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I. Problem and Notat ions  

1. Let M, N be compact, smooth Riemannian manifolds of dimensions rn, I with 
metrics g, h respectively. Since N is compact, N may be isometrically embedded 
into R" for some n. 

For  a Cl-map u: M--.NcR", the energy o fu  is given by 

with energy density 

and volume element 

in local coordinates on M. 
Here, 

g~t~ = (g~p)- 1, 

E(u)= ~ e(u)dM (1.1) 
M 

1 ~ Ou~ c?ui 
e(u)=~g ~(x) Ox, Oxp 

dM=~/~ldx, 

l < ~ , f l < m ,  [gl=det(g,p) (1.2) 

and a summation convention is used. 
u is harmonic, if E is stationary at u, i.e. 

- - A M u + 2 ? , = 0  (1.3) 

for some function 2: M ~ R ,  where 7u is a unit normal vector to N at u and 

i 
(1.4) 

denotes the Laplace-Beltrami operator on M. 
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From (1.3) we obtain for any x e M  that 

tu(x) a 
,~(x)= -g'~(x) ~x, ax. ~(u(x)). (1.5') 

for any smooth normal vector field 7 with 7(u(x))=Tu(x), and hence that 2 
can be estimated 

[2l_=c-I Vu[ 2 (1.5") 

with a constant C depending only on the geometry of N. 
One may ask how much of the topology of N is represented by harmonic 

maps into N. In particular: Given a smooth map Uo: M--* N, is there a harmonic 
map homotopic to Uo ? 

A natural approach to this problem is to deform a given map Uo: M ~ N 
under the "heat  flow" related to the "energy" (1.1), i.e., to study the following 
evolution problem 

~?tu--AMu+27N(u)=O, in M x R +  (1.6) 

u( ' ,0)=Uo, on M. (1.7) 

In their fundamental paper [2], Eells and Sampson establish the following result: 

Theorem 1.1. Suppose the sectional curvature of  N is non-positive. Then for any 
smooth map Uo: M - - * N  there exists a global, regular solution u ' M  x R+--* N 
to the evolution problem (1.6-7), and as t ~ oo the functions u (., t): M ~ N converge 
to a smooth harmonic map uo~ : M ~ N homotopic to u o. 

Simple examples show that the restriction on the curvature in general is 
necessary, cf. Eells-Wood [3]. However, if one relaxes the notion of "solution" 
slightly, in case m = d i m M = 2 ,  a result analogous to Theorem 1.1 holds for 
arbitrary targets N, cf. [7]: 

Theorem 1.2. Suppose m = 2. Then for any smooth map Uo: M ~ N there exists 
a global distribution solution u: M x R+ ~ N with finite energy E(u( ' ,  t))<=E(uo) 
and which is regular on M x R + with exception of  at most finitely many singular 
points (xk, tk), 1 < k N K, tk < oo. The solution u is unique in this class. 

A t  a singularity (2, t) a non-constant, smooth harmonic map u: S 2 ~ R a ~ N  
separates in the sense that for sequences Rm "~ O, t,, 2' ~ xm ~ x as m ~ oo 

um(x) -u(expxm(Rmx) , tm)~a in H~o~(RZ;N). 

Finally, u( . , t )  converges weakly in HI'a(M; N) to a smooth harmonic map uoo: 
M ~ N as t -~ oo suitably, and strongly if  tk < oo for all k = 1, ..., K. 

Here, expp: TpM ~ M denotes the exponential map, and 

HI"Z(M; N)=  { u e H t ' 2 ( M ;  RN)[u (M)=N a.e.} 
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denotes the Sobolev space of square integrable (L2-)functions u: M ~ N with 
distributional derivative V ue L z. 

In [-9] Theorem 1.2 was applied to rederive the existence results of Lemaire 
and Sacks-Uhlenbeck for harmonic maps of surfaces into target manifolds N 
with re2 (N) = 0. 

Note  that in general the weak limit u~ will not be homotopic to the initial 
map Uo due to change in topology at the singularities of the flow. 

In higher dimensions m > 2, the following result was obtained in [8; Theo- 
rem 6.1] : 

Theorem 1.3. Suppose u: Rr 'x  R+ ~ N is limit of a sequence {Uk} of regular solu- 
tions to (1.6-7) with uniformly finite energy E(Uk(', t))< Eo for all t >O, all k e N ,  
in the sense that E(u( ' ,  t))< E o, a.e. and 

VUk ~ Vu weakly in L2(Q) 

on any compact set Q c R m x R 4. 
Then u is regular and solves (1.6-7) in the classical sense on a dense open 

set Q ~ R m x R § whose complement S has locally finite m-dimensional Hausdorff- 

measure with respect to the metric 6 ((x, t), (y, s)) = I x -  Y t + VI t -  s l. 

Singularities of the flow are related to harmonic maps of spheres or special 

solutions u(x, t)= v(x/[/~[) of (1.6-7), cp. [8, Theorem 8.1]. 
Moreover, for regular uoeC 1 with small initial energy the existence of a 

global, regular solution u to (1.6-7) and asymptotic convergence u( ' ,  t)--*Uoo 
to a smooth harmonic map u~o can be established, cp. Mitteau [6], Struwe 
[-8, Theorem 7.1]. 

Finally, by local finiteness of the m-dimensional Hausdorff measure of the 
singular set S the limit map u in Theorem 1.3 also solves (1.6-7) weakly (in 
the sense of (1.14) below) on R m x R§ 

However, Theorem 1.3 does not yield a general existence result for weak 
solutions to (1.6-7). This is the question we confront now: 

Given a smooth map Uo: M ~ N between two (compact) manifolds M and 
N, is there always a global weak solution to the evolution problem (1.6-7)? 

In [1], a partial answer was obtained. (R. Kohn  has pointed out that Theo- 
rem 1.4 below was independently found by Keller, Rubinstein and Sternberg 
1-4] .) 

Theorem 1.4. Suppose N = S n c R  n+l. Then for any uo~Hl"2(M; S ~) there exists 
a weak solution u: M x R+ --*S ~ with E(u(-, t))<E(uo) a.e. 

Theorem 1.4 is proved by approximating u with a sequence of solutions 
uK: M x R§ ~ R  ~§ 1 to the evolution problem for the "penalized" energy func- 
tionals 

Ex(u)=E(u)+(g /2 )  ~ ( lu l2-1)ZdM. (1.8) 
M 

As K ~ m the "penal ty term" (K/2) ~ (lul 2 - 1 )  2 d M forces the unconstrained 
M 

functions ur  to approach N and the weak limit u will be a map u: M x R § ~ N, 
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as desired. However, in order to show that u weakly solves (1.6), the special 
geometry of the sphere is crucially used, and with the method of [1] Theorem 1.4 
cannot be extended to more general targets. 

But this is precisely the kind of difficulty that is encountered in Theorem 1.3, 
and adjusting the proof of Theorem 1.3 to the penalty approximation used in 
Theorem 1.4 as a combination and unification of the above results we obtain 
the following general existence and partial regularity result for the evolution 
problem (1.6-7). 

Theorem 1.5. For any smooth Uo: M ~ N  there exists a global weak solution 
u: M x R§ ~ N of the evolution problem (1.6-7) which is regular off a singular 
set ~ of locally finite m-dimensional Hausdorff-measure (with respect to the metric 
6). Moreover, u satisfies the condition 03 u ~ L 2 (M x R +), and E (u (-, t)) < E (Uo) a.e. 

Finally, as t ~ oo suitably, a sequence u(., t) converges weakly in H 1' 2 (M; N) 
to a harmonic map Uoo: M ~ N  with energy E(uoo)< E(uo) and which is regular 
off a set ~oo whose ( m -  2)-dimensional Hausdorff measure is bounded by E(uo). 

Let us point out that in contrast to the 2-dimensional case in dimensions 
m > 2 our methods do not yet permit to establish uniqueness of weak solutions 
to (1.6-7) in the class of partially regular maps. 

Another open problem concerns the question whether (in dimensions m > 2) 
the flow (1.6-7) actually develops singularities in finite time. Note that in the 
non-compact case M = R  m, m>2,  we have regularity for large time, provided 
the initial data have finite energy, cp. Theorem 3.1. See "Added in proof" for 
some recent results in this regard. 

For  simplicity we first consider the case M = R m. 

Notations. Let z=(x,  t) denote points in Rmx R. For  a distinguished point Zo 
= (Xo, to), R > 0 let 

PR(Zo) = {z =(x, t) l lx--xol  <R,  It--to [ < R2), (1.9) 

SR (Zo) = { z  = (x, t) I t = to - 8 2 } ,  (1.10) 
and 

TR(zo) = {z =(x, t) lto --4 R 2 < t< t o -- R2}. (1.11) 

Denote the fundamental solution to the (backward) heat equation 

1 ( (X-- XO)2~ 
Gz~ (z) = (4 n(to - t)) "/2 exp 4 ( t o -  t) ] '  t < to. (1.12) 

We simply write PR(O)=PR, T~(0)= T~ and Go(z)=G(z ). 6 denotes the parabolic 
distance function 

6((x, t), (y, s))= max {I x - y  I, I ~ -  tl} (1.13) 

and the letters c, C denote generic constants. 

Remark 1.6. From now on, by slight abuse of terminology, a map u: Rmx R+ 
~ R "  will be called regular if Otu, V2u~L~oc for all p < o o .  By the embedding 
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theorems, cf. [5], a regular map u and its spatial derivative 17u will be H61der 
continuous (after modification on a set of measure 0 in R m • R+, if necessary). 

Thus by iteration, using the Schauder estimates for the heat equation (see 
[5], p. 320, (5.9)), a regular solution to (1.6-7) will be smooth if the initial data 
are smooth. 

A map u: M • R+ ~ N c R "  will be called a weak solution to (1.6-7) if Otu, 
VueLZo~ and if 

( Ou O~oq_2,N(u)q~)]/~]dxdt=O (1.14) 
Otu~~ 8x~ 8x~ ~M R+ 

for all ~0 ~ C~ (M x R + ; R"). (We may suppose that the support of q~ is contained 
in a coordinate chart for M.) By (1.5"), if u is a weak solution to (1.6-7) identity 
(1.14) will also hold for testing functions q~U~ x R+ ; R ~) with compact sup- 
port and Vq~L 2. 

II. The Case M--Rm: Approximation 

We will approximate a solution of (1.6)-(1.7) by the solutions to the heat flow 
for the penalized functionals (1.8). For general targets N the definition of Ex 
has to be modified somewhat. 

Since N is smooth and compact there exists a uniform tubular neighborhood 
U of N of width 2 fN such that any point p ~ U has a unique nearest neighbor 
q=nN(p)~N, Ip--ql=dist(p,N) and such that the projection z~N: U ~ N  is 
smooth. 

Let Z be a smooth, non-decreasing function such that Z(s)=s for s<62  and 
X(s) = 2 62 for s > 4 62. Then the function 

p ~ X (dist 2 (p, N)) 

is everywhere differentiable and at points p with dist(p, N ) < 2  6N its gradient 
is parallel to p-teN(p), hence orthogonal to T~N(p)N. 

For K = 1, 2 . . . .  thus consider the heat flow 

, 2 d d st (u ,N))=0  in R mxR+ (2.1) dtu--Au+Kz (dist (u,N))~-~u (. i 2 

with initial data 

u(x,O)=uo(x ) on R m (2.2) 

for the penalized functionals FK, given by 

FK(u)=E(u)+(K/2) ~ x(dist2(u,N)) dx. 
Rra 

For brevity, in the sequel we will omit writing the argument of Z' appearing 
in (2.1) explicitly. 
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By Galerkin's method, we know that for every KEN,  problem (2.1)(2.2) 
has a global solution u = uK satisfying 

VueL~176 ov [; L2(Rm)), z(dist2 (u, N))~L ~ ([0, oo I-; L 1 (Rm)), 

ut~L2(R m x R+), (2.3) 

whence also 

Z' duu~d/dist2(u,~ N))EL~ ([0, oo [; L2(Rm)), 

cf. [1]. Moreover, by applying the Sobolev embedding theorem to u and on 
account of the a-priori estimates for the heat operator (see [5], p. 345 (9.12)- 
(9.13)) we find that 

U, Ut, V2 uEL~oe(R 'n X R+) (2.4) 

for any p < oo, i.e., u is regular. 
More precisely, for u = uK, we have the following estimates: 

Lemma 2.1 ("Energy inequality"). Let Uo = R" ~ N be smooth with E(uo)< oo. 
Then, 

sup( i  ~ IOtul2 Rm FK(u("t))) <=(1/2) ~ IVu~ 

Proof Multiply (2.1) by ut and integrate by parts. 

Lemma 2.2 (" Monotonicity formula"). For any point (Xo, to)E R m x R +, the func- 
tions 

q~(R,u,K)=(1/2)R 2 ~ {IVul2+Kz(dist2(u,N))}Gzodx (2.5) 
$R (zo) 

tP(R,u,K)=(1/2) ~ {IVul2+Kz(dist2(u,N))}Gzodxdt (2.6) 
TR(Zo) 

are non-decreasing for 0 < R < ~o /2 .  

Proof The proof of [-8, Lemma 3.2, Proposition 3.3] carries over immediately 
if we replace the energy density e(u)= (1/2) lVu 12 by 

eK(U) = (1/2)(I Vu 12 + K z(dist 2 (u, N)). (2.7) 

For completeness, we recall the details. Note  that equation (2.1) is invariant 
under translation x--* x - X o ,  t ~ t - t o ,  hence we may shift z o = (0, 0); moreover, 
the scaled function 

uR(x, t)=u(Rx, R2t) 

solves (2.1) with K R = R 2 K instead of K. 
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Finally, 

#(R, u, K)=(1/2)R z ~ {1Vul2+Kz(distZ(u, N))} G dx 
Sz~ 

= (1/2) ~ {1Vug 12 + KR z(distZ(uR, N))} G dx = ~/i(1, uR, Kg). 
Sa 

We want to prove 

d ~(R,u, K)IR=n >=0 
dR 

for any R1 with 0<Rt  <|~ t/~o/2. Reparametrizing, it suffices to consider R~ = I. 
By the regularity of u and G, we may differentiate under the integral sign. 

Using (2.1) and VG =~-~ G, we get 

, ~  ~(R, u, K) R a~ --I 
d 

=dR ~(1, u R, KR)L= 1 

= ~ {17u" 17 ( I ~  u=l.. ~) + K x(dist2(u, N)) 

[ . . . . .  d [distZ(u, N3~ 
= I ~--zau+~)~ -~u k- g ]] (x. Vu+2tO, u)Gdx 

S~ 

-- ~ Vu gG(x. Vu+ 2t O~u)dx + ~ K z(dist2(u, N))G dx 
$t S~ 

x. Vu 
= ~ - t3tu(x. Vu + 2 t O,u) O d x -  ~ --4~-- (x. Vu + 2 t Otu) G dx 

St St 
~b  

+ ~ Kz(distZ(u,N))Gdx 
$1 

= f ~ ( x ' V u + 2 t O ~ u )  eGdx+ i Kz(diste(u,N)) Gdx>--O, (2.8) 
S~ $1 

as desired. 
The proof of (2.6) is similar. 

Lemma 2.3. Let Q c R m x R  be an open set. Then, ~ u~-u K satisfies (2.1) and 
is regular in Q, the following inequality holds in Q 

(~-- A) e(u) < c e(u) ~, (2.9) 



9O 

where C > 0 is a constant depending only on N and m and for brevity 

e (u) = eK (u) = (1/2) (117u ]2 + K Z (dist 2 (u, U))). 

Proof Note that if dist(u, N ) <  2 6N then 

g ~ = K 2 dist 2 (u, g). (2.10) 

By equation (2.1) we have 

(K/2) (Or - A) )~ (dist 2 (u, N)) 

.. , d /dist2(u, ,~ ['.T , d /dist2(u, 

d " = -K2 z'2 dist2 (u,N)- V (K Z'~u ( dlst2~' N))}. Vu, (2.11) 

(0t-A) ( ~ - 2 )  = 17(~tu-Au) �9 Vu-,172ul 2 

=-17{Kz'  d [dist2(u,N)]~ Tu\ -5 ]j. Vu-IV2ul 2. (2.12) 

(2.12) implies (2.9) if dist(u, N)>  2 fiN; for the remaining case we have 

(Or- A) e(u) + 1172 u12 + K 2 Z'2 dist 2 (u, N) 

,~f . .  , d /dist2(u, 
= - 2 v ~ h Z  duu~ 2 N))} "17u 

= -2K(z '  +Z" dist2 ( u, N))117 dist (u, N) I 2 - 2 K z '  dist (u, N) 

�9 Id-~2 dist(u, N)Vu. Vu} 

< �89 K 2 dist2 (u, N) +c l Vul 4. (2.13) 

In the last inequality, we use the fact that Z'> 0 and that for uCN 

d-~2 dist(u, N) < C (N), (2.14) 

where C(N) depends only on a bound for the curvature of N. 
Now, (2.9) follows from (2.13) immediately. 

Y. Chen and M. Struwe 
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Lemma 2.4. There exists a constant eo>O depending only on m and N, such 
that if for some 0 < R < ~o/2,  Zo = (Xo, to), u = ur, satisfies 

~(R)=~P(R,u,K)=(1/2) ~ (]Vu]2+Kz(dist2(u,N)))G~odxdt<eo, (2.15) 
Tr<(zo) 

then 
sup {t V u l 2 + K Z (dist 2 (u, N))} < C (6 R)- z (2.16) 

Pe R (zo) 

with a constant 6 > 0  depending only on N, m, E o and inf{R, 1} and an absolute 
constant C. 

Proof The proof of [8; Theorem 5. I] carries over almost literally. By translation 
invariance of problem (2.1), in order to prove Lemma 2.3 it is sufficient to con- 
sider the case that z0=0  and that u=ur satisfies (2.1) and is regular on Rmx 
] - to ,  o]. 

Let e(u)= er(uK) be defined by (2.7). 
Set rl=6R, fie]0, 1/2] to be determined in the sequel. For  r, a~]0,  rl[,  

r + a < r l ,  and any zo =(Xo, to)~P~ our monotonicity formula implies 

a-"  S 
PMzo) 

e(u)dxd t~c  ~ e(u)G~o,,o+2~2)dxdt 
PMzo) 

<c f e(u)Gtxo,,o+2~2)dxdt 
T~(to + 2 a 2) 

<--_c ~ e(u)G(xo.to+2~2)dxdt 
TR(to + 2 a 2) 

--R z t o+2  2 - R 2  

<c _ ~R -a=S ,){e(u)G'=~176 

<c S e(u)Gtxo,to+2~2)dxdt" 
TR 

But on TR, given e > O, if 6 > 0 is small enough: 

c (_  IX-Xol 2 
Gtxoao+2~2)(x,t)<(4nlt]),,/2 exp_ 4(to+2a2_t)] 

< c e x p  (~xl~, .. [x-;2~ 2 t.~G(x,t ) 
- \ 4 [ r l  4 j t o +  - - I ]  

<cexp(c62 [xlz]G(x d 
- 4 1 t l }  " ' " 

< ~fc G (x, t) if Ix I =< R/6 
= [ c R - " e x p ( - c 6 - 2 ) ,  if Ixl>R/6 

<cG(x, t ) + c R  -2 e x p ( ( 2 - - m ) l o g R - c 6  -2) 

<cG(x , t )+eR -2, 

where c is independent of & and R. 

(2.17) 

(2.18) 
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Remark  that  6,~ I logRI-1/2 for small R and may  be chosen independent  
of R, if R > 1. Hence with this choice of 6, for Zo ~ P~, r + o-< r l we may  estimate 

a - "  ~ e(u)dxdt<=cT(R)+ceEo<c(eo+eEo).  (2.19) 
P,~(zo) 

Since u is regular, there exists O-oe]O, r l [  such that  

(rl - ao) 2 sup e(u) = max (r 1 - a)2 sup e(u). 
Pao 0 <- ~r <_<_ rl  P~ 

Moreover ,  there exists (Xo, to)eP, o such that  

sup e(u) = e(u)(Xo, to) = eo. 
PaO 

Set po--(1/2)(rl-ao). By choice of ao, (Xo, to) 

sup e(u)< sup e(u)<4e o. 
Ppo(XO, to) PCrO + PO 

In t roduce  

r o = ~ o ' P o  

x t 
v(x, t ) = u ( ~ +  Xo, - - +  tol. 

\ V eo eo / 

We claim r o 5 1. v solves (2.1) in Pro w i t h / s  = K/eo; moreover ,  v satisfies 

e (v) (0, 0) = 1, 

sup e (v) < 4, 
Pro 

where e =  e~. By L e m m a  2.3, e(v) satisfies 

(~3t-A)e(v)<cle(v) in Pro 

with a constant  cl depending only on m and N. Thus, if instead of e(v) we 
consider the funct ion f (x, t) = e x p ( - C l  t) e(v) in Pro and if ro > 1, M oser's Ha rnack  
inequali ty implies the estimate 

l=e(v)(O,O)<C S e(v)dxdt.  
P~ 

1 
But, scaling back, by (2.19) and since ~oeo + ao <Po  + O'o < rl we have 

I e (Odxdt=(~oo)  m I e(u)dxdt~=C(eo+eEo) 
1, ~ I"i (xo,to) 
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and we obtain a contradiction for small eo, e > 0. Hence, ro < 1. 
By choice of 0-0 this implies: 

max ( r l - o ' )  2 supe(u)<4pZeo=4r~<4.  
0_<cr_<rl Pa 

Hence, we may choose 0"=(1/2)rl=(6/2)R and divide by 0 .2 to complete the 
proof  with C = 16. 

III. Passing to the Limit K ~  

From Lemma 2.1 we know that for smooth Uo: IRm~N with E(uo)< oo there 
exist a subsequence of {uK} (also denoted by uK) and a function u defined a.e. 
on R m • R +, such that as K --* oo we have 

VuK-+ Vu weakly* in L~~ ~ [;L2(Rm)), (3.1) 

~3tui~?tu weakly in L2(RmxR+), (3.2) 

uK--*u weakly in HIo~(RmxR+), (3.3) 

and hence also ur --* u a.e. on R m x R+. Moreover, 

dist(uK, N) -*0 in L~oc(RmxR+). (3.4) 

It follows that 

OtuEL2(Rm• Vu~L~176 oo[;L2(Rm)), (3.5) 

u~N, a.e. (3.6) 

For  M = R m, now u will have the properties listed in Theorem 1.5: 

Theorem 3.1. Let Uo: IRm-. N be smooth with E ( u o ) < ~  and let u be the weak 
limit of a sequence {uK} of solutions to (2.1) as above. 

Then the function u weakly solves the evolution problem (1.6)-(1.7). Moreover, 
u is regular and solves (1.6) classically on a dense open set Q o c R m x  R+, whose 
complement S, has locally finite m-dimensional Hausdorff-measure (with respect 
to the parabolic metric 6). Moreover, u satisfies E(u(' , t))<E(uo), a.e. and 
OtuEL2(R m • R+). 

Finally, there exists t o > 0  (depending on m, N and Eo) such that X n ( R  m 
X[to, oo))=~,  and, u(t)--*uoo-p~N in H~O 2 as t--.oe suitably, where uo~-p 
is a constant harmonic map. 

Proof As in [8; proof  of Theorem 6.1] define 

Z =  ~ {zo~RmxR+lliminf ~ eK(urOGzodxdt>=eo} (3.7) 
R > O  K-'*oo TR(zO) 
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where eK(u) is defined by (2.7) and % > 0  is the constant determined in Lem- 
ma 2.4. The proof of the result that S is closed and has locally finite m-dimension- 
al Hausdorff-measure with respect to the metric 6 is the same as that of Theo- 
rem 6.1 in [8]. We only have to replace the densities e(uK) by eK(uK) given 
by (2.7). 

To see that u solves (1.6) off Z some care is needed. Moreover, the argument 
in [1] cannot be employed. 

For ZoCZ, there exists R >0,  such that 

eK(u) G~o dx dt  < % (3.8) 
TR(ZO) 

for an unbounded sequence KEN. By Lemma 2.4, we have 

[ Vu K 1, K dist z (u~, N)_-< C, (3.9) 

uniformly in a uniform neighborhood Q of Zo. It follows that there exists a 
subsequence u K such that as K ~ 

uK~u in C~ (3.10) 

VuK~ Vu weakly* in L~oc(Q). (3.11) 

Moreover, by (2.13) 

(0  t - -  A ) e K (UK) "-I- K 2 dist z (uK, N) < C (3. t2) 

in the distribution sense on Q, with a constant C independent of K. (Note 
that by (3.10))((dist2(u~, N ) ) = I  for sufficiently large K.) Choose a function 
qJeCg(Q), multiply (3.12) by ~0 and integrate over Q. Then after integrating 
by parts we obtain that 

K2 dist2(uK, N)q) dx dt < ~ I Otq~ + Aq~l er(uK) + c lq~l dx dt <=c(~o), 
Q Q 

uniformly in K, and it follows that K dist (uK, N) is uniformly bounded in L~or 
But now from (2.1) also (0t-A)uK is uniformly bounded in L~o~(Q), and therefore 
also ~, uK and V 2 uK are. 

Hence we may assume that 

and 
(O~-A)ur-~(O,-A)u weakly in L~oo(Q), (3.13) 

K dist(ur, N) -* X weakly in L~oc(Q). (3.14) 

Finally, note that there exist unit vector fields ~ : )  _1_ Tv~rtu,,)N such that 

K d /_dist 2 (uK, N)~ = K dist (uK, N). 
d u \  2 ] 
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By (3.10) therefore there holds 

,~ d [distZ(uK, N)\ 
Q, 

dx dt-*O, (3.15) 

for any vector field q~eL~o~(Q) such that q~(z)eT,(~)N a.e. on Q, and for any 
Q'~Q. 

For  (3.13-15) it follows that (O~-A)u_I_T,N a.e. in Q; i.e., there exists a 
unit normal vector field yN(U) along u and a scalar function 2eL~Zoo(Q) such 
that there holds 

Otu--Au+ 27u(u)=O (3.16) 

a.e. on Q and in the distribution sense. 
Furthermore,  by using (3.10), (3.16) and the regularity theory of parabolic 

operators, we infer that u is regular and solves (1.6)-(1.7) in the classical sense 
off S. 

To see that u weakly solves (1.6) on Rmx R+, now choose any domain 
Q ~  R m x R +. Given R > 0 let {P/= PR,(zi)}i~s be a covering of S n Q by parabolic 
cylinders Pg,(zi) with Ri<R and such that ~RT<2"Hm(Sc~Q;6), where 

ieJ  

Hm(2c~Q;6) denotes the m-dimensional Hausdorff-measure of Sc~Q with 
respect to the parabolic metric 6. 

Also choose a smooth cut-off function 0 < q < 1 having support in P2 (0) and 
identically 1 on PI(0), and for i6J denote q~ the scaled function qi(x, t) 

/x-x  t-% 
=1/~ ~ , RE l" 

Let ~oeC~~ R") be an arbitrary testing function with support in 
Q. By (3.16) we have 

0 = ~ (u t -  A u + 2 YN (U)) ~0 inf(1 -- qi) d x d t 
Q ieJ 

= ~ {ut ~o + Vu V ~0 + 2 Yu (u) q~} inf(1 - th) d x d t + F, 
Q ieJ 

where the term F involves error terms 

IF [~  ~ IVull~olsupll7~hldxdt 
Q ieJ  

< c ~ R i  -x ~ IVuldxdt,  
ieJ  Qi 

and where the family Qi is a disjoint cover of U supplvqi l  with QicP2R~(zi) 
and such that i~s 

[Vth[=maxlVtlk [ on Qi forany  ieJ. 
keJ  
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By H61der's and the Cauchy-Schwarz inequality therefore 

IFI<C~ Rm/2( ~ IVul2 dxdt) 1/2 
ieJ Qi 

<C(~ R'~)1/2( ~ IVulZ dxdt) 1/2 
z~s UQ, 

i ~ J  

<c ~ [Vu[Z dxdt. 

Passing to the limit R --* 0 by absolute continuity of the Lebesgue integral the 
error term F--* 0, and u weakly solves (1.6) in R"  x R+, as claimed. 

Finally, using Lemma 2.2, for large to, R = ~ o / 2 ,  we get 

e(ur)Gzo dxdt 
T R ( Z o )  

3 to~4 2--m 

<= ~ S e(ur)G~odxdt<Cto2 E o < e  ~ (3.17) 
0 R m 

2 

uniformly in K, if to > c(Eo/%) m-2, where Eo = E(uo). 

Applying Lemma 2.4 we infer the uniform decay 

I Vu(x, 012 <= c/t (3.18) 

for large t, and u (t) ~ uoo - const, as t -* oo. 

IV. Compact Domains 

The preceding arguments with minor changes convey to mappings u: M x R+ 
N on compact manifolds M. 
To indicate the necessary changes denote RM>O a lower bound for the 

injectivity radius of the exponential map on M such that for any R < R  M and 
any point xoeM the geodesic ball BR(xo) of radius R around Xo is defined 
and diffeomorphic to the Euclidean ball BR(O)cR" via the exponential map. 
Remark that in these coordinates the metric g on M is represented by a matrix 
(g~p), l<a, fl<m, with g(0)=id. Now, if u=uk: Mx  [ - T ,  0]--+R" is a regular 
solution to the penalized heat equation 

, d /dist2(u,N))=O ' 
Otu-AMu+Kz duu~ (4.1) 

we may restrict u to any such coordinate neighborhood and regard u as a 
map u: BR(0) x [ - -  T, 0] c R "  x [--  T, 0] ~ R" with energy density 

1 ( ~a 0 (0 N))}. e(u)=er(u)=~g ~x U~xp U+ Kz(dist2(u, (4.2) 
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Now let G be the fundamental solution (1.12) to the backward heat equation 
on R m with the flat (Euclidean) metric, as before. Also let cpeC~(BR~,(O)) be 
a cut-off function 0 < ~o ~ 1 such that ~ = 1 in a neighborhood of 0. Finally, 
introduce the analogues of the weighted energy integral (2.5-6) 

~(R ,u ,K)=R 2 ~ eK(u)G q~2V~l dx, 
Srt 

T(R,u,K)= I ex(ulGtP2]/~[ dxdt ,  
TR 

(4.3) 

where I ~  dx denotes the volume element on M. 
Then we have the following estimates analogous to Lemmas 2.1-4: 

Lemma 4.1 ("Energy inequality"). Let U=UK: M x R+ ~ R ~ be a regular solution 
to the penalized equation (4.1) with initial value u(', 0)= uo~Hl"2(M; N). Then 

t>O \0  M 

where FK(u)= ~ eK(U)dM with density er given by (4.2). 
M 

Lemma 4.2 (" Monotonicity formula"). Suppose u = Uk: BR,, (0) x [ - -  T, 0] c R m 
x [ - T ,  0t "*R n is a regular solution to (4.1) with E(u(t))<Eo for all t e E - T ,  0]. 
We may assume that T < R 2. Then for any 0 < R < Ro ~ RM there hold the relations 

(R, u, K) ~ exp (c (Ro - R)) �9 (Ro, u, K) + c E 0 (Ro -- R), 

T(R, u, K) ~ exp (c (R o - R)) T(Ro, u, K) + c Eo (R0 - R), 

with a uniform constant c depending only on M and N. 

Remark. An analogous estimate of course is valid for regular solutions 
u: M x [ -  T, 0] --* N of (1.6). 

Proof We present the proof  for the function ~. After scaling 

~(R;u ,K)=~  I g ~ a ( R ' ) - - u R  us+R2Kz(dist2(uR, N) G 
t~ xa 

.cp2(R')]/~](R')dxdt 

where u R (x, t) = u(R x, R 2 t) as above. 
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�9 8 X o  
NOW compute, using ~x~ G = ~ t  G as before: 

d ~(R;u,K) R=l 
dR 

= ~ f~(_X~g~p 8 . . . . .  d [dist2(u,N)~ 

�9 (x. gu+2t 8,u)+ Kx(dist2(u, N))}G ~o2~gidxdt 

--2~ g e-~Tx U~7~x q~(x.Vu+2ta, u)G~oV-~idxdt 

x'Vg ~-~Tx u~-~x uGq~ l/~ldxdt 
at l 

+ 1 ~  eK(u) Gq~2x'Vlgt 

+ 5 eK(u)Gq~x.V~o~/gdxdt=:I+II+III+IV+V. 
T1 

The first term may be estimated 

I>_ 5 (x'Vu+2tO, u)2+Kz(dist2(u, N) G~~ 
T1 

I 
- ~ ~t~lxllg-idJlgultx'Vu+2tS, ulG~o2V~Jdxdt 

T1 

> S (~7t  Ix. Vu+ 2t ~tUl2-~ K z(dist2 (u, N))} G q92 IV~ dx dt 
Ti  

--c .[ Ixt21g-idl2lVul2Gq~21/~ldxdt 
T1 

>1 ~ lx. Vu+2tStul 2 Gcp2~ldxdt_c~(1,  u,K) 
=4 T, It l 

while for the remaining error terms we have 

1 Ix. Vu+2tgtul 2 
1II1=<8 ~ Itl Gcp2V~ldxdt+c j lVul2G]/~ldxdt 

Tl 

< �89 I +c ~'(t, u, K)+ cE(uo). 

tIIII+IIV I<c~(t,u,K), 

IV i<�89 i eK(u)GIx'Vq~12]//g dxdt 
Tl 

-<�89 ~(1 ; u, K)+cE(uo). 
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d d 
~ ( R R I , u , K )  R=I a t R l < l =  we use If we evaluate ~ ~ (R  1, u, K ) = R ; I ~  the 

estimate [g (x)-- id[ < c I xl and the fact that 

R ? l l t l - l l x l 4 G < G + c  o n  TR1 

to control the error term in I as follows: 

1 12 2--~1xl2 [ g - i d  I V u l 2 G q ~ 2 V ~ l d x d t < c ~ ( g , u , K ) + c E o .  
TR1 

The estimates for II, III, IV, and V can be handled in a similar way. From 
the differential inequality 

d ~(R,u,K)>~-~--~ ~ I x ' V u + 2 t ~ u l 2  
dR TR Itl G q ~ 2 V g d x d t - c ~ ( R , u , K ) - c E o ,  (4.4) 

now the claim follows. 
In the Bochner-type estimate Lemma 2.3 we pick up an additional term 

involving the Ricci-curvature of M resulting from differentiating the metric g. 
This gives 

Lemma4.3. Suppose U=UK is a regular solution of (4.1)K in an open set 
QCBRM(O ) X R+ c R  m x R+. Then there holds 

(8 , -  A) er(u) < c(1 + eK(u)) eK(u) 

with a constant c > 0 depending only on M and N. 

The monotonicity formula Lemma 4.2, the Bochner-type estimate Lemma 4.3 
and Moser's Harnack inequality in the same way as before imply the e-regularity 
theorem Lemma 2.4. However, the range of admissible radii R is restricted to 
the range of validity of Lemma 4.2: 

Lemma 4.4. Suppose U=UK: M x [-- T, T] ~ R n is a regular solution to (4.1), and 
assume that T <  R E. There exists a constant 0 < %  <RM depending only on M 

and N such that if for some 0 < R < min {e o, l/~/2} the inequality 

~(R, u, K) <_ eo 
is satisfied, then there holds 

sup eK(U) < c(~R)- 2 
P~R 

with constants c depending only on M and N and f i>0  possibly depending in 
addition on Eo= Ek(u(', - T ) )  and R. 
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Proof By the restriction on R and Lemma 4.2 estimate (2.17) may be modified 

tr -m ~ eK(u)dxdt<-...<c ~ eK(u)Gv, o,to+2~2)dxdt+cRE o, 
Po (zo) TR 

and the remainder of the proof of Lemma 2.4 carries over unchanged. 

Proof of Theorem 1.5. With the aid of the modified Lemmata 4.1-4.4 the proof 
of the first assertions is identical with that of the analogous statements in Theo- 
rem 3.1. 

For the last assertion note that by Lemma 4.1 we may choose a sequence 
tr ~ 0o such that ur(" ; tK) ~u| weakly in H ~' 2 (M; N), while 

tK 

~ [OtUKl2V~ldxdt~O, (4.5) 
t K - 1  M 

and Otur(', tK) ~ 0 in L 2 (K -~ oo). Define 

27~= ~ U {xo~Mlliminf ~ eK(uK)G(xo.tK)cp2l/~]dxdt>-eo} 
R>O O<r<R K~~176 Tr(xo,tK) 

where eo is determined as in Lemma 4.4. 
2700 is closed by the same argument as given in [6] in the case of 27. 
Moreover, H m- 2 (2;| c Eo. To see this let R > 0 be given and let {BR,(Xi)}i~s 

be a cover of 27~ by balls of radius Ri centered at xi~27~o. We may assume 
R~ < R <% <RM. By compactness and Vitali's covering lemma there is a finite 
subfamily J ' c  J such that B 2 R , ( X t ) ~  B 2 R j ( X j ) ~ - ~  for i, j EJ', i~:j, and such that 
the collection {Btoa,(xi)] ieJ'} covers 27~. 

Now for sufficiently small R > 0  and sufficiently large K, estimate (2.18), 
the definition of 270~ and our monotonicity formula Lemma 4.2 imply that for 
any e>0  there is a constant C(e) such that for any i~J' with a suitable number 
0 < r t <= Ri/C(e ) <= R i <= R there holds 

eo ~ S er (ur) Gtx,. t~) (o2 V~[ d x d t 
Trt/2 (xt, tx) 

tk-,~/4 
 _4r; 

tk - r~ Sri(x~, tk) 

<cexp(cri)r 2 ~ eK(UK)G(~,.,K~q~21~ldx+criEo 
Sr~(x~, tK) 

< c exp(c(RjC(e)- r3)(RJC(~)) z ~ er(Ur) Gt~,,t~)~o 2 ]f~] dx + cR~Eo 
SRdc (e) (x~, tx~) 

~C(~)R{ -m ~ eK(uK(',tK--(RdC(~))~)l/~ldx+eEo+CoREo. (4.6) 
BRI(xO 

Here we have used that for suitable C(e) like (2.18) there holds 

G~x,.o<e on SR,/c(~)(x~, t)\Bm(xi) x {t--(RdC(e))z}. 
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S0 S0 
By (4.6), if we choose s = 3 ~ o '  R < 
sufficiently large K 3 Co Eo 

- -  we obtain that for any i~J' and 

soR~-2<_C ~ eK(Ur(',tK--(RJC(s))2)I/~I dx. 
BRi (xi) 

Analogous to [7, Lemma 3.6] now we have 

Lemma 4.5. Suppose ug solves (4.1), and let 0 < 2 R < R M ,  0 < S <  T <  oo be given. 
Then 

I eK(UK(' ,T))~dx>=c I eK(uk(',S))~f~dx 
B2 R (XO) BR (Xo) 

- f  I lO, uKlZV~ldxdt-c'(-k~go" S lO, u,,I 2dxd 
S M  S M  

where Eo =E(uo), and c only depends on M and N. 

For completeness, a proof is given at the end of this section. 
Choosing R=Ri,  S=tK-(Rg/C(s)) 2, T=tK by (4.5) we thus obtain that for 

any i~J' for sufficiently large K 

soR~-2<=C ~ eK(Ur( ' , tK) )~d  x" 
B2Ri(Xl) 

J'  being finite, we may choose K such that this estimate holds simultaneously 
for all i~J'. Upon adding, by Lemma 4.1 therefore 

R7'-2<=C eg(ug(', t~c)) V~[ dx < C EK(UK(', tg)) < C Eo. 

Passing to the limit R ~ 0 we hence obtain that 

H ' -  2 (~_. ~ )  ~ C Eo, 

as desired. 
Conversely, for Xo~Y, oo there exists R o > 0  such that for a sequence K m---~oo 

with t~ = tKm we have 

I eK,,(uI(,.)G(xo,tm)q)2l/~[dx<eo �9 
T R o(xo, tin) 

By Lemma 4.2 

VuK,,, K,, dist z (UK,., N) < C, 

uniformly on parabolic cylinders P~go(Xo, tin). 
Moreover, by assumption 

at UK,. (', tin) --* 0 in L 2. 
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Therefore, as in the proof of Theorem 3.1 us,,(., tin) converges weakly in 
H~o 2 (BRo (Xo)) to a regular harmonic map u oo e H2o~ (BRo (Xo); N). 

Since we may exhaust M \ X ~  by countably many such neighborhoods 
BRo(Xo), we may assume that uK(', tK) converges weakly in H 2'2 locally off X~. 
Hence the map u~ is a classical solution to the harmonic map equation off 

~'oo. 
Finally, by the Hausdorff-dimension estimate for Zo0 above, u~ also is weakly 

harmonic as a map u~ e H 1' 2 (M; N). 
The proof is complete. 

Proof of Lemma 4.5. Let ~o e C~ (B2R(XO) with I v~l ~ C/R and (p -- 1 on BR(Xo). 
Multiply (4.1) by 8~UK~O 2 and integrate over M • IS, T]. Upon integrating by 
parts there results 

T 

I d t  I eK(uK)~~ ~ d x +  I I latuKl=~~ dxd t  
S \ M  S M 

T 

- f ~ IVuKl[vcpll~tuxcllcp[l~lldxdt 
S M 

>_ _ m  

b e ~ I V u ~ ] 2 ~ l d x d t ~  ~ latuK[2(~ " 
\ S  M S M  

The Lemma now follows from Lemma 4.1 and the estimate 

T 

~ I Vu~zl2~ldx d t < ( T - S )  sup FK(u~(', t )<(T-S)Eo.  
S M S < - t < T  

Remark. Analogous to [-6; Theorem 8.1] by (4.4) singularities of the flow u can 

be related to harmonic spheres or to solution v(x, t)=w(x/~f~l) of the heat 
flow (1.6) on R m. 
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