The dictionary is trained using prior infor-
mation to improve accuracy in reconstruction. In the meantime the proposed
model enforces the consistency of the underlying image with acquired data by
using the maximum likelihood estimator of the reconstruction error in partial
k-space to improve the robustness to parameter selection. Moreover, a simple
and fast numerical scheme is provided to solve this model. The experimental
results on both synthetic and in vivo data indicate the improvement of the pro-
posed model in preservation of fine structures, flexibility of parameter decision,
and reduction of computational cost.

1. Introduction. Magnetic resonance (MR) imaging is a technique that allows
visualization of structures and functions of a body by non-invasive and non-ionizing
means. It provides better contrast between the different soft tissues than most other
modalities. However, MR imaging takes much longer acquisition time than many
other imaging modalities, which limits its applications. To reduce acquisition time,
the most common and feasible approach is by acquiring only partial k-space data,
followed by adequate reconstruction techniques to obtain images with well-preserved
quality.

The idea of reconstructing images from partial data coincides with the com-
pressed sensing (CS), a technique used in signal/image processing. CS can ac-
curately recover a signal/image using data with significantly less measurements
than regular, provided the sparsity of the underlying signal/image and a sophis-
ticated reconstruction procedure. Recently, the application of this technique in
medical imaging has become a hot research topic, and shown promising results
[6, 19, 8, 26, 4, 5, 9, 16, 11, 18]. In particular, the redundancy of the MR data
acquired in the frequency domain, i.e. the k-space, and implicit sparsity in MR
images have motivated many researchers to study the application of CS to fast MR
imaging (CS-MRI).
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CS-MRI has the advantage of producing high quality reconstruction of MR im-
ages from partial Fourier data. Recent study has shown that the key to the success
of CS-MRI is a combination of the sparsity of the underlying image under an ap-
propriate domain, the k-space trajectory that provides incoherent undersampling
artifacts, and an adequate nonlinear reconstruction method that enforces both the
sparsity and data consistency of the underlying image [19, 10, 15]. A great progress
of researches on CS-MRI has been made. However, for clinical applications, radi-
ologists often demand improvements on accuracy, robustness, and efficiency of the
current CS-MRI algorithms. The desired improvements include the ability of re-
moving artifacts while preserving important diagnostic information (in particular,
sharp edges and fine structures), the robustness to the choice of parameters, and
the speed of reconstructions.

In this paper, we propose a novel variational model and a fast numerical algorithm
for MR image reconstruction with highly undersampled data, which tackles the three
problems mentioned above as follows.

e Accuracy
The proposed model enforces the sparsity of the underlying image in terms
of its spatial finite differences and representation by a dictionary trained using
prior information. Thus, improvement on accuracy of reconstruction can be
achieved.
e Robustness
The proposed model enhances the data consistency by the approach of
maximum likelihood estimation for the discrepancy between the reconstruc-
tion and acquired data in k-space. This leads to an automatically optimized
weighting parameter which makes the parameter selection more flexible.
e Efficiency
To make the proposed model clinically applicable, we also provide a simple
and fast numerical algorithm to solve the model. The main computations
involve only shrinkage, matrix-vector multiplication and fast Fourier transform
(FFT).
The background and brief introduction of our contributions to these issues are
provided in the following three subsections.

1.1. Trained dictionaries as sparsifying transforms. Since sparsity is the key
to the success of CS and consequent reconstructions, many researches exploited the
transforms under which images have their sparse representations [19]. The theory
of CS indicates that once such transforms were found, an image can be accurately
recovered using a set of random measurements with cardinality much less than the
original resolution of the image [6, 10].

In recent years, finite difference operator and wavelet transforms have been widely
used as such sparsifying transforms for MR images [13, 19]. In [13], the authors
proposed a total variation (TV) based model to reconstruct MR images from par-
tially acquired k-space data. Their model works well for piecewise constant or very
homogeneous images [21]. For images with inhomogeneous intensity, TV based
models may not work well when the undersampling rate is high. In [19], Lustig
et al. proposed a model that minimizes the Besov together with TV norms of the
underlying image, subjected to a data consistency constraint:

(1) min TV (u) + pl[ € ully, st || Fu— fill2 <o,
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where || - || is the £, norm, TV (u) £ ||Dul|; is the (anisotropic) TV semi-norm of
u, ¥ is the Haar wavelet transform, the superscript | denotes (conjugate) trans-
pose of matrices. In the constraint, 7, denotes the undersampled Fourier operator
corresponding to the customized k-space sampling pattern, f, is the partially ac-
quired k-space data, and o is an estimate of acquisition error. As proved in [6, 10],
minimizing ¢; norm subjected to data consistency yields sparse solutions. There-
fore, model (1) in fact leads to a reconstructed image that has sparse gradient and
wavelet transform coefficients. Simulations in [19] showed very promising results
using model (1). However, image quality degrading and the loss of diagnostic in-
formation may happen in reconstructions using TV and wavelet transforms as they
may eliminate some fine structures and/or useful local information in the recovered
images. As an alternate, we propose to use the dictionaries trained using prior
information as sparsifying transforms to tackle this problem.

A recent boost of the study on dictionary design shows the great potential of
using dictionaries in signal/image processing. Dictionary is usually formed as a
set of overcomplete bases and its elements/atoms have much smaller sizes than the
image size. On the contrary, wavelet transform has a set of complete bases with
elements of the same size as image itself, and therefore can be treated as a special
case of dictionary. Furthermore, a dictionary can be properly trained such that its
prototype signal-atoms are more adequate to sparsely represent objective signals
than wavelet. A number of researches have shown the benefits of using dictionaries
for sparse representation; see, e.g. [22, 18].

In this work, we train a dictionary by applying K-SVD algorithm to a database
consisting of patches extracted from images acquired from the same sequence but
perhaps different subjects. Then the trained dictionary A, as shown in Fig. 1, is used
to reconstruct other MR images under the same acquisition sequence with similar
structures. Details on the training and reconstruction processes are provided in
the following sections. Comparison of the accuracy of sparse representations using
wavelet transform and the trained dictionary A is shown in Fig. 2. Results by using
dictionary has has better preserved edges and fine structures because dictionary
absorbed prior knowledge by learning features of this type of images during the
training process [1]. Moreover, the dictionary training and representation processes
are stable and robust as shown in our experimental results in section 4.

1.2. Likelihood estimate as data fidelity measure. To improve the robustness
to the parameter selection, we use the likelihood estimation of the reconstruction
error as the data fidelity measure. The reconstruction error is the difference be-
tween the partially acquired data and the Fourier transform of the reconstruction
at sampled k-space locations, i.e. Fou — fp in (1). In previously proposed CS-MRI
algorithms, least squares, i.e. the sum of squared difference (SSD) || Fpu— f, |3, is a
commonly used data consistency measure. For instance, the unconstrained version
of model (1) solves for the reconstruction by

) A
(2) mulnTV(u)—f—MH\I’Tqu +§pru—fp||§,

where the parameter A is crucial to the reconstruction results: an improperly large
weight for the data fidelity term results in serious residual artifacts, whereas an
improperly small weight results in damaged edges and/or fine structures. In this
work, we tackle this problem by treating the reconstruction errors at all pixels as
samples independently drawn from a Gaussian distribution with mean zero and

INVERSE PROBLEMS AND IMAGING VOLUME 4, No. 2 (2010), 223-240



226 YUNMEI CHEN, XIAOJING YE AND FENG HUANG

l ...l.u.l; PN T |
JFH‘-I'
h_hlr'--‘

.Il.. n‘h... [T ..

lll;--‘lfLIFl‘lll-lflr---‘l_lI"

FIGURE 1. Dictionary trained by K-SVD algorithm. The data-
base used for training consists of 4096 patches extracted from four
MR brain images (but excludes the image to be reconstructed).
Each block represents an atom of size 8 x 8. Atoms are sorted by
ascending the variances of intensities.

variance 02 to be optimized. By maximum likelihood estimate (MLE) approach,
the weight on || Fpu — f,|3/2 becomes \/o? rather than a prescribed A. Since o is
to be optimized, it is updated during iterations (in fact, it is the standard deviation
of the reconstruction error, see (17) below). When the reconstruction error reduces,
the weight A\/o? on || F,u — f,||3 increases, and hence the accuracy is improved.
This automatically optimized weighting feature makes the choice of A much more
flexible.

1.3. Fast numerical algorithms for solving CS-MRI models. Despite that
dictionaries are more adequate in signal/image reconstructions, the computational
cost is higher than that using wavelet transform due to the redundancy of dictionar-
ies and overlapping of patches to be represented. Also, the non-differentiability of
TV and ¢; norms brings difficulties to fast solutions of CS-MRI models. There have
been many numerical algorithms developed to solve TV and ¢; regularized mini-
mization problems, more recent developments can be found in [7, 27, 28, 23, 25, 13]
and [17, 20, 14, 3, 2, 24] and references therein. Our approach in this work is closely
related to the algorithm developed in [25], in which Yang et al. introduced a simple
and fast method to solve model (2) with isotropic TV norm of « defined by

N
3) TV ()£ Y Dl

In (3) u € RY is the vector formed by stacking all columns of the image verti-
cally, N is the total number of pixels in the image, and D; € R?*N represents
the gradient operator at the i-th element in the vector of u. To overcome the
non-differentiability of TV and ¢; norms, they introduced auxiliary variables and
used a classical quadratic penalty method which yields an alternating minimiza-
tion scheme. By diagonalizing the gradient operator using Fourier transform, they
made the main computation of the algorithm involving only soft shrinkage and fast
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FiGUrRE 2. Compare the accuracy of sparse representations by
wavelet and trained dictionary. In both cases images are repre-
sented by picking up the largest 12.5% transform coefficients. Bot-
tom images are corresponding zoomed-in square area shown on the
top left image. Left column: reference. Middle column: represen-
tation by wavelet, with RMSE 5.74% and SNR. 22.3. Right column:
representation by trained dictionary A shown in Fig. 1, with RMSE
4.36% and SNR 24.7.

Fourier transform. However, their algorithm cannot be directly applied to the mod-
els using dictionary A since it requires the orthogonality of ¥ in (2). Therefore
the development of efficient algorithms involving the use of a dictionary is still a
remaining problem. In this paper, we show that a simple trick on selecting patches
from the underlying image can be used to overcome this difficulty. Based on the
method in [25] and this trick, we provide a simple and fast numerical algorithm that
can be applied to reconstruction models involving dictionaries.

1.4. Organization. The rest of this paper is organized as follows. A detailed
description of the proposed model is given in 2. In section 3, a fast algorithm to
solve the proposed model and its derivation are provided. Experimental results on
synthetic and in vivo data are presented in section 4. The last section concludes
the paper.

2. Proposed model. Before going into details of the proposed model, we address
the notations used throughout the rest of the paper. First of all, all vectors in this
paper are column vectors. Let u € RY be the underlying reconstruction as in (3),
and F be the discrete Fourier transform, which can be treated as an N x N unitary
matrix. Let P € RPN denote the binary matrix that selects certain rows of F
according to the k-space sampling pattern. Then F, £ PF is the undersampled
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Fourier transform. Let f, € CP be the partially acquired k-space data and use || - ||
to denote Euclidean norm || - ||2 of vectors henceforth. The notation (- ;) represents
a matrix formed by stacking its arguments vertically.

In this paper, all patches have size /n X /n and are often to be treated as
n-vectors unless otherwise noted (in our experiments n = 64). The dictionary
A € R K consists of K n-vectors as atoms. Binary matrix R; € R™V extracts
the j-th patch of u, and forms the patch R;u as an n-vector. All patches {Rju}le
cover the entire image u and may overlap.

2.1. Sparse representation using trained dictionary. To improve the accu-
racy of reconstruction, especially the ability of preserving diagnostic information,
we here propose to use a trained dictionary instead of wavelet as the sparsifying
transform in MR image reconstructions. We chose the recently proposed dictionary
design method, termed as K-SVD algorithm, to perform the dictionary training.
K-SVD is an iterative method that alternates between sparse coding of the exam-
ples based on the current dictionary and a process of updating the dictionary atoms
to better fit the given database. The output is a trained dictionary that can repre-
sent all signals in the database under strict sparsity constraints and error tolerance.
Interested readers are referred to [1, 12] for details.

Our procedure of forming a database and applying K-SVD algorithm to train an
adaptive dictionary for MR image reconstruction is depicted as follows.

1. Collect a number of MR images acquired using the same sequence as that
for the image to be reconstructed, but from different subjects. The train-
ing images and the image to be reconstructed are preferred to be the same
body parts to get a better sparse representation. Using the same acquisition
sequence ensures that they have similar contrast.

2. Decompose the training images to /n x v/n patches, and discard those patches
with constant intensity. Then randomly choose 8 K patches from the remain-
ing patches, where K is the number of atoms in the dictionary to be trained.

3. Train a dictionary A by applying K-SVD algorithm to that 8 K patches with
the overcomplete DCT matrix as the initial. The resulting trained dictionary
has K elements, i.e. A € R"*X,

In our experiments, we set n to 64 and K to 512/256 for brain/chest MR data.
The dictionary trained for brain image reconstruction is illustrated in Fig. 1. The
dictionary A we obtain from this training procedure can adequately represent any
patches of brain MR images (e.g. from different subjects or the same subject in
different periods) acquired under the same sequence. In particular, each patch R;u
of u can be sparsely represented by A. Namely, there exist representation coefficients
a;j € RE such that

||aj||0<n<K st. Aaj=Rju, j=1,---,J,

where || - |lo counts the number of nonzero components of its argument. Therefore,
the sparsity of u under the representation of A can be used as a regularization in
the reconstruction. That is, we enforce the following into our model

J
. v
(4) min~ (llag s+ 51 4a; — Ryul)
j=1
where a = (aq;--- ;) € RE/. This is in fact the relaxed form of sparse-land

problem with £yp-norm substituted by ¢1-norm. The reason why we use ¢; instead of
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£l is that minimizing the non-convex ¢y is generally a NP-hard problem and hence is
not tractable in practice. Moreover, it has been proved that minimization problems
with ¢; and ¢y share the same solution under certain conditions [6, 10].

Note that if J = 1, Ry = I (the identity matrix) and A = ¥ (the wavelet
transform), then (4) reduces to || ¥ Tu||; as in (2) when the difference in the quadratic
is exactly 0. Namely, wavelet is a special case of dictionary.

2.2. Likelihood estimate for the data consistency. One difficulty of applying
the unconstrained energy minimization problem (2) for MR image reconstruction
is in determining the weighting parameter that balances the data consistency and
image sparsity. The reconstruction results are sensitive to the choice of this param-
eter. To tackle this problem, we derive the data consistency measure, the so-called
data fidelity, from maximum likelihood estimate (MLE) approach.

Let w = (wy,- -+ ,wp)T € CP be the reconstruction error in k-space, which is the
difference between the Fourier transform of the reconstruction u and the acquired
data f, at the sampled k-space locations:

fp=Fpu+w.

Consider {w;}}_; as independent random samples drawn from a normal distribution
of mean zero and variance o2 to be determined. Therefore, the joint probability
density function (pdf) of {w;}}_,, which is also the likelihood of o, becomes

L(olo) = l]j () = (omot) /e
Thus, the negative log-likelihood is

(5) —log L(o|w) = ||w||*/20% + plog V20

Substituting w by Fpu — fp, and omitting the constant plog V27, we obtain a MLE
based consistency estimation with the partially acquired data:

(6) F(u,0, fp) = ||.7:pu—pr2/202+p10g0.

This is a generalization of the least square estimation, which is just the case where
o =1. We will use (6) as data fidelity term in our energy functional.

2.3. Variational model for MR image reconstruction from undersampled
data. Now we are ready to present our model. We propose to use TV and sparse
representation by trained dictionary as regularization and MLE (6) as data consis-
tency measure. Our model is formulated as an unconstrained minimization problem

J
v
(M minTV(w) +uj§_:1 (sl + Sl14a; = Ryull®) + AF (.0, f,),
where TV (u) is the TV norm of u defined as in (3), the summation over « is the
regularization of u using the sparsity under representation by dictionary A, and
F(u,o0, f,) is MLE data consistency measure (6). By using MLE based approach,
o is also optimized along with w. In (7) the weight on ||F,u — f,||? versus the
sparsity of the underlying image is A/o? rather than A only. In the Euler-Lagrange
(EL) equations associated with the proposed energy function below, one can see
that o is the standard deviation of the reconstruction error w. Hence, when the
construction error w decreases, the weight A\/o? on minimizing £, norm of w increases
automatically, which makes the choice of the initial weighting parameter A more
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flexible. This flexibility dramatically reduces the difficulty of parameter decision
and improves the applicability of CS. Moreover, our experimental results below show
that this automatically updated weighting makes faster convergence, and better
accuracy in reconstruction.

3. Algorithm. There minimization problem (7) is closely related to the well-
known TV and ¢; based signal/image reconstruction problems. Since the non-
differentiability of TV and ¢; terms bring a difficulty in computations, there have
been a number of numerical algorithms developed to efficiently solve this type of
problems. The algorithm provided in this section is inspired by the work in [25, 23],
which uses the variable splitting and classical quadratic penalty technique in opti-
mization to make the computation fast and stable.

3.1. A fast algorithm for solving the proposed model. We first introduce two
auxiliary variables w = (w{ ;wg ;- ;wy) € RN*Z and 8 = (B1; Ba;- -+ ; 87) € RE/
where w; € R? and 3; € R foralli = 1,---,N and j = 1,---,J. Then we
consider the minimization problem equivalent to (7):

N J
. 14
cmin ST 430 (1851 + G lAay = Ryull?) + AF(u,0. 1)
(8) s.t. wi:Diu, ﬁj:()éj, VZ:].,,N,j:L,J

Relaxing the equality constraint and penalizing their violations by quadratic func-
tions, we obtain an unconstrained version of (8):

J
(9) min Zqﬁ w;, D) + p(B, a Z % |Aa; — Rjul|* + AF(u, 0, f,)

uwa,ﬁa
where functions ¢ and 1 are defined as
i
o(s,t) = sl + S lls =%, st € R
and
4 2 KJ
U(s,t) = sl + 5lls —¢ll%, st eR

for given n, 6 > 0. With ), § gradually increasing, solving (9) lead to approximations
to the solution of (8).

The minimization (9) can be carried out in a much faster and more stable manner
than (7): first, for fixed u and «, the minimization with respect to w and 3 can be
carried out in parallel:

(10) wl:SQ(DZu)a t=1,--- aNa

where Sy(t) is the two-dimensional (2D) shrinkage that minimizes ¢(s,t) for fixed
t:

1 t
Sy(t) = max{t” - ,0} - teR2%
’ n 12l

Moreover, we have
(11) B =Sec(a)
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where S.(t) is the componentwise shrinkage that minimizes (s, t) for fixed ¢t =
(tl, s ,tKJ)T c REJ:

T
Se(t) = (S(tr), -+, S(tks))
and
S(z) = max{x — 1/60,0} -sign(z), =z €R,

with assumption 0 - (0/0) = 0. Both computational costs for w and g are linear in
N.

Secondly, for fixed v and 3, we can have & = (a1 - - - ; y) by solving the following
minimization problem:
J
(12) Hgnz;(é’ll% Bill* + vl Aay — Ryull?) .
=

The solution can be obtained by setting o; as
(13) a; =V (0I+vA)"'VT (08; + vAT Rju)

where the diagonal matrix A and orthogonal matrix V' come from the eigendecom-
position ATA = VAV . This decomposition does not drag the computation since
the dictionary A is prepared before any experiments, and hence, V and A can be
pre-computed. Also the largest dimension K of A is usually much less than N, and
it can be seen that the number of nonzero eigenvalues can never exceed n. As a
result, the computations of o;’s can be carried out in parallel, and each of them
only involves matrix-vector multiplication.
Thirdly, for fixed w, o and o, the minimization of u is
J

(14) thn [we = Dyul® + [lwy — Dyul|* + Z'Y”Aaj — Rjull® + &[|Fpu — foll?

j=1
Here D, D, are N-square matrices formed by the top and bottom rows of D; €
R2*N §=1,... N, and hence D,u, Dyu represent the gradient of u along the x
and y directions, respectively. w, and w, are the first and second column of w,
respectively, and v = uv/n, € = £(0) = A/no?. Thus the Euler-Lagrange equation
of (14) yields

(15) Lu=r,

where

J
L=D]D,+DyDy+>» yR[R;+{F)F,
j=1

and

J
r=D]w, + DyTwy + Z’ijTAozj + f]—"prp.
j=1
Under the periodic boundary condition for u, the finite difference operators D, and
D, are block circulant matrices with circulant blocks and hence can be diagonalized
by Fourier matrix F. Thus, D, = FD,FT and ﬁy = ]—"Dy}"T are diagonal. Also,
periodic boundary condition enables us to extract patches that cover each pixel
m times, where m = n/d? and d is the sliding distance between all concatenated
patches. Usually, we fix the patch size as 8 x 8, i.e. n = 64, and choose (d,m) = (8,1)
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or (4,4). Since ), RJTRj is a diagonal matrix with the i-th diagonal entry counting
the number of times the i-th pixel was covered by patches, we have > j R;'— R; =ml,
where I is the identity matrix. So multiplying F on both sides of (15) gives

(16) LF(u) =7,
where
L=D]D,+D,)Dy+myI+(PTP
is a diagonal matrix since P P is diagonal, and
7= D] F(ws) + Dy Fwy) + 1F(ua) + P,

where u, = Y y R;Aaj is an “image” assembled using patches that are represented
by dictionary A and «.

Finally, the computation of first variation of F(u, o, f,) gives an update of ¢ in
each iteration:

(17) o =/ IIFpu = fpl?/p-

Therefore, similar to the algorithm developed in [25], the main computation of
our algorithm for the CS model using a dictionary also involves only shrinkage,
matrix-vector multiplication and fast Fourier transform.

3.2. Numerical algorithm and convergence analysis. Based on the discussion
above, we are ready to propose the fast algorithm used for solving model (7). Note
that the solution to (7) can be approximated by solving (9) with continuation on
the penalty parameters n and 6 [14]. For stopping criterion, we let “res” be the
maximum absolute/norm value of increments of w, a, 8, u, and terminate each inner
loop once res < € for a prescribed error tolerance ¢, then update u and start a new
loop with doubled 7 and 6. The upper bound 2'2 for 7, # is chosen empirically so it
is sufficiently large that solutions to (9) is a close approximation of (7). Based on
derivations above, we summarize the algorithm for our model as Algorithm 1.
Algorithm 1

MR Image Reconstruction via Sparse Representation (recMRI)

o Input P, fp, and p,v, A, e > 0. Initialize u = f;fp, n=060=25%and a=0.
e While 1,6 < 2'2, do
1. Given w and a, compute w and [ using (10) and (11).
2. For j =1to J, do

* Given v and [, compute ¢; using (13).
Given w and «, compute u by solving (16) and update o by (17).
If res < € go to 5, otherwise go to 1.
Return u"?
w—u™?, (n,0) — (2n,20)

The proof of the convergence of the proposed algorithm 1 is similar to the one
given in [23] with slight modifications, and thus is omitted here.

S Gt W

4. Experimental results. In this section, we present the experimental results of
the proposed model (7) using Algorithm 1 and the comparisons with that resulting
from using wavelet transform on both synthetic and in vivo MR data. All imple-
mentations involved in the experiments were coded in Matlab v7.3 (R2006b), except

INVERSE PROBLEMS AND IMAGING VOLUME 4, No. 2 (2010), 223-240



MR IMAGE RECONSTRUCTION WITH UNDERSAMPLED DATA 233

the shrinkage and wavelet transform operators, which were coded in C++. Com-
putations were performed on a Linux (version 2.6.16) workstation with Intel Core
2 CPU at 1.86GHz and 2GB memory.

4.1. Improvement on accuracy by using dictionaries. To show the improve-
ment on the accuracy of reconstructions by using dictionaries as sparsifying trans-
forms, we applied model (2), which uses wavelet as the sparsifying transform, and
the proposed model (7) to three data sets. The three data sets are: the default
Shepp-Logan phantom image provided by Matlab, a 2D axial brain MR image and
a 2D chest MR image. The sampling masks used for these three data sets are de-
picted in Fig. 3, where white pixels indicate sampled locations in k-space. We used
pseudo radial mask for phantom, and Cartesian mask undersampling phase encod-
ing (PE) lines for in vivo data to simulate random acquisition. All of the k-space
data in the simulated pseudo-radial trajectory is located on Cartesian grid.

In practice, CS-MRI algorithm prefers random acquisition trajectory that can
lead to incoherent artifacts aliasing. However, the trajectory of the acquired data in
each echo time (TE) is limited by the MR system, and hence true random acquisition
is not possible. In recent years, acquisition schemes that are feasible and can produce
incoherent aliasing artifacts are developed, e.g. radial and spiral trajectories. In our
experiments, for simplicity, we used pseudo sampling masks which can simulate
randomness in acquisition for demonstration purpose.

(a) SR=8.4% ) SR=34.0% ) SR=25.0%

FIGURE 3. Sampling masks used for (a) phantom (b) brain image
and (c) chest image with sampling ratios (SR).

4.1.1. Results of Phantom Reconstruction. The default Shepp-Logan phantom of
size 256 x 256 is shown in Fig. 4(a). Then a full k-space data was simulated by the
2D Fast Fourier transform (£f£t2 in Matlab) of the phantom. We used the pseudo
radial mask (shown in Fig. 3(a)) to the full k-space data and added complex valued
Gaussian random noise with standard deviation (of magnitude) 3.2 to simulate the
partially acquired data f,. Direct using FFT of zero filling unscanned k-space
locations results in notorious artifact aliasing, as shown in Fig. 4(b).

Then we applied model (2) with Haar wavelet and model (7) with an overcomplete
discrete cosine transform (DCT) consisting of 256 atoms of size 8 x 8 [1] as the
dictionary to the partial data f,. The parameters we used for both models were
(, Ay e) = (1,10%,1072) and the parameter v was set to 1. The results by using
wavelet and dictionary are shown in Fig. 4(c) and 4(d), and the corresponding
RMSEs are 2.47% and 2.18%, and SNR are 32.9 and 34.5, respectively.
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) Reference ) Zero-Filling
(c) Wavelet Rec. ) Dictionary Rec.

FIGURE 4. Reconstructed phantom image from simulated par-
tial k-space data. (a) Reference image. (b) Zero-filling. (c)
Reconstruction by model (2) with Haar wavelet (RMSE=2.47%,
SNR=32.9) (d) Reconstruction using overcomplete DCT dictionary
(RMSE=2.18%, SNR=34.5).

4.1.2. Results of Brain Image Reconstruction. The second test is on an axial brain
MR image. The 2-dimentional multi-slice data set was collected on a 3T GE sys-
tem (GE Healthcare, Waukesha, Wisconsin, USA) using the T1 FLAIR sequence
(FOV 220mm, matrix size 512 x 512, TR 3060ms, TE 126ms, flip angle 90°, slice
thickness 5mm, number of averages 1) with an 8-channel head coil (Invivo Corpora-
tion, Gainesville, FL, USA). Phase encoding direction was anterior-posterior. The
imaging process output a high resolution and SNR image of size 512 x 512, which
were used as the reference image in our experiment, as shown in Fig. 5(a).

The simulated full k-space data in our experiment was obtained by the Fourier
transform of this reference image, and then was artificially undersampled using
the Cartesian mask shown in Fig. 3(b), which led to the partial k-space data f,.
The zoomed-in of the square area in Fig. 5(a) is shown in Fig. 5(b). With only
34.0% data for reconstruction, strong aliasing artifacts can be observed in the image
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reconstructed by zero-filling unscanned k-space locations, and the zoomed-in is
shown in Fig. 5(c).

In this experiment the database used for training a dictionary consists of 4096
8 x 8 patches extracted randomly from four 2D brain MR images of different normal
subjects (excluding the one to be reconstructed one) with the same acquisition
sequence. The trained dictionary A € R4*512 a5 shown in Fig.1, consists of 512
atoms of size 8 x 8.

We applied model (2) with Haar wavelet and model (7) with this trained dic-
tionary to the partial Fourier data f, for brain MR image reconstruction. The
parameters A,  and e were set to 2e+3, 1 and 5e-4 in model (2) and (7), respec-
tively. The parameter v in model (7) was set to 10°. The zoomed-in area of the
reconstructed images by model (2) and proposed model (7) are shown in Fig. 5(¢)
and 5(f), respectively. The RMSEs of reconstructions are 8.52% for model (2) and
7.74% for proposed model (7), and SNRs are 20.7 and 22.0, respectively. It can
be seen that the image reconstructed by model (2) has oil-painting effect. On the
contrary, the image reconstructed by the proposed model has better preserved fine
structures. This further confirms the higher accuracy obtained by the proposed
method.

We also simulated a low resolution (LR) image by using the 34.0% central PE
lines (i.e. all white vertically lines in the middle in Fig. 3(b)), which has RMSE
10.32% and SNR 17.2.

4.1.3. Results of Chest Image Reconstruction. We also validate the proposed method
on chest MR images. In this experiment the dictionary was trained by slices ex-
tracted from a three-dimensional (3D) MR chest data set, that consists of 19 ad-
jacent 2D image slices of size 256 x 256 near the thorax region. Our procedure of
training a dictionary is as follows: we randomly chose four slices and decomposed
them into non-overlapping patches of size 8 x 8, and discarded those patches with
homogeneous intensities, and then use K-SVD on the remaining patches to train a
dictionary A € R8**256 with 256 atoms. It is worth noting that if additional data
(e.g. chest MR data scanned from different subjects but the same sequence, which
are usually available in clinical applications) were available, one can readily con-
struct a dictionary that is comparable to the one we trained using adjacent slices,
and obtain similar reconstruction results as we showed below.

To demonstrate the improved accuracy by using dictionary, we randomly chose a
2D slice shown in Fig. 6(a), which is different from the four used as training slices.
Then we artificially downsampled its k-space data using a Cartesian mask with 25%
sampling ratio, as shown in Fig. 3(c). Zero-filling the unscanned k-space locations
results in severe artifacts as shown in Fig. 6(b) with RMSE 15.59%. We again
simulated a low resolution (LR) image, as shown in Fig. 6(d), by using the 25.0%
central PE lines, which has RMSE 14.44% and SNR 15.4. From the corresponding
error map Fig. 6(g), i.e. the absolute difference to the reference image, we can see
the potential loss of edges and diagnostic information.

The reconstructions performed by using model (2) with Haar wavelet and model
(7) with the trained dictionary are shown in Fig. 6(e) and 6(f), and the correspond-
ing RMSEs are 12.04% and 8.48%, and SNRs are 17.3 and 20.1. In both cases A, i
and € were set to le+4, 2.5 and le-5, respectively. Parameter v in model (7) was set
to 10°. The error maps of these two reconstructions are shown in Fig. 6(h) and 6(i),
respectively. It can be seen that the image reconstructed by the proposed model
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(7) has lower artifacts level and better preserved edges. This experiment demon-
strates again the advantages of using prior information to define the sparsifying
transformation, which results in higher accuracy of reconstructions.

4.2. Improvement on robustness (to parameter selection) and efficiency.
To demonstrate the improvement on the robustness of the proposed model (7) with
respect to the choice of parameter A\, we tested the reconstruction of the Shepp-
Logan phantom using model (2) with SSD and the proposed model (7) using MLE
as as data consistency measures on various choices of A. The resulting RMSEs are
shown in table 1. From the changes of RMSEs, we can see the model with MLE
as data consistency measure generated similarly good results whereas the model
with SSD failed when A went improperly large. This result shows that the proposed
model with MLE data consistency measure is much less sensitive to the choice of A
and hence makes the reconstruction more robust.

Table 1 also shows the CPU time (in seconds) for phantom reconstruction using
three different algorithms: nonlinear conjugate gradient (CG) algorithm for model
(2), algorithm 1 recMRI for model (7) with the term involving dictionary

J
>~ (llaglh + 5 140, - Ryul?)

j=1
replaced by Haar wavelet term ||¥ T ul/;, and algorithm 1 recMRI for model (7)
with overcomplete DCT as dictionary. It can be seen that the proposed numerical
method was over 2.6 times faster than conjugate gradient based method. The dic-
tionary based sparse representation consistently produced images with lower RMSE
than wavelet based method, but it takes longer reconstruction time due to the re-
dundancy of dictionaries. Moreover, using optimized discrete wavelet transform
(DWT) package in Matlab makes the computation for wavelet based model even
faster. Therefore, we expect an improvement on speed by code optimization when
using dictionaries.

TABLE 1. Comparison of results of phantom reconstructions using
nonlinear conjugate gradient (CG) for model (2) with Haar wavelet,
algorithm recMRI with Haar wavelet, and recMRI for model
(7) with overcomplete DCT dictionary. *Wavelet transforms were
generated using optimized DWT package for Matlab

Method CG(Wavelet™*) recMRI(Wavelet™*) recMRI(Dictionary)
A RMSE | Obj CPU | RMSE | Obj CPU | RMSE | Obj CPU
le+2 5.93% 12.13 86.3 7.93% 13.98 28.2 5.21% 11.79 211

le+3 2.47% 11.92 71.6 2.52% 12.11 27.7 2.18% 10.92 199
le+4 5.05% 3.147 71.4 4.98% 3.025 26.9 3.47% 2.540 198
le+5 25.9% 2.271 87.1 5.93% 1.375 27.0 3.67% 1.116 201
le+6 37.0% 2.165 81.2 6.16% 1.129 28.7 5.52% 1.091 212

4.3. Robustness of dictionary training and reconstruction. In the experi-
ment on brain MR image reconstruction in section 4.1.2; the patches used by K-
SVD algorithm were randomly extracted from the four training images. Different
patches may lead to different trained dictionary using K-SVD algorithm, and hence
may impact the consequent reconstructions. Therefore it is important to verify
that the dictionary training and reconstruction process are robust to certain level
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of variability on the training database used in K-SVD algorithm. In this experi-
ment, we repeated 10 times of the entire process from forming a data set of training
image to using trained dictionary in brain MR image reconstruction as described
in section 4.1.2. The difference is that, in each run, the 4096 training images are
randomly chosen from a pool of patches (around 50,000) extracted from images
acquired under the same sequence as that used for the image to be reconstructed.
Therefore, the training patches used in one run are different from those in another.
The RMSEs and SNRs of reconstruction results are shown in table 2. Meanwhile,

TABLE 2. Experimental results of 10 runs of dictionary training
and brain image reconstruction as in 4.1.2.

Runs 1 2 3 4 5 6 7 8 9 10
RMSE(%) | 7.74 | 7.77 | 7.65 | 7.81 | 7.83 | 7.78 | 7.79 | 7.79 | 7.72 | 7.68
SNR 220 | 21.8 | 22.6 | 21.6 | 21.6 | 21.8 | 21.7 | 21.7 | 22.1 | 22.5

when we directly used the overcomplete DCT instead of the trained dictionary in
the reconstruction (7), the reconstruction had RMSE 8.27% and SNR 21.1. Table
2 indicates that the K-SVD algorithm and the consequent reconstructions using
trained dictionaries can consistently generate good results despite that the training
patches may vary. Therefore, the proposed scheme using dictionaries trained by
K-SVD algorithm in MR image reconstruction is stable and robust, and hence has
great practical potential.

5. Conclusion. A novel variational model and a fast numerical algorithm are in-
troduced in this paper to improve the accuracy, robustness and efficiency of CS-MRI
reconstructions. A trained dictionary is used to better preserve edges and fine struc-
tures by taking advantage of prior information; negative log-likelihood estimation
of the recovering error is used to automatically adjust the weighting on the data
consistency to improve the robustness of the model to the choice of parameters; a
quadratic penalty approach is adopted to speed up the reconstruction. The qualita-
tive and quantitative comparisons on both synthetic and in vivo data demonstrate
the improvements by the proposed method.
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(a) Reference

(¢) Zoomed-In Zero-Filling (d) Zoomed-In LR

(e) Zoomed-In Wavelet (f) Zoomed-In Dictionary

FIGURE 5. Reconstruction of brain MR Image. (a) Reference. (b)
Zoomed-in of square area in the reference image. (c¢) Zoomed-in
of reconstruction by zero-filling unscanned k-space locations. (d)
Zoomed-in of low resolution (LR) image reconstructed by 34.0%
central PE lines, with RMSE 10.32% and SNR 17.2. (e) Zoomed-in
of reconstruction obtained using wavelet as sparsifying transform,
RMSE is 8.52% and SNR is 20.7. (f) Zoomed-in of reconstruction

obtained using trained dictionary shown in Fig. 1, RMSE is 7.74%
and SNR is 22.0.
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(a) Reference (b) Zero-Filling

(d) LR Rec. (f) Dictionary Rec.

(g) LR error map (h) Wavelet error map (i) Dictionary error map

FIGURE 6. Reconstructions of chest MR image using model (2)
and (7). (a) Reference image. (b) Zero-filling unscanned locations,
RMSE is 15.59% and SNR is 14.2. (d) LR image obtained by
using central PE lines, RMSE is 14.44% and SNR is 15.4. (e)
Reconstruction by model (2) with Haar wavelet, RMSE is 12.09%
and SNR is 17.1. (f) Reconstruction by proposed model (7) with
trained dictionary, RMSE is 8.48% and SNR is 20.1. Figures (g),
(h) and (i) are corresponding error maps of (d), (e) and (f) to the
reference image (a).
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