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I. Problem and Notations

1. Let M, N be compact, smooth Riemannian manifolds of dimensions m, [ with
metrics g, h respectively. Since N is compact, N may be isometrically embedded
into R" for some n.

For a C'-map u: M — N < R", the energy of u is given by

E@)= | e(w)dM (1.1)

M
with energy density
ou; Ou;
0x, 0xg

o) =5 8
and volume element

dM=|/|gldx,

in local coordinates on M.
Here,

gP=(g,p)"", 1=, B=m, |g|=det(g,,) (1.2)

and a summation convention is used.
u is harmonic, if E is stationary at u, i.e.

—Ayu+17y,=0 (1.3)
for some function A: M — R, where v, is a unit normal vector to N at u and

1 0 0
g8 25, o9

denotes the Laplace-Beltrami operator on M.
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From (1.3) we obtain for any xe M that

ou(x) 0

Mx)= =g () 55
B o

(X)), (1.5)

for any smooth normal vector field y with y(u(x))=y,(x), and hence that 1
can be estimated

lAl=C-|Pul? (1.57)

with a constant C depending only on the geometry of N.

One may ask how much of the topology of N is represented by harmonic
maps into N. In particular: Given a smooth map u,: M — N, is there a harmonic
map homotopic to u,?

A natural approach to this problem is to deform a given map uy: M >N
under the “heat flow” related to the “energy” (1.1), i.e., to study the following
evolution problem

Oyu—Apyu+ Ayy () =0, in MxR, (L.6)
u(-,0)=u,, on M. 1.7

In their fundamental paper [2], Eells and Sampson establish the following result:

Theorem 1.1. Suppose the sectional curvature of N is non-positive. Then for any
smooth map uy: M — N there exists a global, regular solution u: M xR, —> N
to the evolution problem (1.6-7), and as t — co the functions u(-,t): M — N converge
to a smooth harmonic map u.,: M — N homotopic to u,.

Simple examples show that the restriction on the curvature in general is
necessary, cf. Eells-Wood [3]. However, if one relaxes the notion of “solution”
slightly, in case m=dim M =2, a result analogous to Theorem 1.1 holds for
arbitrary targets N, cf. [7]:

Theorem 1.2. Suppose m=2. Then for any smooth map u,: M — N there exists
a global distribution solution u: M x R, — N with finite energy E(u(-, 1)) £ E(uo)
and which is regular on M x R, with exception of at most finitely many singular
points (X, t), 1 k<K, t, < 0. The solution u is unique in this class.

At a singularity (X, t) a non-constant, smooth harmonic map u: S* ~RZ5N
separates in the sense that for sequences R,,~0, t,, /1, Xpp— X as m— o0

Uy, (X) =u (expxm (Rm .XI), tm) —il in PIllx;c2 (R2 5 N)

Finally, u(-,t) converges weakly in H*(M; N) to a smooth harmonic map u.,:
M — N as t —co suitably, and strongly if t,< oo for all k=1, ..., K.

Here, exp,: T,M — M denotes the exponential map, and

H"“?(M;N)={ueH"*(M; R")lu(M)=N ae.}
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denotes the Sobolev space of square integrable (L*-)functions u: M — N with
distributional derivative Vuel?.

In [9] Theorem 1.2 was applied to rederive the existence results of Lemaire
and Sacks-Uhlenbeck for harmonic maps of surfaces into target manifolds N
with 7, (N)=0.

Note that in general the weak limit u,, will not be homotopic to the initial
map u, due to change in topology at the singularities of the flow.

In higher dimensions m>2, the following result was obtained in [8; Theo-
rem 6.1]:

Theorem 1.3. Suppose u: R™ x R, — N is limit of a sequence {u;} of regular solu-
tions to (1.6-7) with uniformly finite energy E(u,(*,t) S E, for all t 20, all keN,
in the sense that E(u(-,t))< E,, a.e. and

Vu,—Vu  weakly in 1*(Q)

on any compact set Q<R™ X R,.
Then u is regular and solves (1.6-7) in the classical sense on a dense open
set Q = R™x R, whose complement X has locally finite m-dimensional Hausdorff-

measure with respect to the metric 6((x, t), (v, s)) =|x—y|+]/|t—s|.

Singularities of the flow are related to harmonic maps of spheres or special
solutions u(x, t)=v(x/]/m) of (1.6-7), cp. [8, Theorem 8.1].

Moreover, for regular u,eC! with small initial energy the existence of a
global, regular solution u to (1.6-7) and asymptotic convergence u(*,t)—u,,
to a smooth harmonic map u,, can be established, cp. Mitteau [6], Struwe
[8, Theorem 7.1].

Finally, by local finiteness of the m-dimensional Hausdorff measure of the
singular set X the limit map u in Theorem 1.3 also solves (1.6-7) weakly (in
the sense of (1.14) below) on R™" xR, .

However, Theorem 1.3 does not yield a general existence result for weak
solutions to (1.6-7). This is the question we confront now:

Given a smooth map u,: M — N between two (compact) manifolds M and
N, is there always a global weak solution to the evolution problem (1.6-7)?

In [1], a partial answer was obtained. (R. Kohn has pointed out that Theo-
rem 1.4 below was independently found by Keller, Rubinstein and Sternberg

[41)

Theorem 1.4. Suppose N=S"cR"*'. Then for any ugeH"*(M; S") there exists
a weak solution u: M x R, — S" with E(u(+,t)) S E(uo) a.e.

Theorem 1.4 is proved by approximating u with a sequence of solutions
ug: M xR, —R"! to the evolution problem for the “penalized” energy func-
tionals

Ex(wy=Ew)+(K/2) | (ul*—1)*dM. (1.8)

As K -0 the “penalty term” (K/2) | (ju|*—1)>dM forces the unconstrained
M

functions uy to approach N and the weak limit u will be a map u: M xR, —N,
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as desired. However, in order to show that u weakly solves (1.6), the special
geometry of the sphere is crucially used, and with the method of [1] Theorem 1.4
cannot be extended to more general targets.

But this is precisely the kind of difficulty that is encountered in Theorem 1.3,
and adjusting the proof of Theorem 1.3 to the penalty approximation used in
Theorem 1.4 as a combination and unification of the above results we obtain
the following general existence and partial regularity result for the evolution
problem (1.6-7).

Theorem 1.5. For any smooth uy: M — N there exists a global weak solution
u: M xR, — N of the evolution problem (1.6-7) which is regular off a singular
set X of locally finite m-dimensional Hausdorff-measure (with respect to the metric
8). Moreover, u satisfies the condition d,ucL*>(M x R.,), and E(u(-, )< E(up) a-€.
Finally, as t > o suitably, a sequence u(-,t) converges weakly in H2(M; N)
to a harmonic map u,: M — N with energy E(u,)<E(uy) and which is regular
off a set X, whose (m—2)-dimensional Hausdorf{f measure is bounded by E(u,).

Let us point out that in contrast to the 2-dimensional case in dimensions
m>2 our methods do not yet permit to establish uniqueness of weak solutions
to (1.6-7) in the class of partially regular maps.

Another open problem concerns the question whether (in dimensions m > 2)
the flow (1.6-7) actually develops singularities in finite time. Note that in the
non-compact case M =R", m>2, we have regularity for large time, provided
the initial data have finite energy, cp. Theorem 3.1. See “Added in proof” for
some recent results in this regard.

For simplicity we first consider the case M = R™

Notations. Let z=(x, t) denote points in R™ x R. For a distinguished point z,
=(Xq, ty), R>0let

B(zo)={z=(x,t)||x—xo| <R, |t—1to| <R}, (1.9)

Sr(zo)={z=(x,t)[t=1t,— R}, (1.10)
and

Tr(zo)={z=(x,0)|to—4 R?<t<t,—R?}. (1.11)

Denote the fundamental solution to the (backward) heat equation

(x—xo)

1
e ) B

(1.12)

We simply write P(0)=F;, T,(0)= 1T, and G,(z)=G(z). é denotes the parabolic
distance function

5((x, 1), (. s) =max {|x—y|,}/|s—¢t[} (1.13)

and the letters ¢, C denote generic constants.

Remark 1.6. From now on, by slight abuse of terminology, a map u: R" xR,
— R" will be called regular if 6,u, V?uelk,, for all p<oc. By the embedding

loc
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theorems, cf. [5], a regular map u and its spatial derivative Vu will be Holder
continuous (after modification on a set of measure 0 in R™ x R, if necessary).
Thus by iteration, using the Schauder estimates for the heat equation (see
[5], p. 320, (5.9)), a regular solution to (1.6-7) will be smooth if the initial data
are smooth.
A map u: M xR, —> NcR" will be called a weak solution to (1.6-7) if d,u,
Vuel? and if

du do
oup+gf——+y (u)(p) lgldxdt=0 (1.14)
1\£ R{ ( ! dx, 0x; N

for all peC§ (M x R, ; R"). (We may suppose that the support of ¢ is contained
in a coordinate chart for M.) By (1.5"), if u is a weak solution to (1.6-7) identity
(1.14) will also hold for testing functions ¢ e L*(M x R ; R") with compact sup-
port and Vpel?.

II. The Case M= R™: Approximation

We will approximate a solution of (1.6)+(1.7) by the solutions to the heat flow
for the penalized functionals (1.8). For general targets N the definition of E.
has to be modified somewhat.

Since N is smooth and compact there exists a uniform tubular neighborhood
U of N of width 24, such that any point peU has a unique nearest neighbor
g=ny(p)eN, |p—q|=dist(p, N) and such that the projection ny: U—>N is
smooth.

Let x be a smooth, non-decreasing function such that y(s)=s for s<4% and
x(5)=2 6% for s=46%. Then the function

p — x(dist?(p, N))

is everywhere differentiable and at points p with dist(p, N)<2 4y its gradient
is parallel to p—ny(p), hence orthogonal to T, ., N.
For K=1, 2, ... thus consider the heat flow

. 2 N
O,u— Au+ Ky (dist*(u, N))%(%—))——:O in R"xR, 2.1)
with initial data
u(x,0)=uy,(x) on R™ (2.2)

for the penalized functionals Fy, given by

Fe@)=E@)+(K/2) | x(dist?(u, N)dx.

For brevity, in the sequel we will omit writing the argument of y' appearing
in (2.1) explicitly.
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By Galerkin’s method, we know that for every KelN, problem (2.1)+2.2)
has a global solution u=uy satisfying

VueL®([0, co[; I2(R™), x(dist?(u, N))e L™ ([0, oo [; L'(R™)),
u,el?(R"x R.), 2.3)

whence also

. d (distz(u, N)
*q
u

3 e Lo (0. o (R,

cf. [1]. Moreover, by applying the Sobolev embedding theorem to u and on
account of the a-priori estimates for the heat operator (see [5], p. 345 (9.12)-
(9.13)) we find that

u,u,, V2uelf (R™"xR,) (2.4)
for any p< o0, i.¢., u is regular.
More precisely, for u =uy, we have the following estimates:

Lemma 2.1 (“Energy inequality”). Let uo=R"™— N be smooth with E(u,)< 0.
Then,

sup(j J lﬁtulzdxdt+FK(u(',t)))§(1/2) [ 1710 ? dx = Fiuo)= E (o).
Rm

120 \0 gm

Proof. Multiply (2.1) by u, and integrate by parts.

Lemma 2.2 (“Monotonicity formula”). For any point (x,, to)é R" X R, , the func-
tions

SR, u, K)=(1/2)R? | {[Vul*+Ky(dist?(u, N)} G,, dx 2.5)
Sr(zo)
PR,u,K)=(1/2) [ {VuP+Ky(dist?(w, N)} G,, dx dt 2.6)
Tr(z0)

are non-decreasing for 0 <R <|/to/2.

Proof. The proof of [8, Lemma 3.2, Proposition 3.3] carries over immediately
if we replace the energy density e(u)=(1/2) |Vu|? by

ex(W)=(1/2)(|Vu|*> + K y(dist*(u, N)). 2.7

For completeness, we recall the details. Note that equation (2.1) is invariant
under translation x - x—x,, t =t —t,, hence we may shift z,=(0, 0); moreover,
the scaled function

ug(x, )=u(Rx, R2t)

solves (2.1) with Kz=R?K instead of K.
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Finally,
D(R, u, K)=(1/2)R?* | {|Vul*+ K x(dist*(u, N))} Gdx
Sgr

=(1/2) | {IVugl*+ K x(dist* (ug, N))} G dx = B(1, ug, Kg).
51

We want to prove

4
— &R, u,K =0
g TR, }g:}{}w

for any R, with 0< R, <:£/§<;/2‘ Reparametrizing, it suffices to consider Ry =1.
By the regularity of u and G, we may differentiate under the integral sign.

Using (2.1) and VG =% G, we get

d
ﬁ* @(Rl i, K) Re1
=L B, ug, K
""‘dR y YR 2R R=1
= { st~l7(—;§ug )+Kx(dist2(u,N))
Sy R=1

d ~ 4
+Ky = ((1/2)dist* (u, Ay}}(’&”ﬁgw)}wx

= (~3u+K;¢f—§~{M})(x-i?w%«Zr@u}Géx
5t du 2

~ [ PuVG(x-Vu+2tduydx+ | Ky(dist*(u, N)Gdx
Sy Sy

= | —Ou(x-Vu+2tdu)Gdx— | 2c—fz»wti:w?ff«(;\:uI7u~4~2t€?tu)de
Sy S
+ | Ky(dist*(u, N)) Gdx

81

L a2t 0,0 G dx+ | Ky(dist?(u, N)Gdxz0, (28)

ij

St 2}t S

as desired.
The proof of (2.6) is similar.

Lemma 2.3. Let Q<R™x R be an open set. Then, if u==uy satisfies (2.1} and
is regular in Q, the following inequality holds in Q

@~ MDe=cewy, 2.9
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where C>0 is a constant depending only on N and m and for brevity
e(u)=ex(u)=(1/2)(|Vul*+ K y(dist*(u, N))).

Proof. Note that if dist(u, N)<2 é, then

K d (distz(u, N))

du 2

2

=K2dist?(u, N). (2.10)

By equation (2.1) we have
(K/2)(0,— 4) x(dist*(u, N))

, d (dist*(u, N) , d (dist*(u, N)
=Ky E(—___Z )(6,u—Au)—l7{Kx H—E(—z )}-Vu

1ot
— K222 dist?(u, N)— V{K xd%(d‘Lé’”—vl» Vu, @11

(6,——A)(IV;|2>= V(0,u— Au)- Vu—|V2ul?

Tat2
— kL[N e 12)
du 2

(2.12) implies (2.9) if dist(u, N) > 2 dy; for the remaining case we have
(0,— A) e(w)+|V?ul®+ K? y'* dist?(u, N)

ot
-2 V{K % diu (—dm ;"’ N))}- Vu

= —2K(x +y" dist?(u, N)) |V dist(u, N)|> —2 K ¥’ dist(u, N)
daz .
{W dist(u, N)Vu- Vu}
<1 K? dist?(u, N)+c|Ful*. (2.13)

In the last inequality, we use the fact that ¥’ >0 and that for u¢ N
dz
‘W dist(u, N)| < C(N), (2.14)

where C(N) depends only on a bound for the curvature of N.
Now, (2.9) follows from (2.13) immediately.
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Lemma 2.4. There exists a constant &,>0 depending only on m and N, such
that if for some 0<R< ]/t;/Z, 2o=(Xq, to), U=1ug satisfies

PR)=P(R,u, K)=(1/2) | (IVul*+Ky(dist*(, N)G, dxdt<s,, (215
Tr(zo)
then

sup {|Vul*+Ky(dist*(u, N)} SC(SR)"? (2.16)

Psr{zo)

with a constant 5>0 depending only on N, m, E, and inf{R, 1} and an absolute
constant C.

Proof. The proof of [8; Theorem 5.1] carries over almost literally. By translation
invariance of problem (2.1), in order to prove Lemma 2.3 it is sufficient to con-
sider the case that zo=0 and that u=uy satisfies (2.1) and is regular on R™ x
] 1o, 0]

Let e(u)=eg(ug) be defined by (2.7).

Set r;=6R, 5€70,1/2] to be determined in the sequel. For r, 0€]0, 7],
r+o<r,,and any z,=(X,, to)€ B our monotonicity formula implies

o™ | edxdtsc | e)Guyior20ndxdt
Po{zo) Polzo)

=c _‘. e(u)G(xo’to.;«ZOZ)dxdt
Te(to+202)

éc j' e(u)G(xO,th,z)dxdt
Trito+202)

—R2 tg+262—R2
-<_-C( P+ ){e(u)cr'(xa,wﬂz,}dxdr
—4-R2 _Rz

Sc | e(W) Gy, o420 dxdt. 17

Tr

But on Ty, given >0, if § >0 is small enough:

c | — %02
Goxoutor20 (5 DS e eXp( 4(t0+262——t)>

P lx—x)?
4it] 4ito+20*—t|

§cexp( )G(xa t)

2
< ?—B_l_
L¢ exp(c5 4|t|) G{x,1)

<{cG(x, ) if |x|<R/8
=|cR ™exp(—cdé~?), if |x|=R/S

<cG(x, )+ cR 2exp((2—m)logR—cé™?)
<cGix,t)+eR"2, {2.18)

where ¢ is independent of 4 and R.
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Remark that §~|logR|” /2 for small R and may be chosen independent
of R, if R=1. Hence with this choice of 4, for zye B, r+ ¢ <r; we may estimate

o " [ ewdxdt<cP(R)+ceEy<c(eo+eEy) (2.19)

Ps(zo)
Since u is regular, there exists o,€]0, r,[ such that

(ri—0oo)?supe(w)= max (r; —o)*supe(u).

5o 0<o=r P,

Moreover, there exists (xg, to)eEO such that

sup e(u)=e(u)(xg, to)=¢o.

PGD
Set po=(1/2)(r; —06,)- By choice of ay, (x4, to)

sup e(®)=< sup e(w)=<de,.
Ppg(x0.to) Pgo+po

Introduce

ro=V) €o"Po

v(x, t) u( X +x ! +t )
X, t)=ul—— ,— .
]/e_o 0 €o 0
We claim ry < 1. v solves (2.1) in B, with K = K/e,; moreover, v satisfies
e()(0,0)=1,

sup e(v) =4,

Fo
where e=¢z. By Lemma 2.3, e¢(v) satisfies

(0,—Ae(w)<c,e(v) in B

ro

with a constant ¢, depending only on m and N. Thus, if instead of e(v) we
consider the function f(x, t)=exp(—c, t)e(v)in B, and if ro = 1, Moser’s Harnack
inequality implies the estimate

1=e(®)(0,00=C [ e()dxdr.

Py

But, scaling back, by (2.19) and since +0o=Zpo+0,<r; we have

1
Veo
[e@dxdt=(/ey” [ e dxdt=<c(eo+eE)

Py Py (xo,10)
Veo
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and we obtain a contradiction for small ¢,, ¢>0. Hence, ro < 1.
By choice of g, this implies:

max (r;—o)?supe(u)<4pde,=4ri<4d.
P,

0=205r
Hence, we may choose a=(1/2) r, =(6/2)R and divide by ¢? to complete the
proof with C=16.
II. Passing to the Limit K — o
From Lemma 2.1 we know that for smooth uy: R"— N with E(uy)<oo there

exist a subsequence of {ug} (also denoted by ug) and a function u defined a.e.
on R™x R, such that as K — o0 we have

Vug—Vu  weakly* in L*([0, co [; L*(R™)), (3.1
d,ug—du weakly in I2(R"xR.,), (3.2)
Ug—u weakly in HL2(R®xR,), (3.3)

and hence also ux — u a.e. on R" x R, . Moreover,

dist(ug, N)=»0 in L} (R™xR,). 34

It follows that
d,ucl?(R"xR,), VueL>([0,co[;[*(R™), (3.5)
ueN, a.e. (3.6)

For M =R", now u will have the properties listed in Theorem 1.5:

Theorem 3.1. Let uy: IR™ — N be smooth with E(ug)<co and let u be the weak
limit of a sequence {ug} of solutions to (2.1) as above.

Then the function u weakly solves the evolution problem (1.6)H1.7). Moreover,
u is regular and solves (1.6) classically on a dense open set Q,c R™ xR, whose
complement X has locally finite m-dimensional Hausdorff-measure (with respect
to the parabolic metric 8). Moreover, u satisfies E(u(-,t))<E(uy), a.c. and
duel?(R™"x R,).

Finally, there exists ty>0 (depending on m, N and E;) such that X n(R"™
x[ty, )=, and, u(t)—»u,=peN in Hy? as t > suitably, where u,=p
is a constant harmonic map.

Proof. As in [8; proof of Theorem 6.1] define

Z= ) {zoeR"x R, |liminf | ex(ug)G, dxdt=eo} (3.7

R>0 K=o Tg(zo)
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where ex(u) is defined by (2.7) and £,>0 is the constant determined in Lem-
ma 2.4. The proof of the result that X is closed and has locally finite m-dimension-
al Hausdorff-measure with respect to the metric 6 is the same as that of Theo-
rem 6.1 in [8]. We only have to replace the densities e(ug) by ex(ug) given
by (2.7).

To see that u solves (1.6) off X some care is needed. Moreover, the argument
in [1] cannot be employed.

For z,¢ X, there exists R >0, such that

{ exwG, dxdt=e, (3.8)

Tr{zo)
for an unbounded sequence KeN. By Lemma 2.4, we have
[Vugl, Kdist*(ug, NC, (39

uniformly in a uniform neighborhood Q of z,. It follows that there exists a
subsequence uy such that as K —c0

Ug— U in C2.(Q), (3.10
Vug—Vu  weakly* in LY (Q). (3.11)

Moreover, by (2.13)
(0,— Ay eg (ug)+ K2 dist? (ue, NYSC (3.12)

in the distribution sense on @, with a constant C independent of K. (Note
that by (3.10) y'(dist®(ug, N))=1 for sufficiently large K.) Choose a function
@eC§(Q), multiply (3.12) by ¢ and integrate over Q. Then after integrating
by parts we obtain that

[ K> dist® (ug, N)p dx di < | |8,0+ Ag| exu)+clo] dx dtclp)
g Q

uniformly in K, and it follows that K dist(ug, N) is uniformly bounded in L2 (Q).
But now from (2.1) also (d,— 4)ug is uniformly bounded in I2,_(Q), and therefore
also 6,ux and V2 uy are.

Hence we may assume that

@,— Ayug—>(@—Au  weakly in IZ(Q), (3.13)
and
K dist(ug, N)— 7 weakly in L2 (Q). (3.19)

Finally, note that there exist unit vector fields y{° 1L T,

Uk

,N such that

d (dist*(ug, N) . (K
KE(——QW)——K dlSt(uK, N)"})N .
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By (3.10) therefore there holds

d (dist*(ug, N)
Qj’Kﬂ(f)‘(pdxdt—»O, (3.15)

for any vector field pel2,.(Q) such that ¢(z)eT,, N ae. on Q, and for any
)

o'cn.

For (3.13-15) it follows that (0,—A)u L T,N ae. in Q; i.e., there exists a
unit normal vector field yy(u) along u and a scalar function leL?, . (Q) such
that there holds

Ou—Au+Ayy()=0 (3.16)

a.c. on Q and in the distribution sense.

Furthermore, by using (3.10), (3.16) and the regularity theory of parabolic
operators, we infer that u is regular and solves (1.6)—-(1.7) in the classical sense
off Z.

To see that u weakly solves (1.6) on R"x R,, now choose any domain
Q&R™ xR, . Given R>0 let {P,=PF,(z))};; be a covering of Z n Q by parabolic
cylinders Py (z) with R;<R and such that ) RP<2-H™(ZnQ;J), where

ieJ
H™(ZnQ;d) denotes the m-dimensional Hausdorff-measure of X~ Q@ with
respect to the parabolic metric d.

Also choose a smooth cut-off function 0 £ <1 having support in P,(0) and

identically 1 on P;(0), and for ieJ denote #; the scaled function #;(x,t)

(X% Tt
“\ROR)

Let peC*(M xR,; R”) be an arbitrary testing function with support in
0. By (3.16) we have

0= | (u,—Adu+Ayy(w) pinf(1—n;) dx dt
ieJ

Q
= [ {mo+VuVo+Ayyw) e}inf(1—n)dxdt+F,
Q ied

where the term F involves error terms

|FI< |I7u||(p|s_u})|l711i|dxdt
Q 1€
ScY R [ |Vuldxdt,

ieJ Q;

and where the family Q, is a disjoint cover of | Jsupp|V#;| with Q;=Pyg (z))
and such that i

[Vy;l=max|Vn,| on Q; forany ieJ.
ked



96 Y. Chen and M. Struwe

By Hoélder’s and the Cauchy-Schwarz inequality therefore
|FISCY. RPM*(§ |Vul*dxde)/?

ied Q;
SCOLRMDV( | |Vul*dxdn)'?
ieJ UQx

ieJ

<c | |VulPdxdt
UPZRi(Zi)

Passing to the limit R — 0 by absolute continuity of the Lebesgue integral the
error term F — 0, and u weakly solves (1.6) in R™ x R, , as claimed.

Finally, using Lemma 2.2, for large t,, R= ]/%/2, we get
{ e(ux) G, dxdt

T
r{Z0) 310/d 2em

< | | e(un)G, dxdt<Cty? Eq<to (3.17)
4] Rm
_2
uniformly in K, if 1, > c¢(Ey/eo)" 2, where E, = E(uy).

Applying Lemma 2.4 we infer the uniform decay
[Vu(x, )|*<c/t (3.18)

for large t, and u(t) > u, =const, as t > 0.

IV. Compact Domains

The preceding arguments with minor changes convey to mappings u: M x R,
— N on compact manifolds M.

To indicate the necessary changes denote R,,>0 a lower bound for the
injectivity radius of the exponential map on M such that for any R<R,, and
any point x,eM the geodesic ball Bg(x,) of radius R around x, is defined
and diffeomorphic to the Euclidean ball Bx(0)cR™ via the exponential map.
Remark that in these coordinates the metric g on M is represented by a matrix
(84p), 1=, B<m, with g(0)=id. Now, if u=u,: M x[—T,0] - R" is a regular
solution to the penalized heat equation

Ou—Adyu+ Ky — 2

d (dist*(u, N)\
- (-7)_0, @.1)

we may restrict # to any such coordinate neighborhood and regard u as a
map u: Bp(0) x[—T, 0] R™ x [— T, 0] —» R" with energy density

e(u)zeK(u)=%{g""j aia u al;ﬁu+Kx(dist2(u, N))}. 4.2)
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Now let G be the fundamental solution (1.12) to the backward heat equation
on R™ with the flat (Euclidean) metric, as before. Also let peCg (Bg,,(0)) be
a cut-off function 0<¢ <1 such that ¢=1 in a neighborhood of 0. Finally,
introduce the analogues of the weighted energy integral (2.5-6)

=R2 2
&(R,u,K)=R s{ ex(w) G 9*}/1g|dx, @.3)

P(R,u,K)= | ex(u)G ¢*)/|gldxdt,

Tr

where |/|g| dx denotes the volume element on M.
Then we have the following estimates analogous to Lemmas 2.1-4:

Lemma 4.1 (“Energy inequality™). Let u=ug: M x R, — R" be a regular solution

to the penalized equation (4.1) with initial value u(-,0)=u,ec H*>(M; N). Then

SQUJNMFWQM+&M3@§&M#£W&
t O M

where Fy(u)= { ex(u)dM with density ex given by (4.2).

M
Lemma 4.2 (“Monotonicity formula”). Suppose u=u;: Bg, (0)x[—T,0]<R™

x [—T, 0] = R is a regular solution to (4.1) with E(u(t) < E, for all te[-T, 0].
We may assume that T < R%,. Then for any 0< RS Ry S R, there hold the relations

¢(R5 u, K) é eXP(C(Ro _’R)) @(RO, U, K) + C'EO (RO _R)’
P(R, u, K)sexp(c(Ro—R)) ¥(Ro, 4, K)+cEo(Ro—R),
with a uniform constant ¢ depending only on M and N.

Remark. An analogous estimate of course is valid for regular solutions
wMx[—T,0]—>N of (L.6).

Proof. We present the proof for the function ¥. After scaling

0 0 .

¥R K= [ { (R
Ty

-*(R)/1gl(R) dx dt

where ug(x, )=u(Rx, R*t) as above.
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il
Now compute, using % G= 25 G as before:
Xg

2 d (dist*(u, N)
= b~ g -
R=1 T{ {< 2tg 0%, ue it Ky d“( 2 ))

~(x-VPu+2td,u)+ K x(dist?(u, N))}G o*Y/|gldxdt

4

d 0
—27{ g% axaua;qo(x-Vu—F%atu)qu lgldxdt

1 i 0
il Vo u—uGo? t
+5 T{ x-Vg axa”axﬁ“ o*/lgldxd

}l/@dxdt

+ [ ex(W)Gox-Vol/gdxdt=T+T+IT+IV +V.
T

5 [ el G2 18
7] gl

The first term may be estimated

1= j {2, ,(x Vu+2to u)2+K;((dlst2(u,N))}G(p2 lgldxdt
‘let [x||g—id||Vullx-Vu+2t8,u|Go*|gldxdt

2 {4| l]x Vu+2td,ul>+ K x(dist? (u, N))}Ggo lgldxdt
Ty

—c | |x*|g—1d|®|Vu]> G ¢? Vigldxde
T

. 2
gl { [x-Vu+2t0,u|

7 ] Go*Vligldxdt—c¥(1,u,K)
T, .

while for the remaining error terms we have

<= jf_ff”_l?ﬁ‘ﬂu o*)lgldxdt+c | |7ul?G)/|gldx dt
T Ty
<

3T +c (1, u, K)+ cE(up).
[T+ IV | < P(L, u, K),

IVISIP(LuK)+ | exGlx-Vol?)/gdxdt
Ty

=3 ¥(1;u, K)+cE(uo).
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d d
If we evaluate — ¥(R;, u, K)=R;'—— P(RR,,u,K) at R; <1 we use the
dR dR R=1

estimate |g(x)—id| < c|x| and the fact that
Rt Y x*G<G+c¢ on Tz,
to control the error term in I as follows:

1

20, id12 2 2 <
2|tllxl lg—id[*|Vul*Go*)/|gldxdt=c¥(R,u, K)+cE,.

]

TRy

The estimates for II, III, IV, and V can be handled in a similar way. From
the differential inequality

d 1 |x-Vu+2td,ul?
et >_1 p IArRTeloul
TR YR u,K)z o §

T G?)/gdxdt—c¥P(R,u K)—cEo, (4.4)
Tr

now the claim follows.

In the Bochner-type estimate Lemma 2.3 we pick up an additional term
involving the Ricci-curvature of M resulting from differentiating the metric g.
This gives

Lemma 4.3. Suppose u=uy is a regular solution of (4.1)y in an open set
Q< By, (0)x Ry cR™x R... Then there holds

(0,— 4) eg(w) Sc(1 +ex () ex (w)
with a constant ¢ >0 depending only on M and N.

The monotonicity formula Lemma 4.2, the Bochner-type estimate Lemma 4.3
and Moser’s Harnack inequality in the same way as before imply the e-regularity
theorem Lemma 2.4. However, the range of admissible radii R is restricted to
the range of validity of Lemma 4.2:

Lemma 4.4. Suppose u=ug: M x[— T, T] — R" is a regular solution to (4.1), and
assume that TZR%. There exists a constant 0 <gy<R,, depending only on M

and N such that if for some 0 <R <min {g,, ﬁ/2} the inequality

W(Ra U, K) é €o
is satisfied, then there holds
sup ex(w)<c(6R)"2
Psr

with constants ¢ depending only on M and N and 0>0 possibly depending in
addition on Eq=E,(u(*, —T)) and R.
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Proof. By the restriction on R and Lemma 4.2 estimate (2.17) may be modified

o™ | exwdxdts...<c | ex(U) Gy 19+205dxdt+CcRE,,
Pa(z0) Tr

and the remainder of the proof of Lemma 2.4 carries over unchanged.

Proof of Theorem 1.5. With the aid of the modified Lemmata 4.1-4.4 the proof
of the first assertions is identical with that of the analogous statements in Theo-
rem 3.1

For the last assertion note that by Lemma 4.1 we may choose a sequence
tx — 00 such that ug(; tg) »u,, weakly in H-2(M; N), while

tx
§ [ 1ouxl)Igldxdt—0, (4.5)

tx~1 M

and &,ux(, tg) = 0 in L2(K - c0). Define

Zo={) U {xoeM|liminf | ex(uK)G(xo,tx)(pzl/[gidxdtgeo}

R>00<r<R K=o 7 ixg,t5)

where ¢, is determined as in Lemma 4.4.

2, is closed by the same argument as given in [6] in the case of Z.

Moreover, H"~2(Z ) S cE,. To see this let R>0 be given and let {Bg, (x;)};cs
be a cover of X by balls of radius R; centered at x;X . We may assume
R;£R<g,=Ry. By compactness and Vitali’s covering lemma there is a finite
subfamily J'<J such that B, g, (x) " B,g,(x)=# for i, jeJ', i+j, and such that
the collection {Bog,(x;)|ieJ’} covers Z .

Now for sufficiently small R>0 and sufficiently large K, estimate (2.18),
the definition of Z, and our monotonicity formula Lemma 4.2 imply that for
any ¢>0 there is a constant C{g) such that for any ieJ’ with a suitable number
0<r,SR,/C(e)S R; <R there holds

80§ _“ eK(uK)G(xi,tx) (le/ ’gldth

Trypa (i, tx)

te—r4

é4ri-2 j‘ (rxz 5 eK(uK)G(xi_tK)’ (le/ lgldX)dt

t—r? Sretxi, ti)

Scexpler)r? | ex(ug) Gy i 02 /18l dx+cr, By

Srox:, 1)

Scexp(c(R/CE—rNR/CE)} | exlug) Gpy e @?)/1g]dx+cR,Eq

SR;/C(5)(Xir tK)

SCER™ [ exlug(, tx—(R/C©)))/Igldx+eEg+CoRE,. (4.6)

BR;(xi)
Here we have used that for suitable C(e) like (2.18) there holds

Gi,,n<e on SR{;*C(s)(xis t)\BRg(xi}X{t“(RE/C{g))z}'
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By (4.6), if we choose &= 382 , R< 3 Ceo I3 we obtain that for any ieJ’ and
sufficiently large K 0 0o

EOR?_2§C _[ eK(uK(':tK_(Ri/C(S))Z) lgldx.

BR,(x:)
Analogous to [7, Lemma 3.6] now we have

Lemma 4.5. Suppose ug solves (4.1), and let 0<2R <Ry, 0ZS<T< 0 be given.
Then

j exlug(-, )]/ I1gldx=c j e (*, S) )/ 1gldx

B3 r(x0) Br(xp)
r y L.\
—§ [ 16ug?Ygldxdt— ( %2 Eo- | [ 10,uxl dxdt)
S M S M

where E,= E(u,), and ¢ only depends on M and N.

For completeness, a proof is given at the end of this section.
Choosing R=R;, S=tx—(R;/C(e))?, T=tg by (4.5) we thus obtain that for
any ieJ’ for sufficiently large K

gRP22C j ex(ug(-,tg))]/ gl dx.

Ba R, (x:)

J’ being finite, we may choose K such that this estimate holds simultaneously
for all ieJ’. Upon adding, by Lemma 4.1 therefore

ZR}"'ZéC j ex(ug(, ty)) I/ lgldx < CEg(ug(*, ty)) < CE,.
el LJVBZRi(xi)
Passing to the limit R — 0 we hence obtain that
H" 2(X ;)< CE,,

as desired.
Conversely, for xq,¢ 2, there exists R,>0 such that for a sequence K,, » 0
with t,,=t, we have

j ex,, (k) Gxy, 1, @* V lgldx=e,.

TRo(X0stm)
By Lemma 4.2
Vug,, Kydist?(ug, ,N)<C,

uniformly on parabolic cylinders P (X, ty)-
Moreover, by assumption

Oiug, (", ty) =0 in L2
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Therefore, as in the proof of Theorem 3.1 uy (,t,) converges weakly in
HZ2(Bg,(xo)) to a regular harmonic map u,, € HiZ (Bg,(%o); N).

Since we may exhaust M\ 2, by countably many such neighborhoods
Bg,(xo), we may assume that ug(-, tg) converges weakly in H*? locally off X,
Hence the map u,, is a classical solution to the harmonic map equation off
z,.

Finally, by the Hausdorff-dimension estimate for X, above, u,, also is weakly
harmonic as a map u,eH!'2(M; N).

The proof is complete.

Proof of Lemma 4.5. Let oeC§ (B,r(xo) With |F@|<C/R and ¢=1 on Bg(x,).
Multiply (4.1) by d,ux @* and integrate over M x [S, T]. Upon integrating by
parts there results

&|&

T T
| (j extun) 0 )/Tgldx+ | [ 0el 0*)/ gl dx dt
M S M

T
2~ [ [ |Vugl|Vel|dugllpl)/ gl dx dt
S M

T T 1/2
[ [ 17ugl?)igldxdt | | |atuK12<p2|/|g|dxdt) .
S M S M

g_

=) A

The Lemma now follows from Lemma 4.1 and the estimate
T
j j | Vg |2 |/ gldxdtZ(T—S) sup Fe(ug(+, ) S(T—S)E,.
S M

Remark. Analogous to [6; Theorem 8.1] by (4.4) singularities of the flow u can

be related to harmonic spheres or to solution v(x, t)=w(x/]/m) of the heat
flow (1.6) on R™
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