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METRICS DEFINED BY BREGMAN DIVERGENCES †

PENGWEN CHEN ‡ AND YUNMEI CHEN, MURALI RAO§

Abstract. Bregman divergences are generalizations of the well known Kullback Leibler diver-
gence. They are based on convex functions and have recently received great attention. We present
a class of “squared root metrics” based on Bregman divergences. They can be regarded as natural
generalization of Euclidean distance. We provide necessary and sufficient conditions for a convex
function so that the square root of its associated average Bregman divergence is a metric.

Key words. Metrics, Bregman divergence, Convexity subject classifications.

Analysis of noise-corrupted data, is difficult without interpreting the data to have
been randomly drawn from some unknown distribution with unknown parameters.
The most common assumption on noise is Gaussian distribution. However, it may be
inappropriate if data is binary-valued or integer-valued or nonnegative. Gaussian is
a member of the exponential family. Other members of this family for example the
Poisson and the Bernoulli are better suited for integer and binary data. Exponential
families and Bregman divergences ( Definition 1.1 ) have a very intimate relationship.
There exists a unique Bregman divergence corresponding to every regular exponential
family [13][3]. More precisely, the log-likelihood of an exponential family distribution
can be represented by a sum of a Bregman divergence and a parameter unrelated term.
Hence, Bregman divergence provides a likelihood distance for exponential family in
some sense. This property has been used in generalizing principal component analysis
to the Exponential family [7].

The Bregman divergence however is not a metric, because it is not symmetric,
and does not satisfy the triangle inequality.

Consider the case of Kullback-Leibler divergence( defined in Definition 1.4) [8].
It is not a metric. However, as proved in [11] the square root of the Jensen-Shannon
divergence 1

2 (KL(f, 12 (f+g))+KL(g, 12 (f+g))). is a metric. Moreover, it is always
finite for any two densities. In fact, Jensen-Shannon divergence is nothing but an
averaged Bregman divergence associated with the convex function x logx. It is very
natural to ask whether square roots of other averaged Bregman divergences also are
metric? This is the main motivation of this work. We will provide a sufficient and
necessary condition on the associated convex function, such that the square root of
the corresponding averaged Bregman divergence is a metric. Clearly the justification
of the triangle inequality is the only nontrivial part.

One of the most critical properties of a metric is the triangle inequality, which
ensures that if both a, b and b, c are “close”, so are a, c. This property has many
applications. For instance, an important task in pattern recognition is the searching of
the nearest neighbor in a multidimensional vector space. One of the efficient methods
of finding nearest neighbors is through the construction of a so-called metric tree.
Given a metric space with N objects we can arrange them into a metric tree with
height ≈ log2N . The triangle inequality, then saves a lot of effort in finding the nearest
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2 Metrics defined by Bregman divergences

neighbour. The total number of distance computations is reduced from N to merely
log2N . In this work we provide a large class of metrics for construction of metric
trees.

In this paper, our main contributions are summarized briefly as follows: Diver-
gence to the power α can be a metric, only if α is at most a half. In some sense,
the power 1

2 is critical. We provide a necessary and sufficient condition characteriz-
ing Bregman divergences which when averaged and taken to the power one half are
metrics.

1. Preliminaries and Notations In this paper, we adopt the following no-
tation:

Ω : the interior domain of the strictly convex function F, i.e. {x : |F (x)|<∞}. (1.1)

Usually, Ω is the whole real line or positive half line.
Definition 1.1 (Bregman divergence). Bregman divergence is defined as

BF (x,y) :=F (x)−F (y)−(x−y)F ′(y), for any strictly convex function F .
For the sake of simplicity, we now assume all the convex functions considered are

smooth, i.e. in C∞. We will discuss this restriction in section 2.5.
For some properties of Bregman divergences, we refer interested readers to [1][5].
BF (x,y) is in general is not symmetric. It can be symmetrized in many ways.

However the following procedure will be found to be highly rewarding.
Given x,y define

mF (x,y) :=minz
1
2

(BF (x,z)+BF (y,z)). (1.2)

The Lemma below is known. We provide the proof for convenience.
Lemma 1.2.

BF (x,z)≥0,′′=′′ holds if and only if x=z. (1.3)

For all z, 0<p<1 and q= 1−p we have

pBF (x,z)+qBF (y,z)≥pBF (x,px+qy)+qBF (y,px+qy). (1.4)

In particular
mF (x,y) = 1

2 (F (x)+F (y))−F ( 1
2 (x+y)) and mF (x,y)≥0 with equality iff x=y.

Proof. Now

BF (x,z) =
1
2

(x−z)2F ′′(ξ), for some ξ∈ [x,z], (1.5)

The function F is strictly convex, F ′′(ξ)>0, Thus we have BF (x,z)≥0, and equality
holds only when z=x.
For the second statement, since F is convex, and pBF (x,px+qy)+qBF (y,px+qy) =
pF (x)+qF (y)−F (px+qy), we have

pBF (x,z)+qBF (y,z)−(pBF (x,px+qy)+qBF (y,px+qy))
=F (px+qy)−F (z)−(px+qy−z)F ′(z) =BF (px+qy,z)≥0.
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Thus, pBF (x,z)+qBF (y,z)≥pBF (x,px+qy)+qBF (y,px+qy).

If F (x) =x2, then BF (x,y) = (x−y)2, and
√
mF (x,y), is a metric. But for an

arbitrary convex function, this square root function,
√
mF (x,y), is not necessarily a

metric.(see Remark 2.1) Our goal is to discuss the conditions on the convex function
such that

√
mF (x,y) is a metric.

1.1. Three important Bregman Divergences
Bregman divergences corresponding to the three strictly convex functions x2,

x logx, and −logx satisfy the homogeneity condition:

BF (kx,ky) =kαBF (x,y) for all x,y,k>0 with α equal to 2,1 and 0 respectively.
(1.6)

In fact, they are the only ones modulo affine additions with this property among
all Bregman divergences.

It is easily seen that Bregman divergence associated with a convex function is not
affected by the addition of an affine function to that convex function.
Lemma 1.3. If the Bregman divergence BF (x,y) satisfy the homogeneity condition

with α=

2,
1,
0,

then F =

 x2,
x logx,
−logx.

The statements holding modulo affine functions.
Proof. Let BF (x,y) be of order α. Then

kα(F (x)−F (y)−(x−y)F ′(y)) =F (kx)−F (ky)−k(x−y)F ′(ky). (1.7)

Differentiating with respect to x twice, we have

kαF ′′(x) =k2F ′′(kx). (1.8)

Let x= 1, then

kα−2F ′′(1) =F ′′(k). (1.9)

Now, if α= 1, by integrating twice, we have

F (k) = c1k logk+c2k+c3, BF (x,y) = c1(x log
x

y
−(x−y)); (1.10)

if α= 0, then

F (k) =−c1 logk+c2k+c3, BF (x,y) = c1(−log
x

y
−1+

x

y
); (1.11)

if α 6= 0,1, then

F (k) =
c1

α(α−1)
kα+c2k+c3, BF (x,y) =

c1
α(α−1)

(xα−αxyα−1 +(α−1)yα). (1.12)

(here c1,c2,c3 are some constants)
These divergences can be generalized from the number case to the vector case as
follows. In the vector case, Bregman divergence with F =x logx is called I-divergence,
and Bregman divergence with F =−logx is called IS divergence.
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Definition 1.4. Given two non-negative vectors x := (x1,...,xn),y := (y1,...,yn)∈Rn,
the I-divergence is defined as

CKL(x,y) :=
n∑
i=1

xi log
xi
yi
−

n∑
i=1

xi+
n∑
i=1

yi. (1.13)

The Itakura-Saito divergence [4][14] is defined as

IS(x,y) :=
n∑
i=1

−log
xi
yi

+
n∑
i=1

xi
yi
−1. (1.14)

The I-divergence reduces to the well known Kullback-Leibler divergence:

KL(x,y) :=
n∑
i=1

xi log
xi
yi
,

if
∑n
i=1xi=

∑n
i=1yi= 1.

1.2. Bregman Divergences v.s. Exponential Families Here, we indicate
the implications of Bregman divergences in the theory of Exponential Families.

Definition 1.5 (Exponential family). ( [6]) Let ν be a σ−finite measure on
the Borel subsets of Rn, and be absolutely continuous relative to Lebesgue measure
(dx). Define the set of natural parameters by N={θ∈Rn :

∫
exp(θ ·x)ν(dx)<∞},.

For a natural parameter θ let λ(θ) =
∫

exp(θ ·x)ν(dx), and let ψ(θ) = logλ(θ) be the
cumulant generating function.
Define pθ(x) = exp(θ ·x−ψ(θ)),θ∈N, this family of probability measures is called an
exponential family. Finally let p0(x) := dν

dx .
Denote the expectation parameter x̄(θ) :=

∫
xpθ(x)dx. It can be shown that N is

a convex set and ψ(θ) is a convex function.
Now let F be the conjugate function of ψ, i.e. F (x̄) = supθ∈N{x̄ ·θ−ψ(θ)}. It can

be shown that x̄(θ) =∇ψ(θ), θ(x̄) =∇F (x̄), and F (x̄) = x̄ ·θ−ψ(θ). Based on these
relations, we have

x ·θ−ψ(θ) =F (x̄)+(x− x̄) ·F ′(x̄) =−BF (x,x̄)+F (x). (1.15)

Hence,

−logpθ(x) =−logp0(x)+θ ·x−ψ(θ) =−logp0(x)+BF (x,x̄)−F (x). (1.16)

Thus the negative log-likelihood can always be written as a Bregman divergence plus
a term that is constant with respect to θ and which therefore can be ignored. [7][5][1]

The following consideration is relevant and of interest: Consider two observed
events x1,x2∈dom(F ). Consider each xi,i= 1,2 separately, we like to find the max-
imal estimator θi. In dual form, we have that x̄=xi minimizes −logpθ(xi). Now
suppose these two events happen independently, then finding a single estimator θ=θ0
to maximize the likelihood pθ(x1)pθ(x2) is equivalent to finding a x̄ to minimize
BF (x1,x̄)+BF (x2,x̄). Clearly, x̄= 1

2 (x1 +x2) is the minimizer. And the likelihood

ratio is given by pθ1 (x1)pθ2 (x2)

pθ0 (x1)pθ0 (x2)
. This ratio is always larger than or equal to 1. In fact

our function mF (x1,x2) is a half of the log-likelihood-ratio,



P. Chen, Y. Chen, M. Rao 5

1
2

(log
pθ1(x1)pθ2(x2)
pθ0(x1)pθ0(x2)

) =
1
2

(BF (x1,
1
2

(x1 +x2))+BF (x2,
1
2

(x1 +x2))) =mF (x1,x2).

(1.17)
As shown in the paper [5], the associated function F for Gaussian distributions,

Poison distributions, Bernoulli distributions, Exponential distributions, and Multino-
mial distributions is one of Euclidean distance, Kullback-Leibler divergence, Itakura-
Saito distance. In this paper, we will show that those

√
mF are metrics. Thus, these

log-likelihood-ratio are squared metrics.

2. Square Root Metrics

2.1. The Critical Power 1/2 In the case of Euclidean distance, F (x) =x2,
mF (x,y) itself is not a metric, but its square root is a metric. Therefore, we will
examine the necessary condition that (mF (x,y))r is a metric in the next lemma.
Lemma 2.1. Suppose F (x) is a strictly convex , and smooth ( at least four times
differentiable) function on an open set Ω which will either be the entire line or a half
line.
Denote m(p;x,y) :=pF (x)+qF (y)−F (px+qy),p+q= 1,0<p<1, x,y∈Ω.
Then we have the following facts.

1. m(p;x,y)≥0, equality holds if and only if x=y.
2. Monotonicity : If x<y<z, x,y,z∈Ω, then m(p;x,y)<m(p;x,z),m(p;y,z)<

m(p;x,z). In particular,
√
m(p;x,y)<

√
m(p;x,z)+

√
m(p;z,y),√

m(p;y,z)<
√
m(p;y,x)+

√
m(p;x,z).

3. Suppose we know the triangle inequality holds for some positive r0 :

m(p;x,y)r0 ≤m(p;x,z)r0 +m(p;z,x)r0 , (2.1)

then the triangle inequality still holds for any r with 0≤ r<r0 :

m(p;x,y)r≤m(p;x,z)r+m(p;z,x)r. (2.2)

4. 1/2 is the maximum possible value of r : if there exists a small neighborhood
(0,ε), such that

m(p;x−a,x+a)r≤m(p;x−a,x)r+m(p;x,x+a)r holds for all a∈ (0,ε),
(2.3)

then we must have 1
2 ≥ r≥0 .

Proof. (1): It follows by the convexity of the function F .
(2): Without loss of generality, assume z>y>x. then

m(p;x,z)−m(p;x,y) =
∫ z

y

∂m(p;x,ξ)
∂ξ

dξ=
∫ z

y

qF ′(ξ)−qF ′(px+qξ)dξ>0, (2.4)

here qF ′(ξ)−qF ′(px+qξ) =pq(ξ−x)F ′′(ζ)>0, for some ζ ∈ [px+qξ,ξ]. The other
inequality follows in a similar fashion.
(3) : Based on the result in (2), the only nontrivial case is x<z<y. By assumption
0≤ r<r0, m(p;x,z)r0 +m(p;z,y)r0 ≥m(p;x,y)r0 . Now we use the simple fact : if a ,
b, c are positive and satisfy a+b>c then for each 0<r<1 ar+br>cr.
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(4): Suppose that the triangle inequality holds for the points x−a,x,x+a for all
positive numbers a in some neiborhood of zero. Using Taylor’s expansion about x,
we estimate:

m(p;x−a,x+a) = 2pqF ′′(x)a2 +O(a3)

m(p;x−a,x) =
pq

2
F ′′(x)a2 +O(a3)

m(p;x,x+a) =
pq

2
F ′′(x)a2 +O(a3),

Using this and the triangle inequality :

m(p;x−a,x)r+m(p;x,x+a)r−m(p;x−a,x+a)r (2.5)

= (pqF ′′(x)a2)r(2(
1
2

)r−2r)+O(a2r+1)≥0. (2.6)

The validity of this for all small ε leads to 2≥22r.

Our goal is to show that
√
mF (x,y) is a metric. Recall mF (x,y) :=

1
2BF (x, 12 (x+y))+ 1

2BF (y, 12 (x+y)). This is not true for arbitrary strictly con-
vex function F as will be seen later. Nonnegativity and symmetry properties are
clear. According to the previous lemma, no exponent larger than 1/2 enables the
triangle inequality. In the following, we will show that the necessary and sufficient
condition that

√
mF (x,y) is a metric is (logF ′′)′′≥0.

As noted before the only case of interest is a<b<c. So our proof will focus on
this case.

2.2. Necessary Condition(F⊂F′) Recall BF (x,y) :=F (x)−F (y)−(x−
y)F ′(y), and mF (x,y) := 1

2 (BF (x, 12 (x+y))+BF (y, 12 (x+y))) = 1
2 (F (x)+F (y))−

F (x+y2 ).
Definition 2.2. We say that F is in a class F if

√
mF is a metric. The set F is

non-empty since it contains the function x2. In this section we show that this set in
fact contains the set {F : (logF ′′)′′≥0}.

Here are several properties of F.
Lemma 2.3.

1. Bc1F (x)+c2x+c3(·,·) = c1BF (·,·). So also mc1F (x)+c2x+c3(·, ·) =mF (·,·).
2. F (x)∈F if and only if c1F (x)+c2x+c3∈F.
3. ex∈F and also x2∈F.

Proof. The first two statements are trivial. If F (x) := exp(x), mF (x,y) =
1
2 (ex+ey)−e

x+y
2 = 1

2 (e
x
2 −e

y
2 )2, so that its square root is a metric.

When F (x) :=x2, BF (x,y) = (x−y)2, then mF (x,y) = (x−y2 )2. So x2,ex both are in
F.

The next theorem is the necessary condition. We do the proof in the appendix
due to its lengthy algebraic manipulations.

Theorem 2.4 (Necessary condition for F ∈F). : F ′′F ′′′′≥ (F ′′′)2,i.e. (logF ′′)′′≥
0 is a necessary condition that

√
mF is a metric.

Note that the following statement is not always true: for any strictly convex
function F , we can find an r>0, such that mr

F is a metric. We provide a simple
example here.
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F (x) (logF ′′) (logF ′′)′′ Ω
ex x 0 R

xα/(α(α−1)),2≥α>1, (α−2)logx −(α−2)/x2 R
x logx−x −logx 1/x2 (0,∞)
−logx −2logx 2/x2 (0,∞)
1/(2x) −3logx 3/x2 (0,∞)

Table 2.1. several examples of F with (logF ′′)′′≥0

rem 2.1 (A counterexample ). Let F (x) :=
√

1+x2, Ω :=R then there exists no
positive exponent such that mr

F is a metric. The reasoning is as follows.
Consider three numbers −a,0,a, with a>0. We have

mF (−a,a) =
√

1+a2−1,mF (0,a) =mF (0,−a) =
1
2

(
√

1+a2 +1)−
√

1+
a2

4
. (2.7)

In order that the triangle inequality: mF (a,0)r+mF (−a,0)≥mF (a,−a)r obtains, we
need 2(mF (a,0)/mF (a,−a))r≤1. But no r>0 can satisfy this because

mF (0,a)
mF (−a,a)

=
1
2 + 1

4a−
1
a +O( 1

a2 )
a+ 1

2a−1+O( 1
a2 )
≈ 1

2a
→0, a→∞. (2.8)

Hence as a→∞, the set of possibilities for r approaches the sole number 0.
Note that this function F does not satisfy the condition (logF ′′)′′≥0.
rem 2.2. In Table 2.1, we list several examples of F with (logF ′′)′′≥0. Note that if
a strictly convex function F satisfies (logF ′′)′′= 0, then we have logF ′′(x) = c1x+c2.
Therefore either F (x) =ec1x+c2/c21 +c3x+c4, with c1 6= 0, or F (x) = c2x

2 +c3x+c4,
with ci,i= 1,...,4 some scalars. As shown in Lemma 2.3, these functions belong to F,
and for any numbers a<b<c , we have

√
mF (a,b)+

√
mF (b,c) =

√
mF (a,c).

Definition 2.5. Denote the class of functions {F :F ′′>0,(logF ′′)′′≥0} by F′. We
will also need the class G of functions {G :G′′>0,(logG′′)′′= 0}. We have shown
above

G={G :G(x) =ec1x+c2 +c3x+c4,c1 6= 0}∪{G :G(x) = c2x
2 +c3x+c4,c2>0}, (2.9)

c1,c2,c3,c4 are some scalars.

Note that for any function g∈G, and a≤ b≤ c, we have√
mG(a,b)+

√
mG(b,c) =

√
mG(a,c). (2.10)

In the appendix, we will show that the set G is the same as the set {G :
√
mG(a,b)+√

mG(b,c) =
√
mG(a,c), for all numbers a<b<c in Ω} Intuitively, the set G is part

of the ‘boundary’ of the set F′, and we have ‘triangle equality’ on the set G.
We will point out one important relation between the set F′ and the set G in the

next two lemmas.
Lemma 2.6.

Consider any G∈G, and any F ∈F′. Then H=F −G vanishes at most at 4
points or it vanishes identically on a segment and is positive outside this segment. If
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H vanishes at the 4 adjacent points {a1<...<a4} and nowhere else then H is positive
and convex outside [a1,a4].

Proof.
If H= 0 at five points then H ′ vanishes at least at 4 points, and H ′′=F ′′−G′′

vanishes at least at 3 points. This implies that log(F ′′/G′′), vanishes 3 points. Since
log(F ′′/G′′) is convex vanishing of this function at more than two points implies that
it is zero in an interval and positive outside. Then also H ′′=F ′′−G′′ vanishes in
an interval and is positive ouside implying in particular H is also convex. Since it
vanishes at 5 points it must vanish in an interval and be positive outside.

Proof is similar for the next statement. Indeed if H vanishes at the 4 adja-
cent points {a1<...<a4} then H ′′ vanishes at two points in the interval [a1,a4].
Then also log(F ′′/G′′) vanishes at two points strictly inside the interval [a1,a4].
Again log(F ′′/G′′) being convex there are points x,y such that a1<x<y<a4 and
log(F ′′/G′′) is stricly positive outside the interval [x,y]. As before we conclude
H ′′>0 and hence H is convex outside the interval [x,y]. Since H vanishes at a1 and
a4 it must be stricly positive outside the interval [a1,a4]. This completes the proof.

The above Lemma is optimal in a sense. In fact, given any function F ∈F′, and any
4 points (ak,k= 1,...,4 there exists a function G∈G, which agrees with F exactly at
these 4 points.

The next lemma gives the proof.
Lemma 2.7. Let 4 points x1<x2<x3<x4 and F ∈F′ be given. Then there are scalars
c1 6= 0,c2,c3,c4 such that one of the functions ec1x+c2 +c3x+c4 ( the EXPONENTIAL
CASE) or c2x2 +c3x+c4 (the QUADRATIC CASE) agrees with F at exactly these 4
points.

Proof.
Let yk =F (xk),k= 1,...,4. Assuming the assertion holds we must have

yk+1−yk =F (xk+1)−F (xk) =ec1xk+1+c2−ec1xk+c2 +c3(xk+1−xk),k= 1,2,3.
(2.11)

So, for k= 1,2 we also have

yk+2−yk+1

xk+2−xk+1
− yk+1−yk
xk+1−xk

=ec2(
ec1xk+2−ec1xk+1

xk+2−xk+1
− e

c1xk+1−ec1xk
xk+1−xk

). (2.12)

For the sake of notational simplicity, put rk,k+1 := yk+1−yk
xk+1−xk , then we have

r3,4−r2,3
r2,3−r1,2

=
(ec1x4−ec1x3)/(x4−x3)−(ec1x3−ec1x2)/(x3−x2)
(ec1x3−ec1x2)/(x3−x2)−(ec1x2−ec1x1)/(x2−x1)

. (2.13)

The numerators and denominators on both sides of the above equation are positive
because the functions involved are strictly convex.

The right side approaches ∞, and 0 as c1 tends to ∞, and −∞ respectively. The
existence of c1 is guaranteed by the Intermediate Value Theorem. Only if c1 is not
equal to zero we can trace the steps backwards to solve for c2,c3,c4 and get the EX-
PONENTIAL CASE. If c1 = 0, however c2 cannot be determined and the exponential
function is actually linear. Using l’Hospital’s rule on Eq.(2.13) (twice with c1→0), we
can see that c1 cannot be zero unless (r3,4−r2,3)/(x4−x2) = (r2,3−r1,2)/(x3−x1).
If the above equation holds, follow the same steps as above repalcing the exponential
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by the quadratic to see that the QUADRATIC CASE obtains.

2.3. Sufficient Condition(F′⊂F) The triangle inequality, for
√
mF involves

the function values of F at 6 points including 4 “interior points” ((a+b)/2),
((b+c)/2), ((a+c)/2), b, and two end points a, c. According to Lemma 2.7, we know
that there is a function G∈G whose function values at these 4 interior points agree
with those of F and at the two end points are smaller than those of F .

Now, we are ready to prove the triangle inequality.
Lemma 2.8. Let a<b<c, and consider two convex functions F,G , satisfying F (x) =
G(x) at x= b,(a+b)/2,(b+c)/2,(a+c)/2, and F (x)≥G(x) at x=a,c. If

√
mG(a,b)+√

mG(b,c)≥
√
mG(a,c), then

√
mF (a,b)+

√
mF (b,c)≥

√
mF (a,c).

Proof.
Since F =G at b and (a+b)/2 we have mF (a,b) = (F (a)−G(a))/2+mG(a,b) :=

x+X say with x≥0. Similarly mF (b,c) = (F (c)−G(c))/2+mG(b,c) :=y+Y say and
mF (a,c) = (F (a)−G(a))/2+(F (c)−G(c))/2+mG(a,c) :=x+y+Z say. By assump-
tion

√
X+
√
Y ≥
√
Z . This easily implies

√
x+X+

√
y+Y ≥

√
x+y+Z. This con-

cludes the proof.

We have thus proved
Theorem 2.9 (Sufficient condition for F ∈F ). The condition (logF ′′(x))′′≥0

is sufficient condition for the square root
√
mF to be a metric. In other words, the

classes F,F′ coincide.

2.4. Extention to Functions Now, we extend this result to functions. Sup-
pose given functions g,h,k∈L1 of some measure space S with a measure µ. Suppose∫
S
mF (g(x),k(x))dµ,

∫
S
mF (g(x),h(x))dµ,

∫
S
mF (h(x),k(x))dµ are all well-defined

and finite. Denote MF (k,g) :=
∫
S
mF (k(x),g(x))dµ, MF (g,h) :=

∫
S
mF (g(x),h(x))dµ,

MF (k,h) :=
∫
S
mF (k(x),h(x))dµ.

Theorem 2.10. If MF (k,g),MF (g,h),MF (k,h) are well-defined and finite, and
F ∈F, i.e. (logF ′′)′′≥0, then we have

√
MF (g,k)≤

√
MF (g,h)+

√
MF (h,k).

Proof.

√
MF (g,k) =

√∫
mF (g,k)dµ=

√∫ (√
mF (g,k)

)2

dµ,

≤

√∫ (√
mF (g,h)+

√
mF (h,k)

)2

dµ, by the assumption F ∈F,

≤

√∫ (√
mF (g,h)

)2

dµ+

√∫ (√
mF (h,k)

)2

dµ, by Minkowski inequality,

=

√∫
mF (g,h)dµ+

√∫
mF (h,k)dµ=

√
MF (g,h)+

√
MF (h,k).
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rem 2.3. The set F is convex, i.e. if F1,F2 both belong to F, then αF1 +(1−α)F2∈F
for α∈ [0,1].

Proof. We prove a more general result: if Fi,i= 1,2 satisfy F ′′i F
′′′′
i −k(F ′′′i )2≥0

with a number k∈R, then F :=αF1 +(1−α)F2 also satisfies this inequality. Here is
the computation:

F ′′F ′′′′−k(F ′′′)2

=α2(F ′′1 F
′′′′
1 −k(F ′′′1 )2)+(1−α)2(F ′′2 F

′′′′
2 −k(F ′′′2 )2)+α(1−α)(F ′′1 F

′′′′
2 +F ′′′′1 F ′′2 −2kF ′′′1 F

′′′
2 )

≥0+0+α(1−α)(2
√
F ′′1 F

′′′′
1 F ′′2 F

′′′′
2 −2kF ′′′1 F

′′′
2 )

≥2α(1−α)(
√
k2(F ′′′1 F

′′′
2 )2−kF ′′′1 F

′′′
2 )≥0.

Also, if F ∈F and α>0, then αF ∈F. Thus, the set F is a convex cone.

2.5. Do we really need F ∈C4? All the arguments we made are
based on F being smooth: at least four times differentiable. However, it is
not necessary. But we do need F ∈C2. A simple example is F (x) = |x| :√
mF (0,1)+

√
mF (−1,0) = 0<

√
mF (−1,1), the triangle inequality does not hold.

In fact, to ensure F ∈F we simply need that F is twice differentiable and logF ′′

is convex. The proof is given below.

Theorem 2.11. If F is twice differentiable and logF ′′ is convex, then F ∈F.
Proof. Let F̄ := logF ′′, then clearly F̄ is continuous. Let F ε :=ηε ?F̄ , here ηε(x) :=

η(x/ε)/ε, and η(x) is the standard mollifier, defined as follows,

η(x) :=C exp(1/(|x|2−1)) if −1<x<1, and η(x) := 0 otherwise. (2.14)

Then we have F ε∈C∞, and F ε→F uniformly on compact sets.(See [12], pp. 630.)
Integrating exp(F ε) twice, we get a function f ε, such that log(f ε)′′=F ε. Hence, for
any numbers a,b, we have mfε(a,b)→mF (a,b), as ε→0. ( Note that although given
a fixed F ε, f ε is determined modulo a linear function. Thus all f ε lead to identical
mfε . )
It is easy to see that F ε is convex. Thus f ε∈F. Therefore, given any a<b<c in Ω,
we have the triangle inequality√

mfε(a,b)+
√
mfε(b,c)≥

√
mfε(a,c). (2.15)

Let ε→0, to get the desired triangle inequality:
√
mF (a,b)+

√
mF (b,c)≥

√
mF (a,c).

This proves F ∈F.

3. Appendix: Proof of the necessary condition
Now to the proof of the necessity of the condition.

Proof. This necessary condition in fact comes from the leading coefficient of
Taylor’s expansion.
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First we consider the special case of three numbers x−a,x,x+a, with a positive and
close to 0. By Taylor’s expansion,

F (x+a) =F (x)+F ′(x)a+
F ′′(x)

2
a2 +

F ′′′(x)
3!

a3 +
F ′′′′(x)

4!
a4 +O(a5), (3.1)

Therefore

1
2

(F (x+a)+F (x−a))−F (x) =
F ′′(x)

2
a2 +

F ′′′′(x)
4!

a4 +O(a5). (3.2)

Also, we have

1
2

(F (x+a)+F (x))−F (x+a/2) =
F ′′(x+ a

2 )
2

(
a

2
)2 +

F ′′′′(x+ a
2 )

4!
(
a

2
)4 +O(a5)

=
F ′′(x)

8
a2 +

F ′′′(x)
16

a3 +
F ′′′′(x)

64
a4 +

F ′′′′(x)
16 ·4!

a4 +O(a5).

Thus, if the triangle inequality obtains, 0≤
√
mF (x+a,a)+

√
mF (x,x−a)−√

mF (x+a,x−a), and we have

0≤
√

(
1
2

(F (x+a)+F (x))−F (x+a/2))+

√
(
1
2

(F (x−a)+F (x))−F (x−a/2))

−
√

(
1
2

(F (x+a)+F (x−a))−F (x))

=

√
F ′′(x)

2
a2 1

16

(
−1

2
(
F ′′′(x)
F ′′(x)

)2 +
F ′′′′

2F ′′

)
+O(a3).

Letting a tends to 0, leads to F ′′F ′′′′≥ (F ′′′)2. This can be rewritten as (F ′′′/F ′′)′≥0,
i.e. (logF ′′)′′≥0.

Based on this proof, (logF ′′)′′= 0 is a necessary condition for the equation√
mF (x+a,a)+

√
mF (x,x−a) =

√
mF (x+a,x−a). (3.3)

This also implies, the set G coincides with the set {G :
√
mG(a,b)+

√
mG(b,c) =√

mG(a,c), for all numbers a<b<c}.
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