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Abstract—In this paper, we present a novel constrained vari-
ational principle for simultaneous smoothing and estimation of
the diffusion tensor field from complex valued diffusion-weighted
images (DWI). The constrained variational principle involves the
minimization of a regularization term of norms, subject to a
nonlinear inequality constraint on the data. The data term we
employ is the original Stejskal-Tanner equation instead of the
linearized version usually employed in literature. The complex
valued nonlinear form leads to a more accurate (when compared
to the linearized version) estimate of the tensor field. The in-
equality constraint requires that the nonlinear least squares data
term be bounded from above by a known tolerance factor. Finally,
in order to accommodate the positive definite constraint on the
diffusion tensor, it is expressed in terms of Cholesky factors and
estimated. The constrained variational principle is solved using the
augmented Lagrangian technique in conjunction with the limited
memory quasi-Newton method. Experiments with complex-valued
synthetic and real data are shown to depict the performance of
our tensor field estimation and smoothing algorithm.

Index Terms—Constrained variational principle, diffusion
tensor MRI, image smoothing.

I. INTRODUCTION

D IFFUSION is a process of intermingling molecules as
a result of random thermal agitation and in our context,

refers specifically to the random translational motion of water
molecules in the part of the anatomy being imaged with MR.
In three-dimensional (3-D) space, diffusivity can be described
by a 3 3 matrix called diffusion tensor which is intimately
related to the geometry and organization of the microscopic
environment.

In their seminal work [2], Basser et al., introduced diffusion
tensor MRI (DT-MRI) as a new MR image modality from which
anisotropic water diffusion can be inferred quantitatively. Since
then, DT-MRI became a powerful method to study the tissue mi-
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crostructure e.g., white matter connectivity in the brain in vivo.
Diffusion-weighted echo intensity image (DWI) and the dif-
fusion tensor are related through the Stejskal-Tanner equation
as given by

(1)

where is the diffusion weighting matrix of the -th magnetic
gradient, “:” denotes the generalized inner product for matrices.
The popular phase-encoding method for acquiring DT-MRI im-
ages will yield complex measurements, thus, and will all
be complex variables and (1) still holds in such cases. In the fol-
lowing, we assume and are complex
variables, where

, and . Take the magnitude of both
sides in (1), we have

(2)

Taking log on both sides of (2) yields the following linear Ste-
jskal-Tanner equation:

(3)

Note that in the past, what have been considered are only the
magnitude of the complex measurements and in particular the
linearized equation (3), [21], [27].

Given several (at least seven) noncollinear diffusion weighted
intensity measurements, can be estimated via multivariate re-
gression models from any of the above three equations. Diffu-
sion anisotropy can then be computed to show microstructural
and physiological features of tissues [3]. Especially in highly
organized nerve tissue, like white matter, the diffusion tensor
provides a complete characterization of the restricted motion of
water through the tissue that can be used to infer fiber tracts.
The development of diffusion tensor acquisition, processing,
and analysis methods provides the framework for creating fiber
tract maps based on this complete diffusion tensor analysis [8],
[11].

For automatic fiber tract mapping, the diffusion tensor field
(DTI) must be smoothed without losing relevant features. Cur-
rently there are two popular approaches, one involves smoothing
the raw data while preserving relevant detail and then esti-
mating the diffusion tensor from the smoothed raw data (see
[15] and [22]). The raw data in this context consists of several
diffusion weighted images (DWIs) acquired for varying mag-
netic gradient strengths and directions. Note that at least seven
values at each 3-D grid point in the data domain are required
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to estimate the six unknowns in the 3 3 symmetric tensor
and one scale parameter . The raw data smoothing or

de-noising can be formulated using variational principles which
in turn requires solution to partial differential equations (PDEs)
([1] and others in [5]) or at times directly using PDEs which are
not necessarily arrived at from variational principles ([26] and
others in [5]).

Another approach to restore the DTI is to smooth the
principal diffusion direction after the diffusion tensor has been
estimated from the raw noisy measurements . In Poupon et
al. [16], an energy function based on a Markovian model was
used to regularize the noisy dominant eigenvector (DEV) field
computed directly from the noisy estimates of obtained from
the measurements using the linearized Stejskal-Tanner
equation (3). Coulon et al., [9] proposed an iterative restoration
scheme for principal diffusion direction based on direction
map restoration work reported in [19]. Other sophisticated
vector field restoration methods [12], [20] can potentially be
applied to the problem of restoring the DEV fields computed
from the noisy estimates of . Recently, Chefd’Hotel et al.,
[7] presented an elegant geometric solution to the problem of
smoothing a noisy that was computed from using the
log-linearized model (3) described above. They assume that
the given (computed) tensor field from is positive
definite and develop a clever approach based on differential
geometry of manifolds to achieve constrained smoothing
where the smoothed tensor field is constrained to be positive
semi-definite. Interesting results of mapped fibers are shown
for human brain MRI.

The idea of simultaneous estimation and smoothing of the
diffusion tensors from DWI was pioneered by Wang et al., [25]
and improved upon by Wang et al., in [24]. This improvement
involved methods to overcome the problem of manual choice
of regularization control parameters. In both these works [25],
[24], the estimated smooth tensor field was guaranteed to be
positive semi definite. Moreover, these works were a report of
the first use of the nonlinear Stejskal-Tanner equation in the es-
timation of the diffusion tensors. Recently, in Tschumperlé et
al., [21], a robust version of the linearized Stejskal-Tanner equa-
tion is used as the data term along with a robust regularization
term in a unified variational principle to estimate a smooth
from the noisy signal measurements. Note that the data term
uses a linearized version of the Stejskal-Tanner equation as in
earlier works [9], [7], [16], [22]. In this paper, we further extend
our model in [24] to the restoration of the DTI from complex
valued DWIs. Specifically, we propose a novel formulation of
the DTI estimation and smoothing as a constrained optimization
problem. The specific approach we use is called the augmented
Lagrangian technique which allows one to deal with inequality
constraints. The novelty of our formulation lies in the ability to
directly, in a single step, estimate a smooth from the noisy
complex measurements with the preservation of its positive-
ness. The formulation does not require any adhoc methods of
setting tuning parameters to achieve the solution. These are the
key features distinguishing our solution method from methods
reported in literature to date.

In contrast to our solution (to be described subsequently in
detail), most of the earlier approaches used a two step method

involving 1) computation of a from using a linear least-
squares approach and then 2) computing a smoothed via ei-
ther smoothing of the eigenvalues and eigenvectors of or
using the matrix flows approach in [7]. The problem with the
two step approach to computing is that the estimated in
the first step using the log-linearized model need not be posi-
tive definite or even semi-definite. Moreover, it is hard to trust
the fidelity of the eigenvalues and vectors computed from such
matrices even if they are to be smoothed subsequently prior to
mapping out the nerve fiber tracts.

Briefly, our model seeks to minimize a cost function in-
volving, the sum of an norm based gradient of the Cholesky
factor which ensure the positiveness of by the Cholesky
factorization —and an norm based gradient of ,
subject to a nonlinear data constraint based on the complex (not
linearized) Stejskal-Tanner equation (1). The model is posed
as a constrained variational principle which can be minimized
by either discretizing the variational principle itself or the
associated Euler-Lagrange equation. We choose the former
and use the augmented Lagrangian method together with the
limited memory quasi-Newton method to achieve the solution.

Rest of the paper is organized as follows: in Section II, the de-
tailed variational formulation is described along with the non-
linear data constraints, the positive definite constraint and the
augmented Lagrangian solution. Section III contains the de-
tailed description of the discretization as well as the algorithmic
description of the augmented Lagrangian framework. In Section
IV, we present experiments on application of our model to syn-
thetic as well as real data. Synthetic data experiments are con-
ducted to present comparison of DTI restoration results with a
recently presented work of Coulon et al., [9]. Moreover, results
of comparison between the use of the linearized Stejskal-Tanner
model and the nonlinear form of the same are presented as well.

II. CONSTRAINED VARIATIONAL PRINCIPLE FORMULATION

Our solution to the recovery of a piecewise smooth DTI
from the complex measurements is posed as a constrained
variational principle. We seek to minimize a measure of lack of
smoothness in and the diffusion tensor being estimated
using an norm of the gradient in and an norm of
the gradient in the Cholesky factor . This measure is then
constrained by a nonlinear data fidelity term related to the
complex Stejskal-Tanner equation (1). The nonlinear data
term is constrained by an inequality which requires that it be
bounded from above by a possibly known tolerance factor. The
positiveness constraint on the diffusion tensor being estimated
is achieved via the use of the Cholesky factorization theorem
from computational linear algebra. The constrained variational
principle is discretized and posed using the augmented La-
grangian technique [14]. Each subproblem in the augmented
Lagrangian framework is then solved using the limited memory
quasi-Newton scheme [14]. The novelty of our formulation lies
in the unified framework for recovering and smoothing of the
DTI from the raw data . In addition, to our knowledge, this is
the first formulation which allows for simultaneous estimation
and smoothing of as well as one in which the regularization
parameter is not set in an adhoc way.
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Let be the complex DWI when no
diffusion-encoding magnetic gradient is present, be the
unknown symmetric positive definite diffusion tensor,
be the Cholesky factorization of the diffusion tensor with
being a lower triangular matrix,

are the complex DWIs measured after application of a
diffusion-encoded magnetic gradient of known strength and di-
rection and is the total number of measured DWIs The con-
strained variational principle is

(4)

where is the image domain, the first and the second terms
in the variational principle are smoothness constraints
on the real and imaginary part of , the third term is an

smoothness constraint on , where for
and and for . , where

are indices to the six
nonzero components of . The lower bounds on the value of

and are chosen so as to make the proof of existence
of a solution for this minimization (see Section II-D and the
Appendix) mathematically tractable. is a constant scale
factor and is the standard deviation of the noise in the
measurements . and are defined as

A. The Complex Nonlinear Data Constraint

The Stejskal-Tanner equation (1) shows the relation between
the complex DWI and the diffusion tensor . However, mul-
tivariate linear regression based on (3) has been used to estimate
the diffusion tensor [2]. It was pointed out in [2] that these
results agree with nonlinear regression based on the magnitude
Stejskal-Tanner equation (2). However, if the signal-to-noise
ratio (SNR) is low and the number of is not very large (unlike
in [2] where or ), the result from multivariate
linear regression will differ from the nonlinear regression signif-
icantly. A robust estimator belonging to the M-estimator family
was used by Poupon et al., [16], however, its performance is not
discussed in detail. In Westin et al., [27]), an analytical solu-
tion is derived from (3) by using a dual tensor basis, however,
it should be noted that this can only be used for computing the
diffusion tensor when there is no noise in the measurements

or the SNR is extremely high.
Our aim is to provide an accurate estimation of the diffusion

tensor for practical use, where the SNR may not be high and
the total number of DWIs is restricted to a moderate number.
The nonlinear data fidelity term based on the complex Stejskal-
Tanner equation (1) is fully justified for use in such situations.
This nonlinear data term is part of an inequality constraint that
imposes an upper bound on the closeness of the measurements

to the mathematical model . The bound may
be estimated automatically [13], [17].

B. The Smoothness Constraint

In Blomgren et al., [4], it was shown that smoothness con-
straint does not admit discontinuous solutions as the TV-norm
does when . However, when is chosen close to 1, its
behavior is close to the TV-norm for restoring edges. In our
constrained model, we need for regularizing and

for to ensure existence of the solution described in
Section II-D. Note that what is of importance here is the estima-
tion of the diffusion tensor and therefore, the edge-preserving
property in the estimation process is more relevant for the case
of than for . In our experiment, we choose for

and for .

C. The Positive Definite Constraint

In general, a matrix is said to be positive definite
if , for all in . The diffusion tensor hap-
pens to be a symmetric positive definite matrix but due to the
noise in the data , it is hard to recover a that retains this
property unless one includes it explicitly as a constraint. One
way to impose this constraint is using the Cholesky factoriza-
tion theorem, which states that: If is a symmetric positive def-
inite matrix then, there exists a unique factorization
where, is a lower triangular matrix with positive diagonal el-
ements. After doing the Cholesky factorization, we have trans-
fered the positive definiteness constraint on the matrix to an
inequality constraint on the diagonal elements of . This is,
however, still hard to satisfy theoretically because, the set on
which the minimization takes place is an open set. However,
in practise, with finite precision arithmetic, testing for a posi-
tive definiteness constraint is equivalent to testing for positive
semi-definiteness. This is because for any symmetric positive
definite matrix , its machine representation with

, where is a small multiple of the machine preci-
sion. When is a small symmetric positive definite matrix,
can become a semi-definite matrix, it follows that in finite pre-
cision arithmetic, testing for definiteness is equivalent to testing
for semi-definiteness. Thus, we repose the positive definiteness
constraint on the diffusion tensor matrix as, which
is satisfied when .

D. Existence of a Solution

Justification for using the augmented Lagrangian method for
constrained problems is given in [14], thus, we only need to
prove there is a solution for the following subproblem:

(5)

where is an estimate of the Lagrange multiplier,
is a penalty parameter and

.
Here denotes the space of functions with
bounded norms, is the space of square integrable
functions on and denotes the Sobolev space of
order on [10].
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Theorem 1: Suppose , then the augmented
Lagrangian formulation (5) has a solution .

Proof of this theorem is given in the Appendix.
Finding a solution of the constrained variation principle (4)

involves solving a sequence of equations of the form in (5) with
fixed and at each stage. It is much more difficult than when
dealing with the problems of recovering and smoothing sepa-
rately. However, there are benefits of posing the problem in this
constrained unified framework, namely, one does not accumu-
late the errors from a two stage process. Moreover, this frame-
work incorporates the nonlinear data term which is more ap-
propriate for low SNR values prevalent when the magnitude of
the diffusion-encoded magnetic gradient is high. Also, the noise
model is correct for the nonlinear complex data model unlike the
log-linearized case. Lastly, in the constrained formulation, it is
now possible to pose mathematical questions of existence and
uniqueness of the solution—which was not possible in earlier
formulations reported in literature.

III. NUMERICAL METHODS

The minimization problem given by (4) can only be solved
numerically. Here, we discretize the constrained variational
principle (4), transform it into a sequence of unconstrained
problems by using the augmented Lagrangian method and then
employ the limited quasi-Newton technique [14] to solve them.
Note that this framework allows us to solve the minimization
without resorting to adhoc methods of choosing the “tuning”
parameters. Also limited memory quasi-Newton is the method
of choice here due to the advantages it affords in the context of
memory/storage savings.

A. Discretized Constrained Variational Principle

We use the standard finite difference method to discretize the
problem. Let

where , and are forward difference operators, is
a small positive number used to avoid singularities of the
norm when . Now the discretized constrained variational
principle can be written as

(6)

B. Augmented Lagrangian Method

The above problem is now posed using the augmented La-
grangian method, where a sequence of related unconstrained
subproblems are solved, and the limit of these solutions is the
solution to (6). Following the description in [14], the th sub-
problem of (6) is given by

(7)

where is a slack variable, are the barrier parameter
and the Lagrange multiplier estimate for the -th subproblem,
respectively.

One can explicitly compute the slack variable at the min-
imum as and substitute it in (7)
to get an equivalent subproblem in given by

(8)

The following algorithm summarizes the procedure to find
the solution for (6).

Algorithm 1 Augmented Lagrangian Algorithm
1) Initialize using the nonlinear regression,

choose an initial and .
2) for
3) Find an approximate minimizer of

as in (8) starting with ;
4) If final convergence test is satisfied
5) STOP with an approximate solution ;
6) Update the Lagrange multiplier using

;
7) Choose a new penalty parameter ;
8) Set the new starting point for the next iteration to ,

;
9) end(for)

C. Limited Memory Quasi-Newton Method

Due to the large number of unknown variables in the min-
imization, we solve the subproblem using limited memory
quasi-Newton technique. Quasi-Newton-like methods com-
pute the approximate Hessian matrix at each iteration of the
optimization by using only the first derivative information.
In the Limited-Memory Broyden–Fletcher–Goldfarb–Shano
(BFGS) method, search direction is computed without storing
the approximated Hessian matrix which can be a very large
matrix in general size for unknowns).

Let be the vector of variables, and
denote the augmented Lagrangian function (8)

to be minimized. For simplicity, we write by
omitting the fixed parameter and in the following descrip-
tion. At th iteration, let be the update of the
variable vector the update of the gradient
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and the approximation of the inverse of the Hessian. The
inverse of the approximate Hessian can be approximated using
the BFGS update formula

(9)

where .
Then we can use the following L-BFGS two-loop recursion

iterative procedure, which computes the search direction
efficiently by using last pairs of [14].

Algorithm 2 Search Direction Update Algorithm
;

2) for
;

4) ;
end(for)

6) ;
for

8) ;

10) end(for)
stop with result .

where and is the initial approx-
imation of the inverse of the Hessian, we set
where .

The gradient of our energy function is

(10)

Each term in the above equation can be easily computed an-
alytically, for example

(11)

here is computed over a neighborhood of the voxel
where the forward differences involves the variables

and

D. Implementation Issues

The constraint in (6) is directly related to the standard devi-
ation of the noise which can be computed as in [17]. Since
there are complex measurements and 8 unknown parameters
at each voxel (Note: is complex-valued, so it is treated as two
unknowns), we have

Initialization is very crucial for nonlinear optimization. In our
case, we use the following nonlinear regression with positive
definiteness constraint as the initial guess:

(12)

The above minimization is a simple nonlinear least square
problem and can be efficiently solved by the Levenberg-Mar-
quardt method [14] using the results of the corresponding lin-
earized least square problem as an initial guess.

There are a few practical issues in implementing the aug-
mented Lagrangian method and the quasi-Newton method,
these are settled by using the suggestions in [14] or empirically.
For example, in the augmented Lagrangian method (see algo-
rithm 1), we start with a penalty control parameter ,
decrease it by a factor of 2 in each step untill it is less than 0.01.
We also choose . Note that the augmented Lagrangian
method is quite robust with respect to the choice of and
since will eventually decrease to 0 and approaches the
Lagrange multiplier. The final convergence test has two criteria:
The subproblem converges and . As the subproblem
is just a standard unconstrained minimization problem, the
criteria to check whether it converges or not is achieved using
any of the standard criteria in iterative optimization schemes
[14] and for the line search, we employ cubic interpolation and
Wolfe convergence criterion, see [14] for more details. For the
limited memory quasi-Newton method, we use the last five
update pairs to update the search direction.

IV. EXPERIMENTAL RESULTS

In this section, we present three sets of experiments on the ap-
plication of our direct tensor smoothing and estimation model.
One is on complex valued synthetic data sets and the other two
are on a complex valued DWI data acquired from a normal
rat brain. For the synthetic data example, we compare the re-
sults obtained from our estimation procedure with competing
methods published in literature.

A. Complex Valued Synthetic Data

We synthesized an anisotropic tensor field on a 3-D lattice
of size 32 32 8. The volume consists of two homogeneous
regions with the following values for and
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Fig. 1. A slice of several volumetric complex DWIs generated with
� = 0:5. Left to right: real and imaginary pairs of complex DWIs with
varying magnitude of diffusion encoded magnetic gradient. Top to bottom:
complex DWIs for varying directions of diffusion encoded magnetic gradient.

where the tensor is depicted as

the DEV of the first region is along the axis, while that of the
second region is in the plane and inclined at 60 to the axis.

is chosen to be 45 to yield an even distribution of the real and
the imaginary part.

The complex DWIs are generated using the Ste-
jskal-Tanner equation at each voxel given by

(13)

where is a zero mean
Gaussian noise with standard deviation . As the signal mea-
sured before the Fourier transform in MRI formation is com-
plex, it is reasonable to assume the noise is an additive complex
Gaussian noise. The noise in the DWIs remains to be complex
valued after the Fourier Transform. Thus, our simulated data re-
flects the correct physics of MRI imaging. Note that the noise
in the magnitude of the complex DWIs have a Rician distribu-
tion and is approximated by a Gaussian distribution when the
SNR is high [18]. We choose the 7 commonly used configura-
tions and for the directions of the dif-
fusion-encoded magnetic gradient as in [2] and use 3 different
field strengths in each direction (100, 500, and 1000 s/mm ).
Thus, we have a total of 21 different measurements. A slice
of the generated data set is shown in Fig. 1, note that the DWIs
are different when either the directions or the magnitudes of dif-
fusion-encoded magnetic gradient are different.

For better illustration of the superior performance of our
model, we compare performance with the following methods
in our experiments: 1) Linear—linear regression on (3) as used
in [2]; 2) Nonlinear—nonlinear regression applied to (1); 3)

(eigenvector smoothing)—linear regression
followed by the DEV smoothing method described in Coulon
et al., [9]; 4) —nonlinear regression plus
the smoothing as in 3), and 5) Ours—Our method. Note that
the EVS method in [9] is a direction field restoration scheme
that preserves discontinuities based on the work of Chan and
Shen [6].

Fig. 2 shows an ellipsoid visualization of the restored DTI
for the synthetic data set with . It is evident that our

Fig. 2. A slice of the original (ground truth) and the estimated DTIs,
respectively, for the noisy synthetic data with � = 0:5. (a) Original, (b)
linear, (c) nonlinear, and (d) our model.

Fig. 3. A slice of the computed DEV field for the noisy synthetic data with
� = 1:5. Top left image is the DEV field computed from the original tensor
field, and the other images arranged from left to right, top to bottom are the DEV
field computed from estimated tensor field using the following methods: linear,
nonlinear, linear + EVS; nonlinear + EVS and our model.

method restored the noisy tensor field quite well in comparison
to the nonlinear regression method which did not perform well
and the linear regression technique which performed the worst.

For further comparison, Fig. 3 shows the DEV computed
from the original and the restored DTI using all five methods
as mentioned before. This figure clearly shows that our model
yielded the best estimation of the original DEV field. The
method in [9], however, did not work well at voxels where
the estimated DEVs are almost orthogonal to those in their
neighborhoods. In such cases, the method of Coulon et al.
will treat them as discontinuities and does not smooth them.
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TABLE I
COMPARISON OF THE ACCURACY OF THE ESTIMATED DEVS USING DIFFERENT

METHODS FOR DIFFERENT NOISE LEVELS

Though it is possible to treat these locations as outliers, it is
difficult to set a reasonable criteria to achieve the same. It is
interesting to notice that the method which
serves as an improvement of the existing method
can diminish this problem. Additional quantitative measures,
described below, confirm the visual comparison results.

To quantitatively assess the proposed model, we compare the
accuracy of the DEV computed using the previously mentioned
methods. Let be the angle (in degrees) between the estimated
DEV and the original DEV, Table I shows the mean and stan-
dard deviation of using different methods for the synthetic
data with different levels of additive Gaussian noises. A better
method is one that yields smaller values. From this table, we
can see that our model yields lower error values than all other
methods under various noise levels. It is also clear from this
table that the methods using the original nonlinear complex Ste-
jskal-Tanner equation (1) are more accurate than those using
the linearized one (3). The advantage of our method and the
nonlinear approaches are more apparent when the noise level
is higher, which supports our discussion in Section II-A.

B. Complex DWI of a Normal Rat Brain

The normal rat brain data is imaged using a 17.6-T
(750-MHz) Bruker Avance Imaging Spectrometer system
with the following settings: ms, ms,

ms, ms, ms, and
kHz. The field of view is 15 15 21 mm

with a resolution of 117 117 270 um . The same set of
seven diffusion-encoded magnetic directions as the synthetic
data are used with two different magnitudes (100, 500 s/mm ).
With a number of averages equal to 8 for each signal measure-
ment , the raw data is a set of 14 complex DWI volume data,
each with a size of 128 128 78.

We extract a 128 128 10 volume in the region of the
corpus callosum for our first experiment. Fig. 6 depicts the
restored images of the six independent components of the
estimated diffusion tensor. As a comparison, Figs. 4 and 5 show
the same component images computed from th eraw data using
linear regression applied to (3) and the nonlinear regression
applied to (1). For display purposes, we use the same brightness
and contrast enhancement for displaying the corresponding

Fig. 4. A slice of the normal rat brain DTI estimated using multivariate linear
regression without smoothing, viewed channel by channel. Top row, left to right:
D ;D , and D . Bottom row, left to right: D ;D , and D .

Fig. 5. A slice of the normal rat brain DTI estimated using multivariate
nonlinear regression without smoothing, viewed channel by channel.
Arrangement of the figures are the same as in Fig. 4.

Fig. 6. A slice of the normal rat brain DTI estimated using using our proposed
method, viewed channel by channel. Arrangement of the figures are the same
as in Fig. 4.

images in all the three figures. We also present the computed
DEV of the estimated diffusion tensor in Fig. 7. We did not
compare with the EVS methods because the sorting problem of
the eigenvectors is very severe in free water or other isotropic
regions, thus, it is necessary to exclude those regions to make
effective usage of EVS methods. This involves a segmentation
issue which is nontrivial.
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Fig. 7. A slice of the computed DEV field from a normal rat brain. Top to
bottom: Linear, nonlinear regression and our model. Left column: Region of
interest for depicting the DEV indicated by the white box superposed on the
D image. Right column: The computed DEV field inside the white rectangle
on the left and the smoothing effect of our model is clearly visible in the shaded
box.

We then extracted a 10 127 78 volume in the region of the
cerebellum and show the sagittal view of the results in Fig. 8.
The brightness and contrast enhancement of the figures are the
same as in the previous experiment. In Figs. 6 and 8, the edge
preserving smoothing is evident especially in the off diagonal
terms of the diffusion tensor which are essential in evaluating
the structural anisotropy. We also notice that there are some dif-
ferences in the region of free water between Figs. 4 and 5 visible
in the off-diagonal terms while there is no difference visible in-
side the corpus callosum between these two figures. However,
Fig. 7 gives more insight into this via the depiction of the com-
puted DEVs. Note that smoothing effect on DEV is evident in
the shadowed box in Fig. 7. Our model for estimating a smooth
DTI from the noisy DWIs may be used to achieve better accu-
racy in fiber tractography. Our future efforts will focus on ap-
plying the model described in this paper to achieve better fiber
tract maps.

V. SUMMARY AND DISCUSSION

In this paper, we presented a novel constrained varia-
tional principle formulation for simultaneous smoothing
and estimation of the symmetric positive definite DTI from
complex DWIs. To our knowledge, this is the first attempt
at simultaneous smoothing and estimation of the symmetric
positive definite DTI from the complex DWI data. We used
the Cholesky decomposition to incorporate the symmetric
positive definiteness constraint on the diffusion tensor to be
estimated. The constrained variational principle formulation is

Fig. 8. A slice of the normal rat brain DTIs in the region of the cerebellum
viewed channel by channel. The DTIs are estimated using multivariate nonlinear
regression without smoothing (top row) and our proposed method (bottom row).
Both the top and the bottom rows are sagittal views and are arranged left to right
as: D ;D ;D ;D ;D , and D .

transformed into a sequence of unconstrained problems using
the augmented Lagrangian technique and solved numerically.
Proof of the existence of a solution for the minimization
problem posed in the augmented Lagrangian framework is
presented.

Results of comparison between our method and a represen-
tative [9] from the competing schemes are shown for synthetic
data under a variety of situations involving the use of linearized
and nonlinear data acquisition models depicting the influence of
the choice of the data acquisition model on the estimation. It was
concluded that using the complex nonlinear data model yields
better accuracy in comparison to the log-linearized model. Also,
superior performance of our method in estimating the tensor
field over the chosen competing method was demonstrated for
the synthetic data experiment. The estimated diffusion tensors
are quite smooth without loss of essential features when in-
spected visually via the use of ellipsoid visualization as well as
DEV field visualization. The superior performance is borne out
via a quantitative statistical comparison of the angle between
estimated DEV and ground truth DEV. Additional quantitative
validation may be performed by comparing the estimated fiber
tracts from the smooth tensor field obtained here to those ob-
tained from histology as was done in our earlier work [23] and
will be the focus of our future efforts.

Though the presented work focuses on diffusion tensor
imaging, the constrained variational principle and the applied
numerical methods can be easily tailored for processing the
high angular resolution diffusion imaging (HARDI) data and
other image data sets as well.

APPENDIX

Consider the augmented Lagrangian formulation (5) which
serves as a subproblem of (4), the existence theorem will be
stated and proved after the following two lemmas. If not stated,
the definitions and theorems employed in the proof can be found
in [10].

Lemma 1: Let and
, and suppose , then the following minimiza-

tion problem (14) has a solution if

(14)

Proof: We will verify the following three statements, one
by one, and then prove this lemma.
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• The first term in (14) is lower semi-continous
with respect to in and weakly lower semi-
continous with respect to in .

• The second term in (14) is continous with respect
to in when , and is continous with
respect to in when .

• The third term in (14) has the same continuity
property as the second term.

As in (14) is lower bounded, there exists a minimizing se-
quence for it, where ,
and and . Then

is bounded in .
and are bounded in .

Therefore, there is a subsequence
and such

that when

• in and a.e. on . (From the
compactness property of ).

• and in . (From the
weak compactness of )

• and in and a.e on .
(From Rellich-Kondrachov Compactness Theorem when

and , this is why we need !).
1) By the lower semi-continuity of norm in

and the lower semi-continuity of norm in ,
we have

2) Next, we claim

(15)

Since
, we only need to show

(16)

This will be proved in several stages
a) Let and

, then

Since is uniformly bounded in , by the
Sobolev embedding theorem, for , we have

Noting the fact that has a strong convergence toward
in , we have from the Dominant Convergence Theorem
[10]

Thus, we have

From the strong convergence of to in and
, we have

Now as and , we have

(17)

b) Similarly as previous step, we can prove

(18)

Combining with (a), it is easy to verify (16).
3) Now we will show that

(19)

The above can be easily verified since
are bounded and

(20)

Finally, we have from 1), 2), and 3)

(21)

Therefore, is a minimizer of as defined
in (14).

Lemma 2: Let
, and suppose , then

the following minimization problem (22) has a solution
if

(22)

The proof is similar as in the Lemma 1.
Theorem 1: Suppose , then the augmented

Lagrangian formulation (5) has a solution .
Proof: It is easy to see , as a matter of fact, constant

functions will be members of . Thus, there will be three cases:
1) and ; 2) and ; and 3)
and . Here we provide a proof for case 3, case 1 and
2 are trival to prove. Let be the solution for (14) and
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be the solution for (22), it is not hard to see that the
solution of (5) is
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