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Abstract In this paper, we present a novel nonparametric
active region model for image segmentation. This model
partitions an image by maximizing the similarity between
the image and a label image, which is generated by setting
different constants as the intensities of partitioned subre-
gions. The intensities of these two images can not be com-
pared directly as they are of different modalities. In this
work we use Rényi’s statistical dependence measure, maxi-
mum cross correlation, as a criterion to measure their sim-
ilarity. By using this measure, the proposed model deals
directly with independent samples and does not need to
estimate the continuous joint probability density function.
Moreover, the computation is further simplified by using the
theory of reproducing kernel Hilbert spaces. Experimental
results based on medical and synthetic images are provided
to demonstrate the effectiveness of the proposed method.

Keywords Nonparametric · Image segmentation · Pattern
classification · Rényi’s measure · Image processing ·
Experimental results

1 Introduction

Image segmentation or pattern classification is of funda-
mental importance in the field of medical image process-
ing. During the last few decades, a considerable amount of
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approaches have emerged to tackle this issue. However, the
difficulties caused by intensity inhomogeneity, higher level
of noise and unevenly distributed illumination still need to
be addressed.

Let Ω be a bounded open subset of R
2, and I : Ω → R be

an observed noisy image. For the two-phase case, Mumford
and Shah [1] provide the following model for simultaneous
smoothing and segmentation:

min
u,C

∫
Ωi

(ui − I )2dx + α

∫
Ω\C

|∇u|2dx + β|C|, (1)

where C separates Ω into two different regions Ωi (i =
1,2), |C| represents the length of C, u is a piecewise smooth
approximation of I , and ui is the restriction of u to Ωi .
When u is a constant ci in each Ωi , model (1) reduces to
the following form,

min
C,c′

i s

∑
i

∫
Ωi

(ci − I )2dx + β|C|. (2)

This piecewise constant Mumford-Shah model has been
well studied by Chan et al. in [2, 3]. The major advantage of
this model is that it can separate two relatively homogeneous
regions without using any edge information. However, the
homogeneity assumption limits its applications.

A more general approach is parametric region based ac-
tive contour method. This method is based on the assump-
tion that at each x ∈ Ωi , the image intensity I (x) is an inde-
pendent random variable drawn from the probability density
function (p.d.f.) P(Ii(x)|λi), where Ii is the restriction of I

to Ωi and λi is a parameter vector which needs to be esti-
mated. The framework of this method minimizes the nega-
tive log-likelihood functional together with the length term,
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i.e.,

min
C,λ′

i s
−

∑
i

∫
Ωi

logP
(
Ii(x)|λi

)
dx + β|C|. (3)

In the region competition model by Zhu et al. [4] and
geodesic active region models by Rousson et al. [5] and
Paragios et al. [6], P(Ii(x)|λi) is chosen to be a Gaussian
distribution:

P
(
Ii(x)|ci, σi

) = 1√
2πσi

exp

(−(Ii(x) − ci)
2

2σ 2
i

)
. (4)

If all the σi ’s are the same and prefixed, model (3) (4) re-
duces to model (2). This is a global Gaussian model as it as-
sumes all random variables I (x) in the region Ωi share the
same mean ci and variance σi . Model (3) provides desirable
segmentation results when the parametric form of the inten-
sity distribution is known. However, a specific assumption
of the intensity distribution can be a significant restriction in
real applications, especially when the image has heavy noise
or is of multi-modal intensity distribution.

To overcome this problem, nonparametric models [7]
have been developed to increase the robustness and success-
fully applied to image segmentation and registration. These
methods are featured by using nonparametric density es-
timation to replace the parametric density estimation. For
instance, the nonparametric active contour model in [8] is
driven by the disparity of the foreground and background
p.d.f.’s, which are approximated by Parzen window density
method. In [9] the dynamic segmentation of video image se-
quences is obtained by minimizing the disparity of the p.d.f.
of the current frame with the previous one and the p.d.f.’s
are also estimated using Parzen window method. The varia-
tional segmentation model in [10] incorporates boundary in-
formation with region information, where the boundary in-
formation is obtained from the edge map image and the inte-
rior region information is represented by the intensity p.d.f.
captured using Parzen window density estimation. Mory
et al. [11] regard the foreground and background p.d.f.’s to
be unknown, which are integrated in the region computation
model. The proposed model could simultaneously perform
segmentation and nonparametric density estimation, which
are updated using the Parzen window density method. [12]
regards the foreground and background cumulative distribu-
tion function (c.d.f.) as unknown and utilizes the Wasser-
stein distance to measure the disparity of local c.d.f. with
the estimated c.d.f.’s. A work closely related to this paper is
[13], in which Kim et al. segment images through maximiz-
ing mutual information between the image to be segmented
and its corresponding label image defined by setting differ-
ent constants as image intensities of partitioned subregions
(ref. Sect. 2), which turns out to be minimizing the displace-
ment of the Logarithmic of the foreground and background

p.d.f.’s and the p.d.f.’s are again estimated using Parzen win-
dow method.

Borrowing the idea from [13], in this paper we propose
a new approach of nonparametric image segmentation that
uses Rényi’s statistical dependence measure, maximum cor-
relation coefficient, as a similarity measure of two images
in different modalities. By using this measure as an alterna-
tive choice of dependence measure to mutual information,
we do not need to estimate the continuous joint probability
density function of two images, which is sensitive to im-
age quantization and make the optimization process com-
plicated. Moreover, the computation is further simplified by
applying the theory of reproducing kernel Hilbert spaces.

Before going further, we want to mention some recent
work related to joint segmentation and registration. Yezzi
et al. [14] provide a very interesting work on simultane-
ously image segmentation and registration. In their work,
I : Ω → R and Î : Ω̂ → R are the two images to be regis-
tered and segmented. The goal is to find a curve C ⊂ Ω and
g : R

2 → R
2 such that C and Ĉ = g(C) give correct seg-

mentation for I and Î simultaneously. In Le Guyader et al.’s
work [15], they assume the template image T has already
been segmented by the zero level set of Φ0 and the refer-
ence image R is the image to be segmented. The segmenta-
tion is then obtained by looking for a displacement field u

such that the zero level set of Φ0(x +u(x)) fits the boundary
of the reference image R. Meanwhile, they use a nonlinear-
elasticity based smoother to ensure the smoothness of the
displacement field u.

Another interesting work we would like to mention is the
diffeomorphic active contours by Arrate et al. [16]. They
use a geometric flow approach to segment three-dimensional
medical images and use the reproducing kernels to represent
the shape gradient.

The remainder of this paper is organized as follows: In
Sect. 2, we introduce our problem and give a brief review
of the mutual information based nonparametric image seg-
mentation approach; Sect. 3 contains some background in-
formation about Rényi’s statistical dependence measure and
reproducing kernel Hilbert space associated with Gaussian
kernels; We propose our approach and numerical schemes
in Sect. 4; the numerical experimental results are presented
in Sect. 5 and we conclude this paper in Sect. 6.

2 Problem Statement and Related Works

Let Ω be a bounded Lipschitz domain, I : Ω → R be a
given image and C be an arbitrary curve in the domain Ω .
The segmentation problem is to move C such that it sepa-
rates the foreground from the background. To do so we gen-
erate a binary image L corresponding to the position of C in
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the following way

L(x) =
{

F if x ∈ R;

B if x ∈ Rc.
(5)

R and Rc denote the region inside and outside C respec-
tively.

We want to mention that the label image L in this set-
ting changes as the curve C evolves. When C reaches the
position of the right segmentation, the intensities inside C

and outside C have different statistics, for instance, different
means or/and variances. Obviously, the intensities inside C

and outside C for the label image L are always two different
constants. Therefore, when C provides a good segmentation,
the image I and label image L should be better matched sta-
tistically. This is the basic idea of using matching I and L

to assist segmentation.
However, it is usually not easy to match these two images

as they are of different modalities and it does not make sense
to directly compare their intensities. To cope with this dif-
ficulty, a number of similarity measures based on statistical
dependence have been proposed. For instance, [13] chooses
to maximize the mutual information between original image
I and its label image L, together with a constraint of a length
term, i.e.,

E(C) = −MI(I,L) + λ

∮
C

ds. (6)

In (6), I and L are viewed as random variables. At each
point x ∈ Ω , the image intensity I (x) (or L(x)) is a sam-
ple drawn from the random variable I (or L) and all the
samples {I (x)|x ∈ Ω} (or {L(x)|x ∈ Ω}) are assumed to be
independent. The mutual information MI(I,L) is defined
as follows:

MI(I,L) = h(I) − h(I |L)

= h(I) − Pr(L = F)h(I |L = F)

− Pr(L = B)h(I |L = B), (7)

where the entropy of a continuous random variable Z is

h(Z) = −
∫

RN

pZ(z) logpZ(z)dz. (8)

Since h(I) is independent of the curve C, we only need to
estimate h(I |L = F) and h(I |L = B), which are estimated
by using the nonparametric Parzen window density strategy,
i.e.,

h(I |L = F)

≈ − 1

|R|
∫

R

log

(
1

|R|
∫

R

K
(
I (x) − I (x̂)

)
dx̂

)
dx, (9)

h(I |L = B)

≈ − 1

|Rc|
∫

Rc

log

(
1

|Rc|
∫

Rc

K
(
I (x) − I (x̂)

)
dx̂

)
dx. (10)

In the above equations, K(·) is the so-called window func-
tion or kernel, which is symmetric, vanishing at infinity and
satisfyies

∫
R2

K(s)ds = 1. (11)

For instance, we can choose K to be the Gaussian p.d.f., i.e.,

K(s) = 1√
2πσ

exp

(
− s2

2σ 2

)
, (12)

which is the Parzen-window density estimation kernel. Note
that this kernel is infinitely differentiable and thus lending
the same property to the estimated p.d.f.

The mutual information could be effectively used as a
similarity measure to match the image to be segmented and
its label image. However, it requires to estimate the joint
p.d.f. of I and L, which is sensitive to image quantiza-
tion and increases the complexity of computation. In this
work, we choose to use Rényi’s statistical measure, maxi-
mum cross correlation, as a similarity measure. This mea-
sure deals directly with samples and does not need to esti-
mate the continuous joint p.d.f. A brief review of this mea-
sure is provided in the next section.

3 Rényi’s Statistical Measure

In [17] Rényi proposed a set of postulates for a suitable de-
pendence measure Q of two random variables/vectors X

and Y , which has drawn much attention ever since. These
postulates include

1. Q(PX,Y ) is well-defined;
2. 0 ≤ Q(PX,Y ) ≤ 1;
3. Q(PX,Y ) = 0 if and only if X,Y are independent;
4. Q(PX,Y ) = 1 if Y = f (X) or X = g(Y ), where f and g

are Borel measurable functions.

Then Rényi showed that one measure satisfying these con-
ditions is

Q(PX,Y ) = sup
f,g∈V

CC
(
f (X),g(Y )

)
, (13)

where V is the space of all Borel measurable functions with
finite positive variance, and CC(f (X),g(Y )) is the correla-
tion coefficient of f (X) and g(Y ), i.e.,

CC
(
f (X),g(Y )

) = cov(f (X),g(Y ))√
var(f (X))

√
var(g(Y ))

. (14)

In the above formula, the covariance between f (X) and
g(Y ) is defined as
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cov
(
f (X),g(Y )

)
= E

[(
f (X) − E

[
f (X)

])(
g(Y ) − E

[
g(Y )

])]
, (15)

where E[f (X)] is the expectation value of f (X).
The difficulty of using Rényi’s measure lies in the fact

that we need to find the optimal f and g in the space V ,
which is the set of all Borel measurable functions with fi-
nite positive variance. It is extremely difficult to search f

and g in such a huge space. Fortunately, we have shown
in [18] that the supremum in V could be attained in a much
smaller space, which is a reproducing kernel Hilbert space
(RKHS) associated with a reproducing kernel that is con-
tinuous, symmetric, positive definite and vanishing at infin-
ity. For completeness, we include the RKHS theory in the
Appendix. In this work, we choose the Gaussian function to
be the reproducing kernel, i.e.,

K(x,y) = 1√
2πσ

exp

(
− (x − y)2

2σ 2

)
. (16)

According to the theory of RKHS (see [18] or Appendix),
any two functions f and g in the RKHS associated with the
Gaussian kernel can be approximated by functions p and q

of the form,

p(x) =
n∑

i=1

αi√
2πσ

exp

(
− (x − yi)

2

2σ 2

)
, (17)

and

q(x) =
m∑

j=1

βj√
2πσ

exp

(
− (x − zj )

2

2σ 2

)
, (18)

for some parameters σ , yi , αi , zj , βj , i = 1,2, . . . , n, j =
1,2, . . . ,m. In practice, we can choose f and g to be of the
above form and fix σ,yi, zj . Therefore we only need to es-
timate the coefficients αi and βj , which could significantly
simplify the computation.

4 Proposed Model and Numerical Method

In this section, we propose our model and corresponding nu-
merical schemes. Our aim is to find a curve C such that the
resulted label image L defined in (5) matches the best with
the original image I . In this work we use the Rényi’s statis-
tical dependence measure, maximum correlation coefficient,
as a similarity measure to align I and L. By using this mea-
sure we don’t need to estimate the continuous joint p.d.f. of
the two images as in the models based on mutual informa-
tion.

As shown in the previous postulates, when the image
I and its label image L are functions of each other, i.e.,

L = f (I) or I = g(L) for some function f or g, the max-
imum cross correlation attains its maximum value 1. Note
that L is piecewise constant, so is the resulting image g(L).
It does not make a big difference by maximizing the cross
correlation between f (I) and L or g(L), so in the following
we choose to maximize the cross correlation between f (I)

and the label image L. The objective energy functional is
obtained by combining the cross correlation of f (I) and L

and the length of C, i.e.,

E(C,a1, . . . , an) =
∮

C

ds + λ

2

(
1 − CC

(
f (I),L

))2
, (19)

where

f
(
I (x)

) =
n∑
i

aiK(I, yi), (20)

and the corresponding label image L(x) is defined by

L(x) =
{

c1 if x ∈ R;

c2 if x ∈ Rc.
(21)

4.1 Level Set Formulation and Numerical Method

Energy functional (19) can be minimized using the level set
approach [2, 19–21]. The curve C is represented by the zero
level of a Lipschitz function φ : Ω → R and the resulting
energy functional becomes

E(φ,a1, . . . , an)

=
∫

Ω

∣∣∇H
(
φ(x)

)∣∣dx + λ

2

(
1 − CC

(
f (I),L

))2
, (22)

where H is the Heaviside function and

L(x) = c1H
(
φ(x)

) + c2
(
1 − H

(
φ(x)

))
. (23)

The alternate minimization (AM) approach [22] is em-
ployed to solve this problem. First, we keep a1, . . . , an fixed
and solve for φ using the gradient descent approach, i.e.,

∂φ

∂t
= δ(φ)

[
div

( ∇φ

|∇φ|
)

+ λ
(
1 − CC

(
f (I),L

))
F

]
, (24)

where δ is the regularized Dirac function and

F = (f (I ) − f (I))var(L) − cov(f (I ),L)(L − L)

var(f (I ))
1
2 var(L)

3
2

× (c1 − c2). (25)

In (24), δ(φ)div(
∇φ
|∇φ| ) is the first variation of the smooth-

ing term (TV-term) in (22) with respect to φ. In the same
way, δ(φ)λ(1 − CC(f (I),L))F is the first variation of the
fidelity term in (22) with respect to φ.
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Note that δ(φ)F is the first variation of CC(f (I),L)

with respect to φ and this derivation can be obtained
by applying the chain rule, that is, the first variation of
CC(f (I),L) with respect to L times the first variation of
L with respect to φ, i.e.,

δ(φ)F = dCC(f (I),L)

dφ
= dCC(f (I),L)

dL
· dL

dφ
. (26)

Note that

CC
(
f (I),L

) = cov(f (I ),L)√
var(f (I ))

√
var(L)

= E[(f (I ) − f (I))(L − L)]√
E[(f (I ) − f (I))2]

√
E[(L − L)2]

, (27)

thus

dCC(f (I),L)

dL

= (f (I ) − f (I))var(L) − cov(f (I ),L)(L − L)

var(f (I ))
1
2 var(L)

3
2

. (28)

On the other hand, dL
dφ

= δ(φ)(c1 − c2). Therefore, we can
get (25) by applying (26).

Then we keep φ fixed and minimize (22) with respect to
ai ’s. In this paper, we present two algorithms to update ai ’s.
The first one is to use the gradient descent method

∂ai

∂t
= (

1 − CC
(
f (I),L

))
E. (29)

In the above equation, E is the first variation of CC(f (I),L)

with respect to ai , i.e.,

E = cov(pi,L)var(f (I )) − cov(f (I ),L)cov(f (I ),pi)

var(f (I ))
3
2 var(L)

1
2

,

(30)

where

pi = K(I, yi). (31)

The second method is based on the formulation of the
energy functional. To minimize (22) with respect to ai ’s is
equivalent to maximizing CC(f (I),L) with respect to ai ’s
as the length term is independent of ai ’s.

For simplicity, we first introduce some notations. The
image I and L are viewed as vectors of length N , where
N is the number of pixels. For each i = 1,2, . . . , n, set
pi = K(I, yi) be a vector of length N , and define P =
[p1,p2, . . . , pn], a = [a1, a2, . . . , an]. For any vector x, we
denote the mean of x to be x. Thus

f (I) =
n∑
i

aiK(I, yi) =
n∑

i=1

aipi = Pa, (32)

and

CC
(
f (I),L

) = 〈Pa − Pa,L − L〉
|Pa − Pa||L − L| = 〈P0a,L0〉

|P0a||L0| , (33)

where P0ij = Pij − 1
N

∑N
k=1 Pk,j and L0 = L − L.

Let P̂ be a matrix with orthonormal column vectors
which spans the column space of P0, then we have P0a =
P̂ α for some vector α. Under these formulations, we get

CC
(
f (I),L

) = 〈P0a,L0〉
|P0a||L0| = 〈P̂ α,L0〉

|P̂ α||L0|
= αT P̂ T L0

|α||L0|

= αT UΛV T L0

|α||L0| = (UT α)T Λ(V T L0)

|UT α||V T L0| . (34)

In the above equation, UΛV T is the singular value de-
composition of the matrix P̂ T , where U is an n × n uni-
tary matrix, V T is an N × N unitary matrix and Λ is an
n × N diagonal matrix with nonnegative diagonal entries
λ1, λ2, . . . , λn, which are listed in decreasing order.

Now let x = UT α
|UT α| , y = V T L0

|V T L0| , then x ∈ R
n, y ∈ R

N ,
|x| = |y| = 1, thus

CC(f (I),L) = xT Λy = xT ΘΘz = 〈Θx,Θz〉,
where z = [y1, y2, . . . , yn] and Θ is an n×n diagonal matrix
with diagonal entries

√
λ1,

√
λ2, . . . ,

√
λn.

Therefore, CC(f (I),L) is maximized when Θx and Θz

have the same direction. Note that |x| = 1, we get x =
Θ+(Θz)
|Θ+(Θz)| , where Θ+ refers to the pseudoinverse of Θ . From
the definition of x, we can pick a particular α = Ux and then
we can update a from the relation P0a = P̂ α.

In this work, φ and ai ’s are alternatively updated until
we reach a satisfactory result. To increase the rate of con-
vergence, the semi-implicit difference scheme is applied in
(24), i.e.,

φn+1 − φn

�t

= δ
(
φn

)[
div

(∇φn+1

|∇φn|
)

+ λ
(
1 − CC

(
f (I)n,Ln

))
Fn

]
.

(35)

This equation could be effectively solved by using the addi-
tive operator splitting (AOS) method. Note that the curvature
term in (24) is approximated by

∂

∂x

(
φx√

φ2
x + φ2

y + ε2

)
+ ∂

∂y

(
φy√

φ2
x + φ2

y + ε2

)
, (36)

where ε is a small positive number in case that the denom-
inators become zero. However, it may still cause stability
issues and limit the convergence rate.
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4.2 A Soft Formulation and Numerical Method

To avoid local minimum problem we propose a soft formula-
tion of the energy functional (19) by using the same strategy
in [23], and use Chambolle’s dual method [24, 25] to solve
it.

Let u : Ω → [0,1] be a fuzzy membership function and
rewrite the energy functional as

E(u,a1, . . . , an) =
∫

Ω

∣∣∇u(x)
∣∣dx + λ

2

(
1−CC

(
f (I),L

))2
,

(37)

where

L(x) = c1u(x) + c2
(
1 − u(x)

)
. (38)

In real applications, we want L be a binary image so that it
could give a reasonable segmentation. So during each itera-
tion, we reset

L(x) = c1χ(u > 0.5) + c2
(
1 − χ(u > 0.5)

)
, (39)

and χ refers to the characteristic function.
Following the strategy in [24, 25], we introduce an auxil-

iary variable v : Ω → [0,1] and consider the following ap-
proximated energy functional

E(u,v, a1, a2, . . . , an)

=
∫

Ω

∣∣∇u(x)
∣∣dx

+ 1

2θ
‖ u − v ‖2 +λ

(
1 − CC

(
f (I),L

))2
, (40)

where

L(x) = c1v(x) + c2
(
1 − v(x)

)
, (41)

and θ is chosen to be small enough such that the minimizers
u� and v� are close to each other.

We still employ the alternate minimization (AM) ap-
proach to solve this minimization problem, i.e., we go on
to alternatively solve the following two problems:

min
u

∫
Ω

∣∣∇u(x)
∣∣dx + 1

2θ
‖ u − v ‖2 (42)

and

min
0≤v≤1,ai

′s

1

2θ
‖ u − v ‖2 +λ

(
1 − CC

(
f (I),L

))2
. (43)

The minimization problem (42) could be effectively
solved by applying Chambolle’s method [24] and the so-
lution is

u(x) = v(x) − θdivp(x), (44)

where p = (p1,p2) is given by

−∇(θdivp − v) + ∣∣∇(θdivp − v)
∣∣p = 0. (45)

Equation (45) could be solved by a fixed point method, i.e.,

pn+1 = pn + τ∇(divpn − v/θ)

1 + τ∇|divpn − v/θ | . (46)

Following the same strategy in [25], the solution v of (43) is
given by

v = min
(
max(u + λθG,0),1

)
, (47)

where

G = (
1 − CC

(
f (I),L

)) · (c1 − c2)

× (f (I ) − f (I))var(L) − cov(f (I ),L)(L − L)

var(f (I ))
1
2 var(L)

3
2

.

(48)

ai ’s are only included in the cross correlation term, so the
optimization scheme is exactly the same as the level set ap-
proach.

At the end of this section, we want to mention that both
of these two methods (level set method and the soft seg-
mentation by using Chambolle’s method) are quite effective.
However, it is still possible that we may result in a local min-
imum. This is due to the non-convexity of the cross correla-
tion term in the energy functional (19). Therefore, (19) may
have more than one minimizer and we cannot guarantee this
approach converges to a global minimizer.

5 Experimental Results

In this section we show our experimental results on vari-
ous images to demonstrate the performance of the proposed
model for segmentation. All the simulations are preformed
in Matlab 7.9 (R2009b) on a PC with an Intel Core 2 Duo
CPU at 2.4 GHz and 3 GB RAM.

We compare the proposed nonparametric model with
two parametric models, namely, the piecewise constant
Mumford-Shah model (2) and also the parametric Gaussian
model (3), (4). For completeness, we rewrite these models
as the following

min
C,c1,c2

∫
Ω1

(c1 − I )2dx +
∫

Ω2

(c2 − I )2dx + β|C|, (49)

and

min
C,c1,c2,σ1,σ2

2∑
i=1

∫
Ωi

(
(I − ci)

2

2σ 2
i

+ logσi

)
dx + β|C|. (50)
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Table 1 Number of iterations
and CPU time (s) for the
experiments (Figs. 1, 2, and 3)

Images Size Iterations CPU time (s)

Model (49) Model (50) Proposed Model (49) Model (50) Proposed

Fig. 1(a) 100 × 100 50 63 35 2.93 2.61 2.31

Fig. 1(e) 100 × 100 176 182 83 4.48 7.21 3.81

Fig. 1(i) 256 × 256 86 90 58 7.07 9.16 5.90

Fig. 2(a) 210 × 180 – 98 20 – 4.63 1.40

Fig. 2(f) 210 × 180 – 100 50 – 7.14 3.24

Fig. 3(a) 336 × 406 – – 20 – – 5.89

Fig. 3(e) 336 × 406 – – 33 – – 7.34

We apply the same soft formulation to the above two
models and compare the results with those got from the pro-
posed model. The numerical algorithm would be terminated
once ‖uk+1 −uk‖/‖uk‖ < 10−5, where uk refers to the level
set function or the membership function during the kth itera-
tion. The corresponding number of iterations and CPU time
for all the following experiments are summarized in Table 1.
From this table, we can see that compared to the parametric
models, the proposed nonparametric model needs less time
and iterations to obtain good results.

For the level set approach, the initial φ is set to be the
signed distance function of the initial circles in the image.
However, Chambolle’s approach is more robust to the ini-
tialization. The initial u and v can be generated as random
fields in the range [0,1]. All of the test images are rescaled
to the interval [0,1] and the parameters c1, c2 in the label im-
age are fixed to be 1 and 2. Unless otherwise stated, in each
figure, we include the test image I , the final transformed
image f (I), the final label image L and the segmentation
result, i.e., the contours (φ = 0 or u = 0.5) superimposed on
the original image.

5.1 Comparison with Two Parametric Models

The purpose of Experiment I (Fig. 1) is to test the ability
of the proposed model on three synthetic images, where the
foreground and foreground are generated by two different
distributions. Meanwhile, we also compare the segmentation
results with two parametric models (49), (50).

In each row, from left to right, we present the original
synthetic test image; corresponding boundary overlaid on
the image obtained from the piecewise constant Mumford-
Shah model (49), the parametric Gaussian model (50), the
proposed model; the distributions of the foreground and
background.

In the first test image (a), the intensities of foreground and
background are drawn from two Gaussian distributions with
different mean and the same variance (e). While the intensi-
ties of the foreground and background in the second test im-

age (f) share the same mean and different variance (j). The
last test image (k) shows a unimodal Gaussian foreground
over a bi-modal Gaussian background (o).

We can easily see that all the above-mentioned three
models work effectively for the first test image. However,
the piecewise constant Mumford-Shah model fails for the
second and third test images as the piecewise constant as-
sumption does not hold for these two cases. As for the para-
metric Gaussian model, it could automatically estimate the
mean and variance between and outside the curve and then
use these information to aid the segmentation. Therefore,
the result for the second test image (f) is satisfactory even
if the image intensities overlaps. However, it fails for the
third test image (k) as the background is bi-modal Gaussian
distributed, which makes the assumption for the parametric
Gaussian model do not hold.

Our proposed nonparametric model successfully sepa-
rates the foreground from the background in all these three
cases. The image intensities of object and background in the
first test image vary a lot in the first test image (a) and it
would be easily segmented. Regarding the last two images,
the background or the foreground is comparatively homoge-
neous. Hence, we could select yi ’s from the intervals where
the intensities of the background or the background lie. Thus
after applying the function f , linear combination of a series
Gaussian functions centered at yi ’s, to the image I , the val-
ues of f (I) in the inhomogeneous region become extremely
small and the transformed images f (I) are more homoge-
nous. Therefore, by carefully choosing yi ’s in the function
f and maximizing the correlation coefficient of the trans-
formed images f (I) with the label image L, we get the de-
sirable results.

The comparison with these two models indicates that the
parametric models fails when the image intensity distribu-
tion is more complicated. That is why we need to explore
for more general nonparametric models.
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Fig. 1 Segmentation results of three synthetic images. (a), (f), (k) Test
images I ; (b), (g), (l) Segmentation results of the piecewise constant
Mumford-Shah model; (c), (h), (m) Results of the parametric Gaussian

model; (d), (i), (n) Results of the proposed model; (e), (j), (o) Distri-
butions of the foreground and background

5.2 Test on Real Medical Images

In this subsection, we test the proposed model on two real
medical images, an MRI brain image and a lung image.

In experiment 2 (Fig. 2), the first test image (a) is a clean
brain image and the second test image (f) is generated by
adding Gaussian noise with zero mean and variance 0.1
to the clean image (a). Meanwhile, we also compare the
results with those obtained from the parametric Gaussian
model (50).

The segmentation results of the parametric Gaussian
model (50) are placed at the end of each row (e), (j). We can
see that it successfully separates background, cerebrospinal
fluid (c.s.f.) from white matter and gray matter. However,
this is quite different from the results (d), (i) obtained from
the proposed model. From (d), (i), we can see that gray mat-
ter is separated from the rest and the whole image is actually
segmented into three parts even if we only do the two phase
segmentation.

This is reasonable because we utilize the histogram infor-
mation (k) of the test image. As indicated in the graph (k),
there are three peaks, which from left to right stand for

background and c.s.f., gray matter, white matter. Note that
background and c.s.f. are considered as a whole and the
intensities of the gray matter lie in the interval [0.4,0.6].
We uniformly select yi ’s from the interval [0.4,0.6], then
after applying the function f to the test images I , intensi-
ties which are not in this interval (white matter, background
and c.s.f.), would become almost zero while intensities of
the gray matter are enlarged. That is why white matter, c.s.f.
and background look dark while the gray matter looks bright
in the transformed images f (I) (b), (g). In other words, by
doing this transformation, we can view white matter, c.s.f.
and background as a whole and separate them from the gray
matter.

The last image (l) shows that the cross correlation
between the image f (I) and the label image L, i.e.,
CC(f (I),L), keeps increasing as the iteration process goes.
And this trend coincides with the mutual information be-
tween the test image I and the label image L. So we can
conclude that the proposed method is consistent with the
mutual information based nonparametric image segmenta-
tion method [13].
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Fig. 2 Segmentation results of a clean brain image (first row) and its
noisy version (second row). From left to right: Test image I (a), (f);
Final transformed images f (I) (b), (g); Final label images L (c), (h);
Segmentation results of the proposed model (d), (i); Segmentation re-

sults obtained from the parametric Gaussian model (e), (j). Third row:
(k) Histogram of the test image (a); (l) the information of CC(f (I),L)

and MI(I,L) during each iteration

Experiments 1 and 2 indicates that by choosing specific
yi ’s, the proposed model works well for images with in-
homogeneity, unevenly distributed illumination and it can
get multiphase segmentation results while only using two
phases. In the following experiment, we do not pay too much
attention on the selection of yi ’s and let them to be equally
spaced in the interval [0,0.5].

Experiment 3 (Fig. 3) aims to test whether the proposed
model works for images with fine structures. We choose the
test image to be a lung image with lots of fine details. This
first test image (a) is a clean image and the second one (e) is
more inhomogeneous, which is generated by adding Gaus-

sian noise with zero mean and variance 0.1 to the clean im-
age. After applying the function f to the original test im-
ages I (a), (e), the resulted images f (I) (b), (f) have more
strong contrast between different features while still pre-
serving the detailed structures. The same parameters are ap-
plied for these two tests. The final results (d), (h) show that
most of the fine structures are captured and the noise inho-
mogeneity does not exert a big difference.

6 Conclusion

In this paper, we propose a novel image segmentation frame-
work based on Rényi’s statistical dependence measure. The
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Fig. 3 Segmentation results of a clean lung image (first row) and a noisy one (second row). From left to right: Test images I (a), (e), transformed
images f (I) (b), (f), label images L (c), (g) and the final contour (u = 0.5) superimposed on the test images (d), (h)

computation is greatly simplified by applying the theory
of reproducing kernel Hilbert space. Two numerical ap-
proaches, the level set method and Chambolle’s dual ap-
proach, are employed during the implementation. Finally,
the proposed model is applied to different kinds of images
and gets satisfactory results.

Appendix

In this section, we give the basic theories of RKHS we have
used in this paper.

Let E be an arbitrary set and H be a Hilbert space of real
functions on E. We say that H is a RKHS if the linear map
Fx : f → f (x) is a bounded functional for any x ∈ E.

By this definition, Fx ∈ H�, which is the dual space of H .
Therefore, Reisz representation theorem shows that there
exists a unique Kx ∈ H , such that

f (x) = 〈Fx,f 〉 = 〈Kx,f 〉, ∀f ∈ H.

Define K : E × E → R as K(x,y) = 〈Kx(·),Ky(·)〉. It
is easy to see that K has the following properties:

1. K is symmetric: K(x,y) = K(y,x).
2. Reproducing property: f (x) = 〈K(x, ·), f (·)〉.
3. K is positive definite:

∑n
i,j aiajK(xi, xj ) ≥ 0 holds for

all x1, x2, . . . , xn ∈ E, a1, a2, . . . , an ∈ R and the equal-
ity holds if and only if ai = 0, i = 1,2, . . . , n.

We call such an K the reproducing kernel for the Hilbert
space H .

On the other hand, suppose K : E × E → R is sym-
metric and positive definite, then according to the Moore-
Aronszajn theorem [26], there is a unique Hilbert space of

functions on E for which K is a reproducing kernel. In fact,
let H0(E) be the linear span of the functions {K(x, ·)|x ∈ E}
and define the inner product in H0(E) to be
〈

n∑
i=1

aiK(xi, ·),
m∑

j=1

bjK(yi, ·)
〉

=
n∑

i=1

m∑
j=1

aibjK(xi, xj ).

Let H(E) be the completion of H0(E) with respect to this
inner product. It is not difficult to check that H(E) is the
unique RKHS with reproducing kernel K .

For the particular case E = R. Let C0(R) be the space of
real valued continuous functions vanishing at infinity with
the supremum norm. Then we have the following result

sup
f,g∈V (R)

CC
(
f (X),g(Y )

) = sup
f,g∈H0(R)

CC
(
f (X),g(Y )

)
,

(51)

where V (R) is the space of all real Borel measurable func-
tions with finite positive variance. This is the main result we
have used in this paper and (17), (18) follows directly from
this result.

The proof of this result can be obtained through the fol-
lowing three steps (We omit the details here).

1. H0(R) is dense in C0(R).
2. Let V (B) be the space of all real bounded Boreal mea-

surable functions, then

sup
f,g∈V (B)

CC(f (X),g(Y )) = sup
f,g∈C0(R)

CC(f (X),g(Y )).

3.

sup
f,g∈V (R)

CC(f (X),g(Y )) = sup
f,g∈V (B)

CC(f (X),g(Y )).
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