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Abstract

We present a new variational framework for recovery of ap-
parent diffusion coefficient (ADC) from High Angular Reso-
lution Diffusion-weighted (HARD) MRI. The model approx-
imates the ADC profiles by a 4th order spherical harmonic
series (SHS), whose coefficients are obtained by solving a
constrained minimization problem. By minimizing the en-
ergy functional, the ADC profiles are estimated and regular-
ized simultaneously across the entire volume. In this model,
feature preserving smoothing is achieved by minimizing a
non-standard growth functional, and the estimation is based
on the original Stejskal-Tanner equation. The antipodal
symmetry and positiveness of the ADC are also accommo-
dated into the model. Furthermore, coefficients of the SHS
and the variance of ADC profiles from its mean are used
to characterize the diffusion anisotropy. The effectiveness
of the proposed model is depicted via application to both
simulated and HARD MRI human brain data. The charac-
terization of non-Gaussian diffusion based on the proposed
model showed consistency with known neuroanatomy.

1 Introduction

Diffusion-weighted MRI (DW-MRI, shorten as DWI) adds
to conventional MRI the capability of measuring the ran-
dom motion of water molecules, referred to as diffusion.
The diffusion of water molecules in tissues over a time in-
terval t can be described by a probability density function
pt on the displacement r. Since pt(r) is largest in the di-
rections of least hindrance to diffusion and smaller in other
directions, the information about pt(r) reveals fiber orien-
tations and leads to meaningful inferences about the mi-
crostructure of tissues. This characteristic of the diffusion
is termed as anisotropy. Changes in these tissue properties
can often be correlated with processes that occur in devel-
opment, degeneration, disease, and aging, so this method
has become more and more widely applied ([1, 2, 3, 4]).

The density function pt is related to DWI echo signal
s(q) via a Fourier transformation (FT) with respect to q,

which represents the direction of the diffusion sensitizing
gradients, by

s(q) = s0

∫
pt(r)eiq·rdr, (1.1)

where s0 is the MRI signal in the absence of any gradient.
Therefore, pt(r) can be estimated from the inverse FT of
s(q)/s0. Recently, Tuch et al. ([5]) introduced the method
of HARD MRI, and Wedeen et al. ([6]) succeed in acquiring
500 measurements of s(q) in each scan to perform a fast FT
inversion. However, this method requires a large number of
measurements of s(q) over a wide range of q in order to
perform a stable inverse FT.

One of the alternative for identifying voxels contain-
ing crossing fibers is using ADC profiles d(x, θ, φ), which
can be related to the observed signal in DWI through the
Stejskal-tanner equation:

s(x,q) = s0(x)e−bd(x,θ,φ), (1.2)

where (θ, φ) (0 ≤ θ < π, 0 ≤ φ < 2π) represents the
direction of q, and b = γ2δ2|q|2(∆ − δ/3). Here γ is the
gyromagnetic ratio, and δ is the duration of two magnetic
field gradient pulses with a separation time ∆ in the use of
Stejskal-tanner pulsed gradient spin echo method ([7]). For
Gaussian diffusion, where pt is assumed to be a Gaussian,
d(u) = buT Du. The trace, eigenvalues and eigenfunctions
of D has been used to characterize the anisotropy and direc-
tional properties of the diffusion. This is known as diffusion
tensor imaging (DTI), and in particular useful for creating
white matter fiber tracts ([8, 9, 10, 11, 12, 13]).

However, it has been recognized that the Gaussian dif-
fusion model is inappropriate for assessing multiple fiber
tract orientations, when complex tissue structure is found
within a voxel ([9, 14, 15, 16, 5, 6]). For non-Gaussion dif-
fusion Frank ([16]), also Alexander et al. ([17]) used SHS
approximation of the ADC profiles estimated from HARD
data to characterize the diffusion anisotropy. In the work of
[16, 17] d(x, θ, φ) was computed from HARD raw data via
the linearized form of (1.2):

d(q) = −1
b
log

s(q)
s0

. (1.3)
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and represented by a truncated SHS:

d(x, θ, φ) =
lmax∑
l=0

l∑
m=−l

Al,m(x)Yl,m(θ, φ), (1.4)

where Yl,m(θ, φ) are the spherical harmonics, which are
complex valued functions defined on S2. The odd-order
terms in the SHS are set to be zero, since the HARD mea-
surements are made by a series of 3-d rotation, d(θ, φ) is
real and antipodal symmetry. The coefficients Al,m(x) for
even l are determined by

Al,m(x) =
∫ 2π

0

∫ π

0

−1
b
log

s(q)
s0

Y ∗
l,m(θ, φ)sinθdθdφ

(1.5)
in [16], where ∗ denotes the complex conjugate, and as the
least-squares solutions of

−1
b
log

s(x, θ, φ)
s0(x)

=
lmax∑
l=0

l∑
m=−l

Al,m(x)Yl,m(θ, φ) (1.6)

in [17]. Furthermore, they used these Al,m(x)’s to charater-
ize the diffusion anisotropy. The voxels with the significant
4th order (l = 4) components in SHS are characterized as
anisotropic with two-fiber orientations (henceforth simply
called two-fiber), while voxels with the significant 2nd or-
der (l = 2) but not the 4th order components are classified
as anisotropic with single fiber orientation (called the one-
fiber), which is equivalent to the DTI model. Voxels with
the significant 0th order (l = 0) but not the 2nd and 4th
order components are classified as isotropic. The truncated
order becomes higher as the structure complexity increases.
Their experimental results showed that non-Gaussian pro-
files arise consistently in various brain regions where com-
plex tissue structure is known to exist.

Since the ADC profiles can be used to characterize the
diffusion anisotropy, it is of great significance to have an ac-
curate estimate of it. In general the raw HARD MRI data are
noisy. Computing the coefficients of SHS directly from the
raw data often provides poor estimates. As a result, it will
lead to inaccurate or false characterization of the diffusion
and consequently leads to incorrect fiber tracking. There-
fore, designing models that can perform denoising with rel-
evant features preserved in the process of estimating the
ADC profiles from noisy raw HARD data is important.

However, very few methods reported in literature to date
on HARD data analysis have considered the denoising prob-
lem in the reconstruction of the ADC profiles. While the
HARD raw data is noisy. To improve the accuracy of the
estimation, in this paper we present a novel model that
has the ability of simultaneously smoothing and estimat-
ing the ADC profile d(x, θ, φ) from the noisy HARD mea-
surements s(x,q) while preserving the relevant features,

and the positiveness and antipodal symmetry constraints
of d(x, θ, φ). Our approach differs from the existing ap-
proaches developed in [16] and [17] mainly in the aspect
of recovering Al,m(x). In our approach the Al,m(x)’s are
reconstructed over the entire volume through a joint estima-
tion and regularization rather than estimating them individ-
ually at each isolated voxel. Moreover, in this paper we pro-
vide a method for characterizing the diffusion anisotropy,
which uses not only the information of Al,m(x)’s as in
[16, 17], but also the variation of d(θ, φ) about its mean.
Our experimental results showed the effectiveness of the
model in the estimation and enhancement of anisotropy
of the ADC profile. The characterization of the diffusion
anisotropy based on the reconstructed ADC profiles us-
ing the proposed model is consistent with the known fiber
anatomy.

2 Proposed model

In this paper we consider the cases where the maximum
number of fibers within a single voxel is two. Employing
the idea developed in [16, 17], we approximate d by (1.6)
with lmax = 4. Note that d(θ, φ) is a real valued function,
and Yl,m satisfies Yl,−m = (−1)mY ∗

l,m, Al,m is constrained
by Al,−m = (−1)mA∗

l,m. This constraint reduces the 15
unknown complex-valued coefficients Al,m in (1.6) to 15
real valued functions. They are

Al,0(x), ReAl,m(x), ImAl,m(x), (l = 0, 2, 4, m = 1 . . . l).
(2.1)

By using (2.1), we can rewrite (1.6) as

d(x, θ, φ) =
∑

l=0,2,4

Al,0(x)Yl,0(θ, φ) + 2
∑
l=2,4

l∑
m=1

(ReAl,m(x)ReYl,m(θ, φ) − ImAl,m(x)ImYl,m(θ, φ))
(2.2)

where ReF and ImF represent the real and imaginary part
of a function F respectively. To get a regularized estima-
tion for the functions in (2.1), we solve the following con-
strained minimization problem:

min
1
2

∫
Ω

{(
∫ 2π

0

∫ π

0

|s(x, θ, φ)−s̃0(x)e−bd(x,θ,φ)|2sinθdθdφ)

+α|s̃0(x) − s0(x)|2}dx + λ

∫
Ω

{
∑

l=0,2,4

|∇Al,0|p(x)

+
∑
l=2,4

l∑
m=−l

(|∇ReAl,m(x)|p(x) + |∇ImAl,m(x)|p(x))

+|∇s̃0(x)|q(x)}dx, (2.3)
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with the constraint:

d(x, θ, φ) > 0. (2.4)

The minimization is taken with respect to Al,0(x),
ReAl,m(x), ImAl,m(x), and s̃0(x). In (2.3)-(2.4) d is rep-
resented by (2.2), λ > 0 is a parameter, and

p(x) = 1 +
1

1 + k|∇Gσ ∗ Al,m|2 ,

q(x) = 1 +
1

1 + k|∇Gσ ∗ s0|2 . (2.5)

with parameters k, σ > 0, and the Gaussian kernel Gσ.
The first two terms in (2.3) are the data fidelity term. The
data constraint for Al,m(x) is based on the original Stejskal-
tanner equation (1.2) rather than its (log) linearized form
(1.3). As observed in [18] when the signal to noise ratio
is low the linearized model gives different results from the
original nonlinear Stejskal-Tanner model in the tensor field
estimation from DTI. The last four terms in (2.3) are the
regularization terms for Al,m(x) and s̃0(x). The speed and
the direction of diffusion governed by these terms at each
point x vary according to the magnitude of its gradient. By
the choice of p(x) (correspondingly for q(x))

lim
|∇Al,m(x)|→0

p(x) = 2, and lim
|∇Alm(x)|(x)→∞

p(x) = 1.

Then, at the locations where the magnitudes of these image
gradients are high, p(x) ≈ 1, the diffusion by this model is
based on minimizing the total variation norm ([19, 20, 21]).
The direction of the diffusion is strictly tangential to the
edges. In homogeneous regions the image gradients are
very small, p(x) ≈ 2, and the diffusion is essentially
isotropic. At all other locations, the image gradient forces
1 < p < 2, and the diffusion is between isotropic and total
variation based schemes and varies depending on the local
properties of the image. Therefore, the smoothing resulting
from this model preserves the features in Al,m(x)’s, and
s0(x). The constraint (2.4) preserves the positiveness of d.

3 Characterization of anisotropy

In [16] Frank used the |Alm(x)| in the truncated SHS (2.1)
to characterize the diffusion anisotropy at each voxel x. Our
experimental results, however, indicate that using the infor-
mation of |Al,m| is insufficient to separate isotropic diffu-
sion, one-fiber diffusion, and multi-fibers diffusion within a
voxel. We propose to combine the information from |Al,m|
with the variances of d(φ, θ) about its mean value to char-
acterize the diffusion anisotropy. We outlined our algorithm
as follows:

1. If

R0 =: |A0,0|/
∑

l=0,2,4

l∑
m=−l

|Al,m|, (3.1)

is large, or the variance of d(θ, φ) about its mean is small,
the diffusion at such voxels is classified as isotropic.

2. For the remaining voxels, if

R2 =:
m=2∑

m=−2

|A2,m|/
∑

l=0,2,4

l∑
m=−l

|Al,m|, (3.2)

is large, the diffusion at such voxels is characterized as one-
fiber diffusion.

3. For each uncharacterized voxel after the above two
steps, search the directions (θ, φ), where d(θ, φ) attains its
local maximums. If there is only one local maximum, d is
viewed as one-fiber diffusion. For the rest of the voxels that
have more than one local maximum (say 3), the diffusion
anisotropy is further characterized by the weights:

Wi =:
d(θi, φi) − dmin∑3

i=1 d(θi, φi) − 3dmin

,

where (θi, φi) (i = 1, 2, 3) are the directions in which d
attains 3 local maxima. If one of the weights is significant,
it is considered as one fiber diffusion. If two weights are
similar but much larger than the third one, it is viewed as
two-fiber diffusion, if all three weights are similar, it is clas-
sified as isotropic diffusion, since we are only interested in
discriminating between isotropic, one-fiber or two-fiber dif-
fusions.

4 Experimental results

In this section, we present synthetic as well as real data ex-
periments.

1. Analysis of simulated data
The aim of our experiment on the simulated data is to

test whether our model can efficiently reconstruct a regu-
larized ADC profile from the noisy HARD measurements.
We simulated an ADC profile on a 3d lattice of dimension
6 × 6 × 5. The volume consists of two homogeneous re-
gions. One of them was generated by taking s0(x) = 562,
A0,0 = 6.28 × 10−3, A2,0 = −8.81 × 10−4, A4,0 =
6.15 × 10−5, ReA2,1 = 5.22 × 10−3, ReA2,2 = 5.08 ×
10−4, ReA4,1 = −8.47 × 10−5, ReA4,2 = 4.92 × 10−5,
ReA4.3 = 3.10 × 10−5, ReA4.4 = −1.38 × 10−4,
ImA2,1 = −1.82 × 10−4, ImA2,2 = −1.13 × 10−3,
ImA4,1 = 9.62×10−5, ImA4,2 = 3.46×10−5, ImA4.3 =
−3.58 × 10−6, ImA4.4 = 1.75 × 10−5. The other part
was corresponding to s0(x) = 378, A0,0 = 6.08 × 10−3,
A2,0 = 2.04×10−4, A4,0 = 2.63×10−4, ReA2,1 = 6.63×
10−5, ReA2,2 = −9.71 × 10−5,ReA4,1 = 1.27 × 10−4,
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(a) (b) (c)

Figure 1: (a) True d, (b) The d generated by (2.2), where the
Al,m’s are the least-squares solution of (1.6) with the noisy
measurement s, (c) Recovered d by applying model (2.3).

ReA4,2 = 2.22×10−4, ReA4.3 = 1.24×10−4, ReA4.4 =
4.19 × 10−5, ImA2,1 = 5.77 × 10−6, ImA2,2 = 9.56 ×
10−6, ImA4,1 = 6.51 × 10−5, ImA4,2 = 6.64 × 10−5,
ImA4.3 = 7.52×10−5, ImA4.4 = 3.71×10−5. In Fig.1a-
1c we displayed the true, noisy, and recovered ADC profiles
, respectively for a particular slice of size 4 extracted from
the volume 6 × 6 × 5. The ADC profile d(x, θ, φ) was
computed by (2.2) based on these simulated data, and the
corresponding strue(x, θ, φ) was constructed via (1.2) with
b = 1000s/mm2. Then the noisy HARD MRI signal s was
generated by adding a zero mean Gaussian noise with stan-
dard deviation σ = 0.5. We then applied our model (2.3) to
the noisy s(x, θ, φ) to obtain 15 reconstructed functions in
(2.1), and then to get d(x, θ, φ) via (2.2). The reconstructed
d(x, θ, φ) is shown in Fig. 1c. The ADC profiles d in Fig.1b
were computed by (2.2), where Al,m’s are the least-squares
solutions of (1.6) with the noisy s. Comparing Figures 1a-
1c, it is clear that the noisy measurements s have changed
Fig.1a, the original shapes of d, into Fig. 1b. After applying
our model (2.3) to reconstruct the ADC profiles, the shapes
of d in Fig. 1a were recovered, as shown in Fig. 1c. These
simulated results demonstrate that our model is effective in
recovering ADC profiles.

2. Analysis of human MRI data
The aim of the second test is to reconstruct and charac-

terize ADC profiles d(x, θ, φ) from human HARD MRI.
The raw DWI data, which usually contains a certain

level of noise, were obtained on a GE 3.0 Tesla scanner us-
ing a single shot spin-echo EPI sequence. The scanning
parameters for the DWI acquisition are: repetition time
(TR)=1000ms, echo time (TE) =85ms, the field of view
(FOV)=220 mm x 220 mm. 24 axial sections covering the
entire brain with the slice thickness=3.8 mm and the in-
tersection gap=1.2 mm. The diffusion-sensitizing gradient
encoding is applied in fifty-five directions (selected for the
HARD MRI acquisition) with b = 1000s/mm2. Thus, a to-
tal of fifty-six diffusion-weighted images, with a matrix size
of 256 x 256, were obtained for each slice section. We ap-

(a) (b)

(c) (d)

Figure 2: (a) FA from GE software, (b)-(d) R2 with the
Al,m’s as the solutions of (1.5), least-squares solutions of
(1.6), and model solutions, respectively.

plied model (2.3) to these data to obtain all the coefficients
Al,m’s in (2.1), and determined d(x, θ, φ) using (2.2).

These Al,m(x)s are then used to calculate R0 and R2

defined in (3.1) and (3.2), respectively, as well as the
variance σ(x) of d(x, θ, φ) about its mean: σ(x) =∫ π

0

∫ 2π

0
(d(x, θ, φ) − ∑55

i=1 d(x, θi, φi)/55)2dθdφ. Based
on results from the HARD MRI data of this particular sub-
ject, we characterized the diffusion anisotropy according to
the following procedure. If R0(x) > 0.856, or σ(x) <
19.65 the diffusion at x is classified as isotropic. For the re-
maining voxels if R2(x) > 0.75, the diffusion at such vox-
els is considered as one-fiber diffusion. For uncharaterized
voxels from these two steps we further classified them by
the principles stated in the section 3. The thresholds men-
tioned above for R0, R2 and σ were selected by using their
histograms.

Fig. 2 shows the FA and R2 maps obtained from differ-
ent models. Fig. 2a displays the FA map from DTI model
obtained by using advanced system software from GE. The
Al,m(x)’s used to obtain R2(x) in Fig. 2b are directly com-
puted from (1.5). Those used to obtain R2(x) in Figs. 2c
and 2d are the least-squares solutions of (1.6) and the solu-
tions of (2.3), respectively.

Although the image in Fig. 2a is obtained from a con-
ventional DTI model, nevertheless it is comparable with
the R2 map, since single tensor diffusion characterized by
SHS representation from the HARD images agrees with that
characterized by the DTI model. However, in DTI, a voxel
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with a low FA indicates isotropic diffusion, while in our
model, multi-fibers diffusion may occur at the location with
a low R2.

From Figs. 2a-2d, it is obvious that characterization of
anisotropic diffusion is enhanced. Fig. 2b indicates that the
estimations of Al,m directly from the log signals using the
least-squares solution of (1.6) are usually nonsmooth. This
is evident from a comparison of the anatomic regions inside
the white square in Figs. 2c and 2d (zoomed versions of
Figs. 3a and 3b, respec.) There is a dark broken line de-
picted on the map of the external capsule (arrow to the right
on Fig. 3a), this same region was recovered by the proposed
model and characterized by the third step in our algorithm
as the two-fiber anisotropic diffusion (arrow to the right in
Fig. 3b) case. Our results also show the connection in a
cortical associative tract (arrow to the left in Figs. 3b), how-
ever, this connection was not mapped out in Fig. 2c (or Fig.
3a). All these mapped connections are consistent with the
known neuroanatomy.

Fig. 4a shows a partition of isotropic, one-fiber, and two-
fiber diffusion for the same slice used in getting the fig-
ures 2-3. The two-fiber, one-fiber, and isotropic diffusion
regions were further characterized by the white, gray, and
black regions respectively. The region inside the white box
in Fig. 4a, which is the same one indicated within the box
in Figs. 2c and 2d, is shown in a zoomed in view in Fig.
3c. Observe that the two arrows in figure 3C are pointing
to voxels that have been classified (white color) as locations
corresponding to 2-fiber diffusion cases. The characteriza-
tion of the anisotropy at these voxels and their neighbor-
hoods is consistent with the known neuroanatomy.

Fig. 4b represents the shapes of d(x, θ, φ) at three par-
ticular voxels (upper, middle and lower rows). The d in all
three voxels is computed using (2.2). However, the Al,m(x)
used in computing d depicted in the left column are the
least-squares solutions of (1.6), while those in the right col-
umn are the solutions obtained from the proposed model
(2.3). The profiles corresponding to ds obtained using the
least-squares approach as depicted in the first column may
be wrongly interpreted as those caused by isotropic diffu-
sion. However, the corresponding profiles using our method
correctly depict the expected shapes corresponding to two
and one fiber diffusion cases.

5 Conclusions

A novel variational framework was introduced for simul-
taneous smoothing and estimation of ADC profiles in the
form of truncated SHS based on HARD MRI. To our knowl-
edge this is the first attempt to simultaneously reconstruct
and regularize the field of ADC profiles from human HARD
MRI data. This model is characterized by minimizing a
nonstandard growth function with nonlinear data fitting.

(a) (b) (c)

Figure 3: (a)-(b) Enlarged portions inside the white squares
in Figs. 2c and 2d, respectively. (c) Enlarged portions inside
the white squares in Fig. 4a.

Moreover, the constraints on the positiveness and antipo-
dal symmetry properties of d is also accommodated in this
model.

Our experiments on both synthetic and human HARD
MRI data showed the effectiveness of the proposed model
in the estimation of ADC profiles and the enhancement of
the characterization of diffusion anisotropy. The characteri-
zation of non-Gaussian diffusion from the proposed method
is consistent with the known neuroanatomy.

The choice of parameters in the variational formulation
(equation 2.3), however, may affect the results. Our choice
is made based on the principle that classification for one-
fiber diffusion from the model solution should agree with
a priori knowledge of the fiber connections. In this article,
we have not included the work for determination of fiber
directions and the method for automated fiber tracking. The
study addressing these problems will be the focus of our
future research efforts.
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