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Summary. In this paper it is proved that the solution to the evolution problem 
for harmonic maps blows up in finite time, if the initial map belongs to 
some nontrivial homotopy  class and the initial energy is sufficiently small. 

1. Introduction 

Let (M, g) and (N, h) be two compact  Riemannian manifolds with dim M = n 
and d imN =m. We will assume that N has no boundary and (N, h) is isometri- 
cally embedded in some Euclidean space R k so that N is viewed as a submanifold 
of R k. Harmonic  maps are critical points of the energy 

E(u)=�89 j" Idul2dV 
M 

defined on C x (M, N), where in local coordinates, 

8u ~ 8u ~ ~p/ Su Ou ) 
]dul2=-g~Pox~ Ox B =g \~x~, ~x r �9 

Here we have used the summation convention, and ( . , . )  is the inner product 
of R k. 

For  y ~ N C R  k, let P(y): Rk--*TyN be the orthogonal projection onto the 
tangent space N at y, and let A(y): TyN x TyN-~(TyN) • be the second fundamen- 
tal form o f N C R  k at y. The tension field z(u) ofuEC2(M, N) is defined by 

z (u) =- P(u) A u = A u -  A (u) (du, du), 

with respect to the metric g, and 
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If ueC 1 (M, N) is a harmonic map then it is smooth and satisfies the Euler- 
Lagrange equation z(u)= 0, or 

A u=A(u) (du, du). 

In their fundamental work on the existence of harmonic maps into manifolds 
of nonpositive curvatures, Eells and Sampson [7] initiated the study of the 
heat flow equation of harmonic maps, which is the following parabolic system: 

~u 
~[=  z(u)= A u -  A (u) (du, du). (1.1) 

They proved that if the sectional curvatures of N are nonpositive, then the 
solution u(t)= u(t, x) of (1.1) with an arbitrary initial data 

u (0) = uo e C 2'~(M, N) (n2) 

exists for all t>0 .  Moreover, u(t) subconverges to u~ as t ~  + ~ .  Later, Hamil- 
ton [9] obtained a similar result in the Dirichlet case where M has a boundary 
0M and the flow is required to satisfy the boundary condition 

u(t, ")IoM=UoI~M. (1.3) 

Recently, Struwe [18] and Chang [1] showed that if d i m M = 2 ,  some results 
of Sacks and Uhlenbeck [15] and their extensions in the Dirichlet case can 
be obtained by the heat flow methods. 

However, the study of the heat flow of harmonic maps is still quite incom- 
plete. In general, one can only prove the solution of (1.1)-(1.2) exists locally, 
i.e. there exists a maximal existence interval [0, T), where T< + 0% such that 
the solution exists for te[0,  T), and it cannot be extended beyond T. If T< + or, 
then we say that the solution "blows up in finite time," or simply "blows up." 
We did not even know whether blow-up can actually occur until quite recently, 
when Coron and Ghidaglia [3] produced such examples for heat flows of har- 
monic maps from R" or S" into S", for n>3.  Their examples and methods 
rely heavily on the symmetries of both a S" and the initial maps. Shortly after, 
Ding [4] provided more general examples of blow-up assuming only that the 
initial map u 0 belongs to a nontrivial homotopy class and the initial energy 
E(uo) is sufficiently small. However his method works only for n = d i m M = 3 .  
It is one of our aims in this note to generalize Ding's result to all dimensions 
n>  3. The main ingredient in this generalization is the replacement of an "ellipt- 
ic" monotonicity inequality in [4] by a "parabolic" monotonicity inequality 
obtained by Struwe [19] (see also Chen and Struwe [2]). It turns out that 
using the parabolic monotonicity inequality one can also prove the maximal 
existence interval shrinks to zero as the initial energy E(uo)~0. 

Theorem 1.1, Assume that M has no boundary and d i m M = n > 3 .  Let ~ be any 
nontrivial homotopy class in C(M, N) with 

E~ = in f {E(u ) ]u~  c~ W~'2(M, Rk)} =0.  
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There exists e > 0  such that if u 0 e ~  and E(uo)<e then the solution of (1.1)-(1.2) 
blows up in finite time. Moreover, if [0, T(uo) ) is the maximal existence interval 
for the solution, we have T(uo)~0 as E(uo)~O. 

Remark 1.1. The hypothesis that E~ = 0  will be satisfied provided one of the 
following three conditions are met (1) Try(M)=0 and rr2(M)=0; (2) Try(N)=0 
and rr2(N)=0; (3) r q ( M ) = 0  and zc2(N)=0 (see [20]). 

It  may seem strange but it is actually natural that the proof  of Theorem 
1.1 can easily be adapted to obtain a global existence result, which has been 
proved for M = R "  by Struwe [19]. 

CorolLary 1.1. Let M be as in Theorem 1.1. For any constant K > 0  there exists 
e = e ( K ) > 0  such that if the initial map satisfies (1) [duo[(x)<K Jor all x~M,  
and (2) E(uo)<e., then the solution u oJ" (1.1)-(1.2) exists for all t>0 .  Moreover, 
as t ~ + ~ ,  u(t) converges to a constant map. 

Remark 1.2. Although both Theorems 1.i and Corollary 1.1 assume the small- 
ness of the initial energy, there is a major difference between their assumptions, 
namely the initial map  u0 in Theorem 1.1 is not homotopic to constant maps 
while in Corollary 1.2 it is. That Uo in Corollary 1.1 is homotopic  to the constant 
map is actually not an assumption but a consequence of (1) and (2). In fact, 
for any p > n, we have 

[duo[P dV< KV 2 ~ [duo[2 dV= ZKP- 2 E(uo)<ZKV- 2~:. 
M m 

This implies that the WI'P(M, Rk)-norm of u o is small if e is small. (Note that 
we can always assume ~ uodV=O by choosing the origin of R k suitably. Then 

M 

the Poincar6 inequality applies to give the assertion.) Since p >  n, the Sobolev 
embedding theorem implies the C~ Rk)-norm of u 0 is also small, where 
c~= 1-(n/p).  It follows that for small e, the image of the map  Uo is contained 
in a contractible neighborhood of some point in N. Hence Uo is homotopic  
to constant maps. This also indicates that the proof  of Corollary 1.1 may as 
well follow the line of [11], since one can assume the image of Uo is contained 
in a convex geodesic ball. In this paper  we would like to get Corollary 1.1 
as a consequence of Theorem 1.1. 

Remark 1.3. When ? M # 0 ,  we can prove results for the Dirichlet case similar 
to Theorems 1.l and 1.2. For  such a case ,~- will be a homotopy  class in 

C,(M, N)= {ueC(M, N)IUloM=4~I~M}, 

where ~eCZ'~(M, N). Note that the condition E~ = 0  can be valid only if qS[0 M 
is a constant map. In such a case, the condition that ~.~ is nontrivial means 
that the unique constant map in Ce(M, N) is not contained in .~-. Since the 
proof  for the Dirichlet case is similar to the case that M is closed, we will 
only remark in appropriate  context on the necessary modifications in the Dirich- 
let case. 
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In the next section we present two basic lemmas. Although they have been 
proved before, we include their proofs here for convenience of the readers. The 
proofs of Theorems 1.1 and Corollary 1.1 will be given in Sect. 3. 

2. Preliminary lemmas 

Throughout this section we assume M has no boundary. Let u(t)=u(t, x) be 
any solution of (1.1)-(1.2), and let [0, T) be the maximal existence interval of 
u, where 0 < T< + ~ .  We will use the following notations: 

e(u) = Idul z, 

~(t) = max e(u(t)). 
M 

The following lemma is essentially contained in [4]. 

L e m m a  2.1. There exists a 6 > 0  depending only on the geometry of M and N 
such that for any toe[0, T) we have 

and 

1 + ~(to) 
~(t) < 1 -- ~(to) {exp [6- ' ( t -  to)] -- 1} (2.2) 

for t o < t < t o + b l n ( l + ~ ) .  

Proof From the equation for the evolution of e(u) (see [9]) we see that 

~3 e (u) < A e (u) + C (e (u) + 1) e (u), 
Ot - 

(2.3) 

where the constant C depends only on the curvatures of M and N. For any 
x e M  with e(u) (t, x)=~(t) we have A e(u) (t, x)<O. By (2.3), 

O~tu) I(t. x~ < C (~(t) + 1) ~(t) 

for all x with e(u) (t, x)= ~(t). This implies 

where 

D + ~(t)<= C(~(t)+ 1) ~(t) 

D+f(t)=lim sup h 
h'- '  + 0  

f ( t  + h) - f ( t )  

(2.4) 
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By the comparison theorem (see [10], pp. 26-27), we have O(t)<y(t) for 
t > to, where y is a solution of the ordinary differential equation 

y'=C(y+ l) y, y(to)=~(to). 
If follows that 

eo exp [C ( t -  to)] 1 + 0o 
((t) < 1 - ~o{exp [ C ( t -  to)] - 1} < = 1 - ~ o { e x p [ C ( t - t o ) ]  --1} 

for to<t  < t o + C - 1 1 n ( 1  + 1 ) ,  where ~o =~(to). Setting C-1 =6,  we see that (2.2) 

holds. It is then easy to use the a priori estimate (2.2) to prove (2.1). 

Remark 2.1. Lemma 2.1 can also be proved in the Dirichlet case, using parabolic 
estimates to replace the simple maximum principle in the above proof (see [4]). 

The next lemma is a parabolic version of the monotonicity inequality, which 
can be found in [19] (for M = R " )  and [2] (for general cases). 

In the sequel we let p be a positive constant less than the injectivity radius 
of M, and {x'} a normal coordinate on a geodesic ball Bo(po ) centered at Po 
with radius p. If u: (0, T) x M - * N  is a solution of (1.1), we may restrict u to 
any such coordinate neighborhood and regard u as a map u: (0, T)x  B o 
=- B v (0) c R" --* N with energy density 

1 �9 ~?u i ~?u i 

e (u )=~g  p 3x ~ ~?x~. 

(Note that in fact here g is the pull back metric g on M via the exponential 
map at point Po.) Moreover, there exists a positive constant A = A(p) depending 
on the geometry of M, such that 

with 

g=p(x)=a,~+q=~(x), g=O(x)=a,~+q=P(x) 

]q,~ (x)] < A r 2, 

]0q,~ (x)] < A r (2.5) 

where r=lx[<=p. Now, given any toe(0, r), define a function q~(R)=q~to(R) for 

Re(0, rain {V~o, p}) by 

S_ Ixl2_  ~(R)=�89 R2-" I [dulZ(to - R 2 ,  x ) e x p ]  4R2S4)2(x)V'-g(x)dx, (2.6) 
Bo 

where ~b is a smooth real function such that ~b(x)= 1 for Ixl <__p/2, q~(x)=0 for 
Ixl >=p and 0 __< q~ (x) =< 1 for all x. 

Lemma 2.2. 7here exists a constant C > 0  (depending only on M and N), such 

that for 0 < R 1  < R2 <min{]/~o, p}. 

q~(R1) < e c ~R2-R,) ~(R2) + C E(uo) (R2 - R0.  (2.7) 
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Remark 2.2. For the Dirichlet case where u0 maps the boundary 0M into a 
single point qeN and the boundary condition 

u(0, x)=uo,  u(t, .)leM=q (2.8) 

is posed, one can prove a similar monotonicity inequality as follows. At a point 
pos~M, choose a coordinate system {x ~} so that Po is at the origin and Bo(po ) 
= {psMldist(p, Po) < P} corresponds to the half ball 

B + ={xeR"]lx]<p, x" >=0}. 

In such coordinates, one can define a function ~+ (R) exactly the same as the 
function ~b(R), except that Bp is replaced by B + . Then we have for 0<R~ ~ R  2 

< min { ~ o ,  P}, 

@+ (R1)<eC~R2-R')q ~+ (R2)+ CE(uo)(R 2 - -R0 .  

The proof  is completely similar to that of Lemma 2.2. One needs only to notice 
that 

dog 
vRIx~ 

due to (2.8). Hence the boundary term vanishes when integrating by parts. 

3. Proofs of  the theorems 

Proof of Theorem 1.1. Let u be a solution of (1.1)-(1.2), with maximal existence 
interval [0, T) and small initial energy 

E(uo)<e. (3.1) 

We first prove that if e, is sufficiently small and Uo~J ~, where Y is a nontrivial 
homotopy class, then 

sup{g(t)lt~[0, T)) = + oc. (3.2) 

Indeed, if (3.2) is false then we may assume there exists a constant C > 0 such 
that 

~(t)< C, Vt~[0, T). (3.3) 

If T< + o% Lemma 2.1 (with to sufficiently close T) will lead to a contradiction. 
Hence T= + ~ .  Then, since 

dE(u(t)) 
dt 

we have 

S Iv(u(t))[ 2 dV= -IIv(u(t))ll 2, (3.4) 
M 

II~(u(t))H 22 d t  < E(uo)  < ~. 
0 
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Therefore we can find a sequence t~ ~ + oo such that 

II~(u(ti))LI2~O, as t i ~  + ~ .  (3.5) 

On the other hand, (3.3) and the local estimates for linear parabolic equations 
(see [12], pp. 351-355) lead to 

If follows that 

Ilu(ta)IIc=.~(M,N) < C. 

Hence, by passing to a subsequence, if necessary, we may assume u(t~)~u~ 
in C2(M, N). By (3.5) we have z ( u J = 0 ,  i.e. u~ is harmonic, while from (3.4) 
we derive that 

E(u~) < E(uo) < e.. 

Notice also that u~ e~" since u( t~)eY  for each i. The following lemma shows 
that such an u~ cannot exist provided e is sufficiently small and .~- is nontrivial. 
Therefore (3.2) holds under our assumptions. 

Lemma 3.1. There exists e, o > 0 such that if u ~ C 2 (M, N) is harmonic and E (u)< e0, 
then u is a constant map. 

Proo f  Suppose the lemma is untrue. Then we may assume there is a sequence 
of nonconstant  harmonic maps u~ such that 

E(ui )~O.  (3.6) 

However, in [16] Schoen attributes Theorem 2.2 to Schoen-Uhlenbeck. This 
Theorem uses elliptic scaling inequality and that implies global C 1 estimates. 
Then standard elliptic theory gives 

Ilu~Hc2..~M, N~ < C. 

This together with (3.6) implies that ui subconverges in C2-norm to some con- 
stant map. Thus we may assume ui(M) is contained in an arbitrarily small 
geodesic ball on N if only i is big enough. This is known to be impossible 
for a nonconstant  harmonic map from a compact  manifold without boundary 
(see [8]). Hence the lemma must be true. 

Next we claim that if (3.1) and (3.2) hold, then there exists e l > 0  such that 
if e,<el we have 

2 
T< C~"- 2 (3.7) 

where C is a positive constant depending only on the geometry of M and N. 
Clearly, this will complete the proof of Theorem 1.1. 
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To prove the claim notice that by (3.2) we assume for some sequence t ~  T 

~(t3 ~ + or, 

2~ =ln(1  + ~ ) ~ 0 .  (3.8) 

We also require that the sequence is chosen so that 

~(t) < ~(ti), Vt~[0, ti]. (3.9) 

Let p > 0 be a constant as in the proof of Lemma 2.2. Let p ~ M  be such that 

e(u(ti, Pi))= ~(tl), 

and let {x "} he the normal coordinates on the geodesic hall Bo(pi ) centered 
at Pi with radius p. In this coordinate system we may define the function 4~(R) 
-- ~to(R) as in Sect. 2. By Lemma 2.1, there exists 6 > 0  such that 

t i+226< T 

((t) < 2~(t~) + 2, for tz < t < t~ + 22 6. (3.10) 

We choose to = t~ + 2~ 6 in the definition of �9 = ~,o. 
Now we define a mapping vi by 

vi(t, x)=u(ti+ 2~t, 2ix), 

where t~ [ - 2 i - 2  ti, 6], x ~Bp~,--, C R". The v~ satisfies the equation 

~Ui i 
Ot A i IJ i=A (vi)(dvi '  dvi) (3.11) 

on [ -272t~ ,  J] x Bo~c,, where A~ is the Laplacian with respect to the metric 
g(a(x)=g~a(2ix), while A ~ means that we take the trace by gi. It is easy to see 
from (3.8)-(3.10) and the definition of vi that for sufficiently large i 

Idyll2(0, 0)= ~(ti) ln( l  + ~ )  > �88 

and 
/ I x 

IdvilE(t, x)<= 4[dvil a (0, O)= 4g(tO ln/1 + ~ ) <  4 

for (t, x ) f f [ -2 / -2  ti, 6] • Set 

el(t, x)= Idvil2(t, x). 

Then, similar to (2.3), 

63ei C i . 
~ < diei +-~(ei + 1) ei. 

(3.12) 
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In view of (3.12), we know that on any open set OicQi, 

Equivalently, hi =- ei e x p ( -  Ci t) satisfies 

Ot =Aihi. 

Take Oi= - r a i n  6, , • B1. By a result of Moser (see [-14], Theorem 3), 

there is a constant r > 0 such that 

l < h i ( O , O ) < = r ( o v o n ( B 1 ) ~ h { d x d t )  ~. 

Since el<4 and O<hi<eiexp(6) in Oi and ~/~>�89 for sufficiently large i, we 
have (with r 1 = 128 r 2 e26/6Vol(B1)) 

1 <rl  ~ Idvil2dV~dt. (3.13) 
Oi 

Now we consider the function 

q~(R)= �89 2 -n ~ idul2(to _ R  2, x) e - - -  
Bp 

]xl 2 
4R2 ~b 2 (x) l / ~  ( x ) d x ,  

where 0 < R < min {p, ]//(o} = Ro- By Lemma 2.2 we have 

q~( R ) < e ctR~ R)~(Ro) + C E (Uo) ( Ro - R) < e cR~ cb( Ro) + C ~ Ro. 

~(Ro)< �89 -" ~ IdulZ(to- R~, x) dV< R~-"E(u(to--RZ))<eR~ -". 
Ba 

(3.14) 

Thus, by (3.14), 

�9 (R)<(R2-"eCn~ for 0 < R < R  o. 

On the other hand, for R2= 22 S 2, where ] / ~  < S < l / ~ a / 2 ,  fi/ci), we have 

22-" ~ Idu(ti+R~(6-S2))[2dV 
B-~i n - 2 1 

=(e/s)  2-" ~ [dul2(to - e 2 ,  x )dg<2(26) - -~ -e~ (R)  
BR/S 

n--2 1 
< 2(26)~z- eT~ (Rg-"e ctr176 + CRo) e < 7R 2-"e (3.15) 
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r 2 1 

for some positive constant c~ > 0, since e - F >  e - ~  and q5--1 on Bg/s. However, 
direct computation shows 

S ]dvi(t)12dVi ='~2-" I ]du(t'+2~t)] 2 dV. 
B1 B.~ i 

Thus, for -min(6 /2 ,  6/Ci)< t = J -  $2< 6/2, (3.15) gives 

[dvi(t)] 2 dVi <=~R2-"e, 
Bl 

which together with (3.13) leads to 

1 < CR z-"e, (3.16) 

where C=r~ c~6 depends only on M and N. 

Consider first the case P < ~ o ,  which implies Ro=p. We see from (3.16) 

that in this case e > ~  =C- lp  "-2. Hence, if e<e l  we must have P > ~ o ,  hence 

= ~ o .  It follows from (3.16) that R0 
n - 2  

to 

Since to--* T as i ~  ~ ,  we see (3.7} holds. This completes the proof of Theorem 
1.1. 

Proof of Corollary 1.1. Let u be solution of (1.1}-(1.2) with 

(1) [duo]<KonM, (2) E(uo)<e. 

Let K be fixed. We are going to show that 

~(t)=maxJdu(t)12<C, Vt>0,  (3.17) 
M 

provided e is sufficiently small. Indeed, if (3.17) does not hold, we may assume 
the existence of a sequence ti--,Twhich satisfies (3.8) and (3.9). This, exactly 
the same as in the proof of Theorem 1.1, will imply that 

2 
T~Ce n-z, if e < e l .  (3.18) 

Orl the other hand, condition (1) and Lemma 2.1 indicates that there exists 
6 > 0 such that 

which contradicts (3.18) if e is small enough. Hence, (3.17) holds provided E 
is small. Once we have (3.17), the first part of the proof of Theorem 1.1 applies 
to show u(t) subconverges to some harmonic map u~ as t--* + oe, and E(uo~)<e. 
Finally, by Lemma 3.1 uo~ has to be constant since e is small. 
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Remark 3.1. We explain the modification in the Dirichlet case, as mentioned 
in Remark 1.3. 

First, the points pi, at which e(u(ti)) takes on its maximum, may go to 
the boundary. For such a case one should use the monotonicity inequality 
(2.7) as well as the monotonicity inequality at the boundary discussed in Remark  
2.2. The former might be useful for R small, while the latter is needed for R 
large. One also needs an argument in [17] (Lemma 1.3). We leave the details 
to the reader. 

Secondly, since we do not have a "boundary  version" of Moser 's Harnack 
inequality, we need a proof  of the following fact: 

Let v~C~176 - 1, 0] x B;-, N) be a solution to 

o t -  Av= A(v) (dv, dr), v(t, . )lx,=o=qeN, (3.19) 

such that 

(1) [dvl2~l, on [ - 1 , 0 ] x B ; - ,  (2) max{ldvl2(O,x)[x~B+}=l, 

then there exists C > 0 such that 

I <C ~ IdvlZdVdt. 
[-I ,0I•  

We prove this by way of contradiction. Suppose that the constant C does not 
exist. Then we may assume that there is a sequence {vi} of solutions of (3.19) 
which satisfies (1) and (2) such that 

[dvi[2 dVdt-*O. (3.20) 
[-1,O]• 

Now, noticing condition (1) implies that we have the uniform estimates for 
vi in C 2 " ( [ - � 8 9  0] • B + , N). So we may assume v i ~  in C 2, and ~ also satisfies 
(2). On the other hand, in view of (3.20) we should have d r = 0  which contradicts 
(2). Therefore, the stated fact must be true. Except for the above two points, 
the proof  for the Dirichlet case through as before. 

Final Remarks. (1) Theorem 1.1 answers a question raised in 1964 by Eells 
and Sampson [7]. See also Eells and Lemaire [6]. problem 1.1 (page 63). 

(2) Let us consider Theorem 1.1 in lower dimensions: 
Case n = 1. The heat flow is defined for all positive time. That  is a consequence 

of the proof  in Chapter II of [-7]. Full details and discussion are in [13]. 
Case n = 2  remains open. Certainly an assertion like Theorem 1.1 is not 

valid, for E ,  = 0 iff ~-  is trivial when n = 2 [20]. 
(3) Case n>3 .  What  geometric conditions ensure there exists an initial 

data in o~ for which the heat flow is defined for all positive time and converges 
to a harmonic map as t ~ oc. 

Acknowledgment. The authors would like to thank Professor J. Eells for valuable discussions and 
many good suggestions. 
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