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Diffusion tensor magnetic resonance imaging (DT-MRI, shortened as DTI) produces, from
a set of diffusion-weighted magnetic resonance images, tensor-valued images where each
voxel is assigned a 3!3 symmetric, positive-definite matrix. This tensor is simply the
covariance matrix of a local Gaussian process with zero mean, modelling the average
motion of water molecules.We propose a three-dimensional geometric flow-based model to
segment the main core of cerebral white matter fibre tracts from DTI. The segmentation is
carried out with a front propagation algorithm. The front is a three-dimensional surface
that evolves along its normal direction with speed that is proportional to a linear
combination of two measures: a similarity measure and a consistency measure. The
similarity measure computes the similarity of the diffusion tensors at a voxel and its
neighbouring voxels along the normal to the front; the consistency measure is able to speed
up the propagation at locations where the evolving front is more consistent with the
diffusion tensor field, to remove noise effect to some extent, and thus to improve results.
We validate the proposed model and compare it with some other methods using synthetic
and human brain DTI data; experimental results indicate that the proposed model
improves the accuracy and efficiency in segmentation.
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1. Introduction

Diffusion tensor magnetic resonance imaging (DTI; Basser et al. 1994, 2000) is a
modality that permits non-invasive quantification of the water diffusion in living
tissues. It adds to conventional magnetic resonance imaging (MRI) the
capability of measuring the random motion of water molecules, referred to as
diffusion. DTI is extremely useful in identifying the neural connectivity patterns
of the human brain and allows one to distinguish the anatomical structures of the
cerebral white matter such as the corpus callosum, the superior longitudinal
fasciculus or the corticospinal tract. Recent development of the Q-Ball imaging
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(e.g. Tuch 2004; Descoteaux & Deriche 2007) technique enables us to reveal more
complicated tissue structures by detecting multi-fibres passing a voxel. The
segmentation method proposed in this work is for DTI data only, but the idea
can be generalized to higher angular resolution diffusion-weighted MRI data.

There have been many models developed for DTI segmentation in the literature,
which might be outlined as three classes. One of them is based on a clustering
technique. Wiegell et al. (2003) applied a K-mean algorithm to segment thalamic
nuclei from DTI data. Ziyan et al. (2006) used spectral clustering to segment
corticothalamic/thalamocortical striations within each nucleus.

The second class is region-based active contour methods. The approaches in
this class can be viewed as the extension of region-based active contours for
scalar images to matrix-valued images or to the probability density functions
(p.d.f.s) of water diffusion, which are Gaussian distributions with zero mean and
the corresponding diffusion tensors as their covariance matrices. Work in this
streamline includes Lengthlet et al. (2004, 2006), Rousson et al. (2004), Wang &
Vemuri (2004) and Awate et al. (2007).

The third class of models is based on a front propagation approach, which uses
tensor information near the front (edges) rather than the regional tensor
statistics for segmentation. The models in this class can be considered as an
extension of the geometric active contour or diffusion equations for scalar image
segmentation to DTI segmentation. For instance, Zhukov et al. (2003) proposed
a level set method to segment the images of the eigenvalues of the diffusion
tensor. A drawback with Zhukov’s method is that the directional information of
the water diffusion is ignored. This can lead to low discrimination capability,
potentially yielding the segmentation of mixed structures. Feddern et al. (2003)
extended geodesic active contours to DTI segmentation by using gradient
magnitude of the matrix-valued image as the stopping criteria. Pichon et al.
(2003) proposed a diffusion equation that replaces the stopping criteria in
geodesic active contour by an alignment penalty of the curve tangent to the
dominant eigenvector. Jonasson et al. (2005) presented a geometric flow, where
the propagation force depends on the similarity of the tensor near the front.

The proposed model belongs to the third class. We propose a geometric flow-
based model, where the propagation force is determined by both similarity of the
diffusion tensors near the front and the consistency or coherence between the
evolving front and the tensor field. More precisely, we extend the work of Jonasson
et al. (2005) by introducing a propagation force that is a linear combination of two
measures: a similarity measure of any type and a consistency measure. To our
knowledge, this is the first work to incorporate the relationship between the
evolving front and the tensor field into a geometric flow, although this kind of idea
has been applied to fibre tracking. We aim at using the consistency measure to
obtain DTI segmentation results more accurately and efficiently.

The organization of this paper is the following. In §2, we first briefly present the
concept of DTI and review certain similarity measures of interest, then provide
basic theories on geometric flows and their level set implementation. Section 3
focuses on the description of the proposedmodel. Section 4 illustrates experimental
results for both synthetic and real human brain DTI data. Comparison between
models with and without the consistency measure is presented to show the
advantage of the proposed model. Discussion is presented in §5.
Phil. Trans. R. Soc. A (2008)
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2. Background

(a ) Diffusion tensor imaging

At a given location, the diffusion of water molecules in tissues over a time
interval with length t can be described by a p.d.f. (pt(r)) on the displacement r.
The standard methodology employed in most DTI experiments is the Stejskal–
Tanner pulsed-gradient spin-echo method (Stejskal & Tanner 1965). Two
magnetic field gradient pulses of strength G and duration d with a temporal
separation of t between the onset of the pulses are applied to the simple spin-echo
sequence. If the duration of the pulses d is negligible compared with t, the
attenuation of the MR signal s(q) with respect to the diffusion sensitizing
gradient q measures the Fourier transformation of the average p.d.f. (pt(r)) on a
spin displacement r over diffusion time t (Basser et al. 1994). That is

sðqÞZ s0

ð
ptðrÞeKiq$r dr; ð2:1Þ

where qZ(2p)K1gdG, g is the gyromagnetic ratio of protons in water, and s0 is
MRI signal in the absence of any gradient. In 1994, Basser et al. proposed to
model the local p.d.f. of the three-dimensional molecular motion by a Gaussian
distribution with zero mean and covariance D, i.e.

ptðrÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4ptÞ3jDj
q eðKrTD K1rÞ=4t: ð2:2Þ

By substituting this density function into (2.1), we obtain the following Stejskal–
Tanner equation:

sðqÞZ s0e
KbuTDu; ð2:3Þ

where uZq/jqj and bZ4p2jqj2(tKd/3) is the diffusion weighting factor.
To estimate the diffusion tensor D from the measurements s(q) and s0, we

require the acquisition of diffusion weighted images in at least six different
sampling directions (6 q 0s). There have been many algorithms on the estimation
and regularization of this tensor field: Westin et al. (2002), Mangin et al. (2003),
Tschumperlé & Deriche (2003), Wang et al. (2003), Chefd’hotel et al. (2004) and
Coulon et al. (2004).

At each voxel, the diffusion tensor D is a 3!3 symmetric, positive definite
matrix; it can be characterized by its three positive eigenvalues l1, l2 and l3
(assuming l1Rl2Rl3) and corresponding eigenvectors e1,e2 and e3:

DZ ðe1; e2; e3Þ
l1 0 0

0 l2 0

0 0 l3

0
B@

1
CAðe1; e2; e3ÞT: ð2:4Þ

Water diffusion is highly anisotropic and oriented in areas of compact nerve
fibre organization, but isotropic anywhere else. The eigenvector e1, correspond-
ing to the largest eigenvalue l1, is usually called the principal eigenvector (PE)
and provides the preferred direction of diffusion. The eigenvalues can be used to
compute a scalar measure of the degree of anisotropy. A commonly used
Phil. Trans. R. Soc. A (2008)
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anisotropy index is fractional anisotropy (FA) that ranges from 0 to 1

FAZ

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1K �lÞ2Cðl2K �lÞ2Cðl3K �lÞ2

l21 Cl22 Cl33

s
; ð2:5Þ

where �l is the mean diffusion (l1Cl2Cl3)/3. The FA index is quantitative and
dimensionless. For an isotropic medium, all the three eigenvalues are the same
and FA will be 0. When l1[l2Rl3, water diffuses mainly along e1 and FA will
be close to 1.
(b ) Certain similarity/dissimilarity measures

In this section, we will recall a few similarity or dissimilarity measures between
the two tensors D1 and D2 used in DTI segmentation.

One of the most intuitive similarity measures would be the following
Euclidean distance:

DeðD1;D2ÞZ jD1KD2jF Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TraceððD1KD2ÞðD1KD2ÞTÞ

q
: ð2:6Þ

Several other similarity measures for tensors have been designed in Alexander
et al. (1999) to perform elastic matching of diffusion tensor images. These
measures make use of both magnitudes and the direction information of the
diffusion tensor. One example is the tensor scalar product (TSP), which is
defined as

TSPðD1;D2ÞZD1 : D2 ZTraceðD1D2ÞZ
X3
jZ1

X3
iZ1

l1il2jðe1ie2jÞ2: ð2:7Þ

It measures the overlap between two tensors. TSP is large when the two tensors
have both high eigenvalues and similar eigenvectors. To remove the effect of
relative size (in the sense of the magnitude of order of entries) of the two tensors,
a normalized TSP, shortened as NTSP, is used more often to emphasize the
shape and orientation of the tensor:

NTSPðD1;D2ÞZ
TraceðD1D2Þ

TraceðD1ÞTraceðD2Þ
: ð2:8Þ

Another type of dissimilarity measures of two tensors is based on the distance
of their corresponding p.d.f.s (pt(r)). Note that the diffusion tensor is the
covariance matrix of a local Gaussian distribution. A natural measure of
dissimilarity between the two tensors D1 and D2 would be the distance between
two Gaussian distributions with zero mean and the covariance matrices D1 and
D2. Therefore, by using Kullback–Leibler (KL) divergence defined for the two
general p.d.f.s f and g as

KLðf ; gÞZ
ðN
KN

f ðxÞ log f ðxÞ
gðxÞ dx; ð2:9Þ

the KL divergence of two Gaussian p.d.f.s mentioned above can be computed as

KLðD1;D2ÞZ
1

2
log

jD2j
jD1j

� �
CTraceðDK1

2 D1ÞK2

� �
: ð2:10Þ

KL(f, g) is not symmetric. The J divergence, defined as mean of KL(f, g) and
KL(g, f ), is a symmetrized KL divergence and is sometimes used.
Phil. Trans. R. Soc. A (2008)
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For more general p.d.f.s, f and g, the Bhattacharyya distance is defined as

Dbhatðf ; gÞZ
ðN
KN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxÞgðxÞ

p
; ð2:11Þ

and is used sometimes because it is easier to calculate than KL or J divergence.
The Bhattacharyya distance for the two Gaussian p.d.f.s mentioned above is

DbhatðD1;D2ÞZ
1

2
ln

D1CD2

2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD1jjD2j

p
0
@

1
A: ð2:12Þ

Kailath (1967) compared the properties of J divergence and the Bhattacharyya
distance. It was found that the latter often works as well as the former.

Lengthlet et al. (2006) considered the Riemannian manifold M of three-
dimensional normal distributions with zero mean parametrized by the six
components of their covariance matrix D (the diffusion tensor), where a
Riemannian metric was introduced in terms of the Fisher information matrix. By
this view, the geodesic distance Dg on M was defined as follows:

DgðD1;D2ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Traceðlog2ðDK1=2

1 D2D
K1=2
1 ÞÞ

r
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X2
iZ1

log2ðhiÞ

vuut ; ð2:13Þ

where hi denotes the ith eigenvalue of matrix D
K1=2
1 D2D

K1=2
1 . The geodesic

distance was compared with the Euclidean distance and J divergence in their
work; it was claimed that the geodesic distance outperforms the other two in
segmentation tasks.
(c ) Geometric flows and level set method

A geometric flow-based method is to evolve a curve or surface (called a front)
with a velocity depending on the external properties determined by the image
features or other factors. One example is curvature shortening flow that evolves a
curve or surface at each point along its normal with a velocity depending on the
mean curvature at that point. This process results in the smoothing of the front
to eliminate the effects of noise. It becomes an important regularization tool in
computer vision.

A general form of a geometric flow for a closed curve/surface can be described as

vS

vt
Z ðFCakÞN ; ð2:14Þ

where F is an image-based speed function, k is the curvature/mean curvature of
the curve/surface S and a is a balancing factor. N is the normal to the
curve/surface and t is time.

To solve the time-dependent partial differential equation (2.14), we use the
celebrated level set method introduced by Osher & Sethian (1988), where
the evolving curve/surface is considered as the zero level set of a function f that
is of one dimension higher. By doing this, a numerically stable algorithm
that easily handles topology changes of the evolving curve/surface is obtained.
Phil. Trans. R. Soc. A (2008)



i–2

(a) (b)

i–1

i

Figure 1. (a) Neighbours of Di along the negative of the normal direction (indicated by the arrow)
of the front at location i. (b) Evolving curve (black) superimposed inside an arch-shaped two-
dimensional PE field.
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The level set formulation of (2.14) reads as

vf

vt
ZKðFCakÞjVfj: ð2:15Þ

For DTI segmentation tasks, most of the work in the literature has defined F
as a dissimilarity measure of tensors near the front. For example, Jonasson et al.
(2005) defined F as a mean of two NTSP:

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞ; ð2:16Þ
where Di is the diffusion tensor at the current voxel i and DiKp is the diffusion
tensor at voxel iKp that is p voxels backwards along the normal of the front
(figure 1a). NTSP(Di ,DiK1) is the normalized TSP defined in (2.8). The
fundamental assumption of the segmentation technique in Jonasson et al. (2005)
is that adjacent voxels in a tract have similar diffusion property. Our proposed
model is still under this assumption; however, we will also take the consistency
between the propagating front and the tensor field into account to obtain a better
segmentation result in a shorter time.
3. Proposed model

(a ) Motivation

We first explain the motivation of this work through a two-dimensional tensor
field as shown in figure 1b. At each location, a black arrow represents the PE of
the diffusion tensor. To segment the arch-shaped tensor field from the
homogeneous background, an initial curve (shown as a black ellipse in
figure 1b) is set inside the object and then evolves along its normal direction.
PEs are almost horizontal for points on the ellipse. The vertical and horizontal
arrows show normal directions at corresponding locations on the ellipse.
Intuitively, propagation speed along horizontal arrows should be larger than
that along vertical arrows; the reason is that the evolving contour is farther away
from the boundary at locations with horizontal arrows, while closer to the
Phil. Trans. R. Soc. A (2008)
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boundary at locations with vertical arrows. Further observation gives that
normal directions at points with horizontal arrows are more consistent with
(parallel to) the PE field than those at locations with vertical arrows. The
normal directions at the locations with vertical arrows are almost perpendicular
to the nearby PE field. Thus, propagation should be faster at locations where
the normal directions are more consistent with the orientations of the PEs of the
diffusion tensors. We introduce a consistency measure CONS to quantify how
consistent the evolving front is with the orientation of the PE of the diffusion
tensor at a voxel.

An intuitive consistency at location i is defined to be

CONS1 Z jN$PEj; ð3:1Þ
with PE the principal eigenvector of the current diffusion tensor Di and N the
unit normal direction of the front at i. Absolute value is taken to remove the sign
ambiguity of the PE. If the normal direction of the front is parallel to the
principal direction of the tensor, the evolution direction is consistent with that of
the PE, the evolution speed is higher along that direction. A drawback of CONS1
is that it totally relies on the PE, which is sensitive to noise.

Motivated by the work of Westin et al. (1999) and Lazar et al. (2003), we
define another consistency measure at location i as

CONS2 ZFA �
����N$

Di �N
jDi �N j

����; ð3:2Þ

where FA is the fractional anisotropy value of tensor Di.
The above Di�N is a vector that will turn towards the PE of the tensor Di.

When the tensor has lower than full rank, it will act as a projection operator. In
particular, when the tensor is spherical or when N is one of the eigenvectors of
Di , N will not turn, i.e. ðDi �NÞ=ðjDi �N jÞZN , which implies jN$ðDi �NÞ=
ðjDi �N jÞj obtains maximum value 1 in all these situations. To distinguish
between a highly anisotropic tensor and an isotropic tensor that both lead to the
high value of jN$ðDi �NÞ=ðjDi �N jÞj, FA is multiplied in the front of it to form
CONS2. Lazar et al. (2003) claimed that CONS2 is less sensitive to noise. We will
apply CONS1 to synthetic data that are not very noisy and CONS2 to the noisy
human brain data.
(b ) A new evolution force

We propose a new force F that is a linear combination of a similarity measure
(SIM) and a consistency measure (CONS) with a balancing factor b, i.e.

F ZSIMCbCONS: ð3:3Þ
SIM can be any of the measures defined in §2b, CONS could be chosen as CONS1
or CONS2. The systematic strategy for choosing b is that we select the one such
that the mean value of the bCONS over the mean value of the SIM is
approximately 0.5. This is to make sure the bCONS term does not overweigh the
SIM term because the similarity term is more important in determining the main
structure of the to-be-segmented object. Based on this strategy, b is set to be 0.8
and 0.5 in the synthetic and human brain data, respectively.
Phil. Trans. R. Soc. A (2008)
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One specific example of propagation force at location i, for instance, is

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞCbCONS2: ð3:4Þ
In comparison with the work of Jonasson et al. (2005), where the evolution force
is defined as

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞ; ð3:5Þ
we not only add the consistence measure in the force, in the situation when the
tensor field is noisy, the calculated F is noisy also, the segmentation based on
which will be noisy. A simple filter, for example, a convolution with a Gaussian
kernel, can be applied to F to obtain smoother results. The added term CONS,
which does not cost much time to calculate, speeds up the propagation of the
evolving surface. Therefore, the proposed model takes much less iterations and
thus much less time.

(c ) Termination and initials

Termination criteria are carefully chosen based on two threshold values for F
and similarity SIM, which are called ThF and ThS, respectively: stop propagation
of the front at locations where F!ThF and SIM!ThS in two successive steps.
The whole algorithm stops when each point on the front terminates. In
comparison, Jonasson et al. (2005) only used one threshold ThS for similarity to
terminate. The advantage of the former over the latter will be presented in §4.

Initial front is obtained by a quick and thin delineation inside the
to-be-segmented object. This makes segmentation more efficient than taking a
circle/sphere as the initial front.
4. Experimental results

This section aims to compare the segmentation quality and convergence speed to
show the advantages of the proposed model that uses the consistency measure
over some models that do not use the consistency term.

(a ) Synthetic results

The synthetic data shown in figure 2a are created by replacing the middle part
of a randomly generated two-dimensional tensor (2!2 positive definite matrix)
field of size 55!55 with an arch-shaped tensor field. At each point (x, y),
the diffusion tensor equals V 0$D$V. If (x, y) is inside the arch-shaped object,
D is a diagonal matrix with diagonal entries 0.2!10K3 and 0.8!10K3 and V is
defined as in (4.1) with qZarctanðyK28=xK28Þ; if (x, y) is on the background,
D is a diagonal matrix with diagonal entries 0.7!10K3 and 0.4!10K3, V is
defined as in (4.1) with q a random angle between 0 and p/2:

V Z
cos q Ksin q

sin q cos q

 !
: ð4:1Þ

To demonstrate the advantage of the consistency term in the proposed model,
we create a tensor field based on the above field. First, inside the dashed square
in figure 2a, as zoomed in and shown in figure 2b, there are two perturbed tensors
Phil. Trans. R. Soc. A (2008)
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Figure 2. The advantage of a consistency term in speeding up and enhancing quality. (a) Initial
curve (white) superimposed on a two-dimensional tensor field and (b) zoomed in view of the region
inside the dashed square. The segmentation result of (c) Jonasson et al.’s (2005) model and (d ) the
proposed model with CONS1 consistency term.
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such that similarities between them and their neighbouring tensors drop below
the threshold ThS that is appropriate for Jonasson et al.’s (2005) termination.
The front will stop at these two locations by Jonasson’s model and end up with
insufficient evolution of the front or a hole. But the normal of the front is
consistent with the tensor, the consistency term CONS1 is still high, so it will
bring up the sum F; therefore when an appropriate threshold ThF is chosen such
that FOThF, then even though similarity is less than ThS, the proposed model
will keep propagating. To this end, under the situation that the consistency term
is high at a noisy region, if appropriate threshold values are chosen, the proposed
model is able to remove the noise effect at that location.

Jonasson et al.’s (2005) model with

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞ

and the proposed model with

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞCbCONS1; bZ 0:8

are applied to these synthetic data. The same initial contour (solid white curve in
figure 2a) is used in both models, no convolution is applied because the tensor
field inside the arch-shaped object is smooth except at two locations. ThS is set to
the same value of 0.64 in both models, ThF equals 1.5 and time step size dt is 0.4,
Phil. Trans. R. Soc. A (2008)
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aZ1.0. Implementation is worked on Matlab, using a PC with a 2.9 GHz
processor and 3 GB RAM. It takes 117 and 81 steps in 3.1 and 2.0 s, respectively,
for Jonasson et al.’s and the proposed model to stop propagation. It is observed
from figure 2c,d that a hole exists in the result of Jonasson’s model (figure 2c),
while no hole shows up in the result of the proposed model (figure 2d ). Results in
other regions are similarly good. The overall accuracy rate of the proposed model
compared with the ground truth is 98.25%, which is higher than the 94.18%
accuracy rate of Jonasson et al. (2005). In words, the proposed model is able to
obtain a more accurate result in a shorter time.

(b ) Human brain results

Human brain diffusion-weighted magnetic resonance images were acquired using
a 1.5 T GE Signa Neuro Vascular Interactive (NV/i ) system at Nanjing Brain
Hospital, China. Diffusion gradients were applied in 15 non-collinear directions and
bZ1000 s mmK2. The thickness of each slice was 3 mm without gaps, and 39 axial
slices were acquired in parallel to the anterior commissure–posterior commissure
(AC–PC) plane. Parameters are TEZ104.4 ms; TRZ800 ms; FOV is 24!24 cm2;
and the size of the acquisition matrix is 128!128. We use the idea of Westin et al.
(2002) to estimate the tensor field that is noisy in general.

Geometric flow models with

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞ
and

F ZmeanðNTSPðDi;DiK1Þ;NTSPðDi;DiK2ÞÞCbCONS2; bZ 0:5

are applied to these human brain data to segment the corpus callosum.
Convolution with a Gaussian kernel of zero mean and 0.45 variance is applied to
both models. dtZ0.1, aZ0.05, ThSZ0.4 and ThFZ0.95. The same initial
(figure 4a) is applied to both models. Figure 3 shows an intermediate and the
final result from these two models. Figure 3a,b represents the results at steps 60
(intermediate) and 550 (final), respectively, of the model without consistency
term, while figure 3c,d shows the results of the proposed model at step 60
(intermediate) and 120 (final), respectively. At step 60, there are two big gaps on
the corpus callosum using the force without the consistency term, while there is
only a small hole in the one with the consistency term. By using a consistency
term, a good result has been obtained at step 120, while there is still a small hole
in the model without consistency after 550 iterations. This shows that the model
without the consistency term takes more than four times longer to obtain a
result, which is still not as good as the one from the model with consistency
measure. Figure 4 shows the initial and the final results of the above model with
consistency measure from another view.

In figure 5, cross-sectional segmentation contours are superimposed on
the corresponding FA images for slice 7 (figure 5a(i)–(iii)) and slice 10
(figure 5b(i)–(iii)). Figure 5a(i)b(i), a(ii)b(ii), a(iii)b(iii) present those of the
models with bZ0, 0.2 and 0.5, respectively. Bright regions correspond to high
FA values. Diffusion in the corpus callosum region is highly anisotropic, and thus
FA is higher there. A gap and a leak are observed on the result of the model
without consistency term (see the bottom right and bottom left portions of slice 7
Phil. Trans. R. Soc. A (2008)
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(c) (d )

Figure 3. Corpus callosum segmentation results obtained using similarity NTSP and consistency
CONS2 (a,b) with bZ0.5 and (c,d ) without using any consistency term. (a) Step 60, (b) step 550,
(c) step 60 and (d ) step 120.

(a) (b)

Figure 4. (a) Initial and (b) final results (step 60) of the proposed model using NTSP similarity and
CONS2 consistency term (bZ0.5).

2289DTI segmentation using a geometric flow
and 10, respectively, in figure 5a,b); when b is increased to 0.2, the results are
better, but not as good as those when b is 0.5. This demonstrates that the model
with consistency CONS2 and bZ0.5 captures more accurate corpus callosum
details than the model without consistency term.

Lastly, we apply the proposed model with

F ZmeanðDgðDi;DiK1Þ;DgðDi;DiK2ÞÞCbCONS2; bZ 0:5

to the same human brain dataset; the same initial as mentioned previously is
applied to both models, results of which are shown in figure 6. Convolution is
applied to both models. dtZ0.1, aZ0.05, ThSZ0.45 and ThFZ1.0. It takes more
than three times for the model without any consistency term to obtain a result,
which is still not as good as that obtained by using a consistency term (see
bottom left and bottom right regions).
Phil. Trans. R. Soc. A (2008)
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(iii) (iii)

(b)

Figure 5. Cross-sectional segmentation contours superimposed over corresponding FA images.
Results of (a) slice 7 and (b) slice 10. Results correspond to (a(i),b(i)) bZ0, (a(ii),b(ii)) bZ0.2,
(a(iii),b(iii)) bZ0.5.
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5. Conclusion

A new geometric flow-based method is proposed to segment diffusion tensor images.
Consistency between the propagating front and the tensor field is incorporated into
the evolution force to speed up the propagation, to compress noise effects and thus
to obtain more accurate segmentation results in a shorter time. The proposed
model using the new evolution force together with the new proposed termination
criteria is able to handle images with abrupt change of tensor field caused by noise.

Experimental results for synthetic and human brain data confirmed the
advantages of the model.

The idea of the proposed work can be extended to HARD MRI data. One
approach is to use the HARD MRI data to approximate DTI data, based on
which the proposed model can be applied directly. Another approach is to design
a new consistency measure using the HARD MRI data directly.
Phil. Trans. R. Soc. A (2008)
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Figure 6. Corpus callosum segmentation results obtained using similarity Dg and consistency
CONS2 (a(i),(ii)) with bZ0.5 and (b(i),(ii)) without using any consistency term.
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