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Abstract. We present a new variational framework for simultaneous smooth-
ing and estimation of apparent diffusion coefficient (ADC) profiles from High
Angular Resolution Diffusion-weighted MRI. The model approximates the ADC
profiles at each voxel by a 4th order spherical harmonic series (SHS). The co-
efficients in SHS are obtained by solving a constrained minimization problem.
The smoothing with feature preserved is achieved by minimizing a variable ex-
ponent, linear growth functional, and the data constraint is determined by the
original Stejskal-Tanner equation. The antipodal symmetry and positiveness
of the ADC are accommodated in the model. We use these coefficients and
variance of the ADC profiles from its mean to classify the diffusion in each voxel
as isotropic, anisotropic with single fiber orientation, or two fiber orientations.
The proposed model has been applied to both simulated data and HARD MRI
human brain data . The experiments demonstrated the effectiveness of our
method in estimation and smoothing of ADC profiles and in enhancement of
diffusion anisotropy. Further characterization of non-Gaussian diffusion based
on the proposed model showed a consistency between our results and known
neuroanatomy.

1. Introduction. Diffusion-weighted MRI (DW-MRI, shortened as DWI) adds
to conventional MRI the capability of measuring the random motion of water
molecules, referred as diffusion. Water in tissues contains a large number of fibers
(such as cardiac muscle and brain white matter). The diffusion is the fastest along
the direction that a fiber is pointing to, but the slowest in the direction perpen-
dicular to it. Water diffuses isotropically in tissues that contain few fibers. DWI
renders non-invasively such complex in vivo information about how water diffuses
into intricate a 3D representation of tissues.

Conventional MRI can be used to investigate spatial relationship between differ-
ent anatomical regions, but it is unable to infer the connectivity of these regions.
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DWI provides profound histological and anatomical information about tissue struc-
ture, composition, architecture, and organization. Changes in these tissue proper-
ties can often be correlated with processes that occur in development, degenera-
tion, disease, and aging, so this method has become more and more widely applied
([1, 2, 3, 4]).

The diffusion of water molecules in tissues over a time interval with length t can
be described by a probability density function (pdf) p(r, t) on the displacement r.
Since p(r, t) is largest in the directions of least hindrance to diffusion and smaller in
other directions, the information about p(r, t) reveals fiber orientations and leads
to meaningful inferences about the microstructure of tissues. Therefore, it can be
used to characterize diffusion anisotropy and reconstruct fiber pathways.

The standard methodology employed in most DWI experiments is the Stejskal-
tanner pulsed gradient spin echo method [5]. Two magnetic field gradient pulses of
strength G and duration δ with a temporal separation of t between the onset of the
pulses are applied to the simple spin-echo sequence. If the duration of the pulses δ
is negligible comparing with t, the attenuation of the MR signal s(q) with respect
to the diffusion sensitizing gradient q measures the Fourier transformation (FT) of
the average pdf p(r, t) on a spin displacement r over diffusion time t [6]. That is

(1) s(q) = s0

∫
p(r, t)eiq·rdr,

where q = (2π)−1γδG, γ is gyromagnetic ratio of protons in water, and s0 is the MR
signal in the absence of any gradient. From (1) p(r, t) can be estimated by taking
the inverse FT of s(q)/s0 . But this requires a large number of measurements
of s(q) over a wide range of q in order to perform a stable inverse FT. Recently,
Tuch et al. [7] developed q-space imaging method to obtain high angular resolution
diffusion (HARD) measurements. In [8] Wedeen et al. succeed in acquiring 512
measurements of s(q) in each scan to perform a stable inverse FT. However, most
common way to estimate p(r, t) is assuming it to be a Gaussian or a mixture of
Gaussians.

One of the alternatives for character diffusion anisotropy is using the information
of apparent diffusion coefficient (ADC) profiles. The ADC on each voxel in DWI is
defined as a function d(θ, φ) in the Stejskal-tanner equation:

(2) s(q) = s0e
−bd(θ,φ),

i.e.

(3) d(θ, φ) = −
1

b
log

s(q)

s0
.

where (θ, φ) (0 ≤ θ < π, 0 ≤ φ < 2π) represents the direction of q in spherical
coordinates, the b-factor is defined as b = 4π2|q|2(t− δ/3).

For Gaussian diffusion,

p(r, t) =
1√

(4πt)3|D|
e

−r
TD−1

r

4t ,

where D is called the diffusion tensor. Inserting this to equation (1) it yields

(4) s(q) = s0e
−buTDu,

where u = q/|q|. In this case

d(u) = uTDu.
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The principle eigenvector of D indicates direction of the diffusion. The fractional
anisotropy (FA) defined as

(5) FA =

√
3

2

√
(λ1 − λ2)2 + (λ2 − λ3)+(λ3 − λ1)2

(λ1 + λ2 + λ3)2
,

where λi (i = 1, 2, 3) are the eigenvalues of D, has become the most widely used
measure of diffusion anisotropy [4]. This is known as diffusion tensor imaging (DTI),
and in particular useful for creating white matter fiber tracts ([9, 6, 10, 11]). How-
ever, it has been recognized that the single tensor model (4) is inappropriate for
assessing multiple fiber tract orientations, when complex tissue structure is found
within a voxel ([6, 12, 13, 14, 7, 8]).

One of the promising approaches for characterizing anisotropy of non-Gaussian
diffusion is using SHS approximation of the ADC profiles estimated from HARD
data. This technique was initiated by Frank [14], also studied by Alexander et al.
[15], Chen et al. [16] and others. The basic idea of these work is to approximate a
ADC profile d(x, θ, φ) at each voxel x by its truncated SHS:

d(x, θ, φ) =

lmax∑

l=0

l∑

m=−l

Al,m(x)Yl,m(θ, φ),

where Yl,m(θ, φ) : S2 → C are the spherical harmonics and C denotes the set
of complex numbers. The odd-order terms in the SHS are set to be zero, since
the HARD measurements are made by a series of 3-d rotation, d(θ, φ) is real and
antipodal symmetry.

The coefficients Al,m(x)’s were estimated from HARD data by different methods,
and used to characterize the diffusion anisotropy. In [14] the coefficients Al,m at
each voxel were estimated from the measured HARD (log) signal acquired with
b = 3000s/mm2 through the equation (3), i.e.

(6) Al,m(x) =

∫ 2π

0

∫ π

0

−
1

b
log

s(q)

s0
Y ∗
l,m(θ, φ)sinθdθdφ,

where * denotes the complex conjugate. In [15] Al,m were estimated as the least-
squares solutions of

(7) −
1

b
log

s(x, θ, φ)

s0(x)
=

lmax∑

l=0

l∑

m=−l

Al,m(x)Yl,m(θ, φ).

Then, the voxels with the significant 4th order (l=4) components in SHS are clas-
sified as anisotropic with multi-fiber orientations (shortened as multi-fibers), while
voxels with the significant 2nd order (l=2) but not the 4th order components are
classified as anisotropic with single fiber orientation (shortened as one-fiber), which
is equivalent to the DTI model (4). Voxels with the significant 0th order (l = 0)
but not the 2nd and 4th order components are classified as isotropic. In [16] we
presented a variational model with a non-negativity constraint for simultaneous
smoothing and estimation of the ADC profile d(x, θ, φ) from the noisy HARD mea-
surements s(q). This model minimizes an energy that includes a smoothing term
and a data fidelity term.

In this paper we will present a slightly modified version of the model presented
in [16], give a mathematical justification of the model: proof of the existence of a
solution in the space of functions with bounded variation (BV). We will also discuss
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some implementation issues on saving computational cost, since finding a model
solution involves solving a large system. Moreover, we will give our algorithm for
characterizing diffusion anisotropy, which uses not only the information from the
Al,m(x)’s, but also the variation of d(θ, φ) about its mean at each voxel. Our ex-
perimental results showed the effectiveness of the proposed model in the estimation
and enhancement of anisotropy of the ADC profile. The characterization of the
diffusion anisotropy based on the reconstructed ADC profiles using the proposed
method is consistent with the known fiber anatomy.

2. Model description. In this section we will present a variational framework for
simultaneous smoothing and estimation of the ADC profile d(x, θ, φ) from the noisy
HARD measurements s(q). This model minimizes an energy functional consisting
of two parts: one is the cost for regularizing d, and the other is the cost for fitting
d to the HARD measurements through the original Stejskal-Tanner equation (2).
To explain the basic idea of our method, we focus our attention on the cases where
there are at most two fibers passing through a single voxel. The same idea can be
applied to the cases where there are more fibers within a voxel.

The challenge in regularizing d comes from two aspects. First, d is defined on
Ω×S2 rather than Ω×R2, hence, the derivatives for (θ, φ) should be along the sphere.
Secondly, the regularized d has to preserve the antipodal symmetry property with
respect to (θ, φ). Considering these facts we adopt the idea developed in [14, 15]
that approximates d by its SHS consisting of only even order components up to
order 4 , i.e.

(8) d(x, θ, φ) =
∑

l=0,2,4

l∑

m=−l

Al,m(x)Yl,m(θ, φ).

The expression in (8) ensures the smoothness and antipodal symmetry property of
d(x, θ, φ) in terms of (θ, φ), this is easy to see from the definition of Yl,m(θ, φ). For
the cases where possibly k fibers cross in a single voxel, the sum in (8) should be
replaced by

∑
l=0,2,...,2k.

Now the problem of regularization and estimation of d(x, θ, φ) reduces to that for
the 15 complex valued functions Al,m(x) (l = 0, 2, 4 and m = −l, . . . , l) in (8). Since
d(θ, φ) at each voxel is a real valued function, and Yl,m satisfies Yl,−m = (−1)mY ∗

l,m,
Al,m should be constrained by

Al,−m = (−1)mA∗
l,m.

This constraint reduces the number of the unknown coefficients Al,m in (8) to 15
real valued functions. They are

(9) Al,0(x), (l = 0, 2, 4), ReAl,m(x), ImAl,m(x), (l = 2, 4 and m = 1, . . . , l).

By using (9), we can rewrite (8) as

d(x, θ, φ) =
∑

l=0,2,4

Al,0(x)Yl,0(θ, φ)

+ 2
∑

l=2,4

l∑

m=1

(ReAl,m(x)ReYl,m(θ, φ) − ImAl,m(x)ImYl,m(θ, φ)),

(10)
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where ReF and ImF represent the real and imaginary part of a function F respec-
tively. Now the problem of regularizing and estimating d reduces to smoothing and
estimation of 15 functions in (9) simultaneously.

There are many choices of regularizing operators to smooth the 15 functions in
(9). Total Variation (TV) based regularization, first proposed by Rudin, Osher
and Fatemi[17], proved to be an invaluable tool for feature preserving smoothing.
However, it sometimes causes a staircase effect making restored image blocky, and
even containing ’false edges’ [18, 19]. An improvement, that combines the TV
based smoothing with isotropic smoothing, was given by Chambolle and Lions [19].
Their model minimizes the TV norm when the magnitude of the image gradient
is larger, and the L2 norm of the image gradient if it is smaller. However, this
model is sensitive to the choice of the threshold which separates the TV based
and isotropic smoothing. To further improve Chambolle and Lions’ model and
make the model having an ability to self adjust diffusion property, recently, certain
nonstandard diffusion models based on minimizing Lp(x) norm of image gradient
have been developed [18, 20]. To recover an image u from an observed image I in
[18] the diffusion was governed by minimizing

min
u

∫

Ω

|∇u|p(|∇u|)

where p(s) is monotonically decreasing function and lims→0 p(s) = 2, lims→∞ p(s) =
1. In [20] the diffusion was performed through minimizing

min
u

∫

Ω

φ(x,Du)

where φ(x, r) := 1
p(x) |r|

p(x) if |r| ≤ a, and φ(x, r) := |r| − ap(x)−ap(x)

p(x) , if |r| > a for

threshhold a. In this model p(x) is chosen as

p(x) = p(|∇I|) = 1 +
1

1 + k|∇Gσ ∗ I|2
,

where k, σ > 0 are parameters, Gσ is the Gaussian kernel. Both models in [18] and
[20] are able to self adjust diffusion range from isotropic to TV-based depending on
image gradient. At the locations with higher image gradients (p = 1), the diffusion is
TV based and strictly tangential to the edges ([17, 21, 19]). In homogeneous regions
the image gradients are very small (p = 2), the diffusion is essentially isotropic. At
all other locations, the image gradient forces 1 < p < 2, and the diffusion is between
isotropic and total variation based and varies depending on the local properties of
the image. This self adjusting ability enables these models to effectively preserve
features when images are smoothed.

Applying the idea of minimizing functionals with variable exponent to the prob-
lem of regularizing the coefficients Al,m’s in (8) , we propose to minimize

(11) E1(Al,m) :=

∫

Ω

∑

l=0,2,4

l∑

m=−l

φl,m(x,DAl,m),

where

(12) φl,m(x, r) :=

{
1

pl,m(x) |
r

Ml,m
|pl,m(x), |r| ≤Ml,m

| r
Ml,m

| − (1 − 1
pl,m(x)), |r| > Ml,m
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We would like to point out that for a function Al,m ∈ BV , DAl,m is a measure,
the definition of (11) is not obvious. This will be discussed in existence section 6
below.

In (12)

(13) pl,m = 1 +
1

1 + k|∇Gσ ∗ al,m(x)|2
,

and al,m is the least-squares solution of

(14) −
1

b
log

s(x, θ, φ)

s0(x)
=

∑

l=0,2,4

l∑

m=−l

al,m(x)Yl,m(θ, φ).

In real application, Ml,m is picked as 90th percentile of r. Experimental results
are not sensitive to this parameter.

Again we would like to point out that E1 only needs to include 15 terms corre-
sponding to the 15 real valued functions in (9). Here we write it in terms of Al,m
in order to shorten the expression of the formula. If using Al,m instead of al,m
in (13) we may get better numerical results, since pl,m would depend on updated
Al,m rather than the fixed al,m in the iterations to minimize (11). However, it gives
difficulty in the study of the existence of solutions.

Since d(x, θ, φ) is related to the HARD measurements s(x, θ, φ) and s0(x) through
the Stejskal-Tanner equation (2), the estimation of the Al,m’s is based on the original
Stejskal-Tanner equation (2) rather than its (log) linearized form, that is,

(15) E2(Al,m) :=
1

2

∫

Ω

∫ 2π

0

∫ π

0

|s(x, θ, φ) − s0(x)e
−bd(x,θ,φ)|2sinθdθdφdx,

where d is determined in (8). As observed in [22] when the signal to noise ratio is
low the linearized model gives different results.

Finally, to simultaneously regularize and estimate the ADC d(x, θ, φ), our model
minimizes the energy function

(16) E(Al,m) := λE1(Al,m) + E2(Al,m),

with respect to Al,m (l = 0, 2, 4 and m = −l, . . . , l) in the space of BV (Ω), (in fact,
only 15 functions in (9) are needed), and subject to the constraint:

(17) d(x, θ, φ) ≥ 0.

In (16),(17), s(x, θ, φ) and s0(x) are the noisy HARD measurements (real valued),
d(x, θ, φ) is the SHS given in (8), Ω ⊂ R3 is the image domain, λ > 0 is a parameter
which could be different for different Alm. E1 and E2 are given in (11) and (15),
respectively.

Before we derive the Euler-Lagrange equations for our model (16),(17), we would
like to point out that if the measurements satisfy the condition s(x, θ, φ) ≤ s0(x),
the solution of (16) meets the constraint (17) automatically. Therefore we can treat
our model as an unconstrained minimization. This is given in the following lemma.
Lemma: Under the assumption that

(18) s(x, θ, φ) ≤ s0(x), for all x ∈ Ω, 0 ≤ θ < π, 0 ≤ φ < 2π

the minimizer of (16) always satisfies the constraint (17).
Proof. Let Al,m(x) (l = 0, 2, 4 and m = −l, . . . , l) be the minimizer of (16) in
BV (Ω), and d(x, θ, φ) be the function defined in (8) associated with these optimal
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Al,m(x)’s. Given x ∈ Ω, if d(x, θ, φ) < 0 for some 0 ≤ θ < π, 0 ≤ φ < 2π, then

define d̂(x, θ, φ) = 0, otherwise, define d̂(x, θ, φ) := d(x, θ, φ).
Correspondingly,

Âl,m(x) :=

∫ 2π

0

∫ π

0

d̂(x, θ, φ)Yl,m(θ, φ)sinθdθdφ.

Then, using the orthonormality of the spherical harmonics and the definition of d,
we have

(19) Âl,m(x) =

{
Al,m(x), if d(x, θ, φ) ≥ 0, ∀ 0 ≤ θ < π, 0 ≤ φ < 2π

0, if d(x, θ, φ) < 0

This implies that

φl,m(x,DÂl,m) ≤ φl,m(x,DAl,m),

hence

E1(Âl,m) ≤ E1(Al,m).

Moreover, it is easy to obtain

E2(d̂) ≤ E2(d),

if (18) holds. From the last two inequality above, we obtain that E(d̂) ≤ E(d). This
contradicts to the fact that d minimizes energy functional (16).

Now we give the evolution equations associated with the Euler-Lagrange (EL)
equations for (16): for l = 0, 2, 4 and m = −l, . . . , l,
(20)
∂Al,m
∂t

= λdiv(∂rφl,m)(x,DAl,m) − b

∫ 2π

0

∫ π

0

s0e
−bd(s− s0e

−bd)Yl,msinθdθdφ,

with the initial and boundary conditions:

Al,m = al,m, on Ω × {t = 0},

(∂rφl,m)(x,DAl,m) · n = 0 on ∂Ω ×ℜ+.

In the above EL equation n is the unit outward normal to the boundary of Ω, and
∂rφl,m(x, r) is a continuously differentiable function in r, and

(21) ∂rφl,m(x, r) :=

{
1

Mp

l,m
(x)

|r|p(x)−2r, |r| ≤Ml,m

1
Ml,m

|r|−1r, |r| > Ml,m

∂rφl,m can also be written as

(22) ∂rφl,m(x, r) :=
1

M q
l,m(x)

|r|q(x)−2r,

where q(x) = p(x) if |r| ≤Ml,m, and q(x) = 1 if |r| > Ml,m. �

3. Characterization of anisotropy. In [14] the |Al,m(x)| (l = 0, 2, 4 and m =
−l, . . . , l) in the truncated SHS (8) are used to characterize the diffusion anisotropy
at each voxel x. Our experimental results, however, indicate this information alone
is insufficient to separate isotropic diffusion, one-fiber diffusion, and multi-fiber
diffusion within a voxel. We propose to combine the information from |Al,m| with
the variances of d(φ, θ) about its mean value to characterize the diffusion anisotropy.
We outline our algorithm as follows:

Inverse Problems and Imaging Volume 2, No. 2 (2008), 205–224
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(1). If

(23) R0 :=
|A0,0|∑

l=0,2,4

∑l
m=−l |Al,m|

,

is large, or the variance of d(θ, φ) about its mean is small, the diffusion at such
voxels is classified as isotropic.

(2). For the remaining voxels, if

(24) R2 :=

∑m=2
m=−2 |A2,m|

∑
l=2,4

∑l
m=−l |Al,m|

is large, the diffusion at such voxels is characterized as one-fiber diffusion. Figure
3 D) presents an intensity-coded image of R2 in a brain slice through the external
capsule, an important structure of the human white matter. In Figure 3D) those
voxels of a high intensity (bright regions on the image) are characterized as one-fiber
diffusion.

(3). For each uncharacterized voxel after the above two steps, search the di-
rections (θ, φ), where d(θ, φ) attains its local maxima. Note, d(θ, φ) is antipodal
symmetric, i.e., d(θ, φ) = d(π − θ, φ + π), we mod out this symmetry when count
the number of local maxima. Then we compute the weights for the local maxima
(say we have 3 local maxima):

Wi :=
d(θi, φi) − dmin∑3
i=1 d(θi, φi) − 3dmin

,

where (θi, φi) (i = 1, 2, 3) are the directions in which d attains its local maxima. If
one of the weights is significant, it is considered as one fiber diffusion. If two weights
are similar but much larger than the third one, it is viewed as two-fiber diffusion,
if all three weights are similar, d can be considered either three-fiber diffusion or
isotropic diffusion. In our experiment we restrict ourselves to the cases where we
only distinguish isotropic, one-fiber or two-fiber diffusions. Under this restriction
if three weights are similar, we include this voxel in the class of isotropic diffusion.
Figure 5A) shows our classification of isotropic diffusion (dark region), one-fiber
diffusion (gray region), and two-fiber diffusion (bright region) in the same slice as
in Figure 3.

4. Numerical implementation issues. To efficiently solve the Euler-Lagrange
equations (20), we use Additive Operator Splitting(AOS) algorithm for the diffusion
operator (see [23, 24] ). By using this algorithm, the computational and storage costs
are linear in the number of voxels, and the computational efficiency can be increased
by a factor of 10 under realistic accuracy requirements([23]). The algorithm is ready
to be modified to a parallel version.

To avoid the complicated notation, we use X to represent any Al,m in the Euler-
Lagrange equations, and write the algorithm for only one of the equations (20) in
the system, since each equation has the same structure as others.

We use semi-implicit finite difference scheme:

X
(n+1)
i,j −X

(n)
i,j

τ
= f(X

(n)
i,j ) + λdiv

(
∇X

(n+1)
i,j

M qij |∇X
(n)
i,j |

2−qij

)
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Reconstruction of ADC 213

(25) = f(X
(n)
i,j ) +

−λlnM

M qij

∇qij · ∇X
(n+1)
i,j

|∇X
(n)
i,j |

2−qij
+

λ

M qij
div

(
∇X

(n+1)
i,j

|∇X
(n)
i,j |

2−qij

)

Here X can be replaced by one of Al,m’s with l = 0, 2, 4, m = −l, · · · , l, and

f is a function of results from last iteration,namely, f is a function of all A
(n)
l,m’s.

q(x) = p(x) if |∇X | ≤ M , and q(x) = 1 if |∇X | > M for some fixed constant M ,
which was chosen based on initial value of X, so M might be different for different
Al,m’s.

For simplicity of formulas, we define:

△x
−Xi,j = Xi,j −Xi−1,j , △

x
+Xi,j = Xi+1,j −Xi,j , △

xXi,j = Xi+1,j −Xi−1,j

△y
+Xi,j = Xi,j+1 −Xi,j , △

y
−Xi,j = Xi,j −Xi,j−1, △

yXi,j = Xi,j+1 −Xi,j−1

Adopting a discretization of the divergence operator from [25], one can write (25)
as:

X
(n+1)
i,j

−X
(n)
i,j

τ = f(X
(n)
i,j ) − λlnM

Mqij

[△xqij , △
yqij ]

2h ·

[
△xX

(n+1)
i,j

,△yX
(n+1)
i,j

]
/(2h)

(
(△xX

(n)
i,j

)2

(2h)2
+

(△yX
(n)
i,j

)2

(2h)2

) 2−qij
2

+ λ
Mqijh2 ·


△

x
−




△x
+X

(n+1)
i,j

(
(△x

+
X

(n)
i,j

)2

h2
+

(△yX
(n)
i,j

)2

(2h)2

) 2−qij
2


 + △y

−




△y
+X

(n+1)
i,j

(
(△
y
+
X

(n)
i,j

)2

h2
+

(△xX
(n)
i,j

)2

(2h)2

) 2−qij
2







= f(X
(n)
i,j ) + (Ci,j −Gi,j)X

(n+1)
i−1,j − (Ci,j +Di,j)X

(n+1)
i,j + (Di,j +Gi,j)X

(n+1)
i+1,j +

(26) + (Ei,j −Hi,j)X
(n+1)
i,j−1 − (Ei,j + Fi,j)X

(n+1)
i,j + (Fi,j +Hi,j)X

(n+1)
i,j+1

Where C,D,E and F are from divergence operation, while G and H are generated
by dot product, in detail:

Ci,j = λ
Mqijh2

[
(X

(n)
i,j

−X
(n)
i−1,j)

2

h2 +
(X

(n)
i−1,j+1−X

(n)
i−1,j−1)2

(2h)2

] qi−1,j−2

2

Di,j = λ
Mqijh2

[
(X

(n)
i+1,j−X

(n)
i,j

)2

h2 +
(X

(n)
i,j+1−X

(n)
i,j−1)2

(2h)2

] qij−2

2

Ei,j = λ
Mqijh2

[
(X

(n)
i+1,j−1−X

(n)
i−1,j−1)2

(2h)2 +
(X

(n)
i,j

−X
(n)
i,j−1)2

(h)2

] qi,j−1−2

2

Fi,j = λ
Mqijh2

[
(X

(n)
i+1,j−X

(n)
i−1,j)

2

(2h)2 +
(X

(n)
i,j+1−X

(n)
i,j

)2

(h)2

] qij−2

2

Gi,j = −
λ lnM(qi+1,j−qi−1,j)

Mqij (2h)2

[
(X

(n)
i+1,j−X

(n)
i−1,j)

2

(2h)2 +
(X

(n)
i,j+1−X

(n)
i,j−1)2

(2h)2

] qij−2

2

Hi,j = −
λ lnM(qi,j+1−qi,j−1)

(2h)2

[
(X

(n)
i+1,j−X

(n)
i−1,j)

2

(2h)2 +
(X

(n)
i,j+1−X

(n)
i,j−1)2

(2h)2

] qij−2

2

Solving (26) would involve matrix inverse operation, which would become more
and more complicated and dramatically expensive as dimension increases if we solve
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it directly. Instead, here we use Additive Operator Splitting (AOS) algorithm, which
allows us to reformat system (26) into following system:

X̄
(n+1)
i,j −X

(n)
i,j

τ
= f(X

(n)
i,j )+

(27) 2
[
(Ci,j −Gi,j)X̄

(n+1)
i−1,j − (Ci,j +Di,j)X̄

(n+1)
i,j + (Di,j +Gi,j)X̄

(n+1)
i+1,j

]

¯̄X
(n+1)
i,j −X

(n)
i,j

τ
= f(X

(n)
i,j )+

(28) 2
[
(Ei,j −Hi,j)

¯̄X
(n+1)
i,j−1 − (Ei,j + Fi,j)

¯̄X
(n+1)
i,j + (Fi,j +Hi,j)

¯̄X
(n+1)
i,j+1

]

and

X
(n+1)
i,j =

X̄
(n+1)
i,j + ¯̄X

(n+1)
i,j

2

To accommodate the boundary condition ∂X
∂n = 0 for the M ×N matrix X , one

needs to have:

X
(n+1)
1,j = X

(n+1)
2,j , X

(n+1)
M−1,j = X

(n+1)
M,j

X
(n+1)
i,1 = X

(n+1)
i,2 , X

(n+1)
i,N−1 = X

(n+1)
i,N

Then (27) and (28) correspond to linear systems in matrix-vector notation:

A1X̄
(n+1)

= τf(X̄
(n)

) + X̄
(n)

A2
¯̄X

(n+1)
= τf( ¯̄X

(n)
) + ¯̄X

(n)

where X̄ and ¯̄X are (M − 2)(N − 2) × 1 vectors formed by columns and transpose
of rows of the original matrix X respectively, both A1 and A2 are (M − 2)(N −
2) × (M − 2)(N − 2) matrices, specifically, A1 is a tri-diagonal matrix that repeats
a (M − 2) × (M − 2) tri-diagonal matrix (N − 2)2 times diagonally, and A2 is a
tri-diagonal matrix that repeats a (N − 2)× (N − 2) tri-diagonal matrix (M − 2)2

times. They are defined as:

A1 = I − 2τ ·




−D2,2 − G2,2 D2,2 + G2,2 0 · ·

C3,2 − G3,2 −C3,2 − D3,2 D3,2 + G3,2 0 ·

0 · · · ·

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

· · · · 0

· · · · DM−2,N−1 + GM−2,N−1
· · 0 CM−1,N−1 − GM−1,N−1 −CM−1,N−1 + GM−1,N−1




A2 = I − 2τ ·




−F2,2 − H2,2 F2,2 + H2,2 0 · ·

E2,3 − H2,3 −E2,3 − F2,3 F2,3 + H2,3 0 ·

0 · · · ·

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

· · · · 0

· · · · FM−1,N−2 + HM−1,N−2
· · 0 EM−1,N−1 − HM−1,N−1 −EM−1,N−1 + HM−1,N−1




X̄ = [X2,2 X3,2 · · ·XM−1,2 X2,3 · · ·XM−2,N−1 XM−1,N−1]
T

¯̄
X = [X2,2 X2,3 · · ·X2,N−1 X3,2 · · ·XM−1,N−2 XM−1,N−1]

T
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Since both A1 and A2 are tri-diagonal matrices, one can get their inverses effi-
ciently by using Thomas Algorithm([26]).

5. Validation and application to diffusion weighted images. In this section
we present our experimental results on the application of the proposed model (16)-
(17) to simulated data and a set of HARD MRI data from the human brain.

5.1. Analysis of simulated data. The aim of our experiment on the simulated
data is to test whether our model can efficiently reconstruct a regularized ADC
profile from the noisy HARD measurements. We simulated an ADC profile on a 2D
lattice of size 8 × 4. The volume consists of two homogeneous regions, values of S0

and all the Al,m’s were shown in table 1.
In Figure 1 we displayed the true, noisy, and recovered ADC profiles d(x, θ, φ) for

the synthetic data with size 8×4. The ADC profile d(x, θ, φ) was computed by (10)
based on these simulated data, and the corresponding strue(x, θ, φ) was constructed
via (2) with b = 1000s/mm2. Then the noisy HARD MRI signal s(x, θ, φ) was
generated by adding a zero mean Gaussian noise with standard deviation σ = 0.15.
Figure 1B) shows the ADC profile d computed by (10), where the coefficients of the
SHS are the least-squares solutions of (7) with noisy s.

Table 1: List of S0 and Al,m’s for two regions

Region 1 2
S0 414 547
A0,0 5.21 × 10−3 1.43 × 10−2

A2,0 −1.17 × 10−3 −2.68 × 10−3

ReA2,1 −4.37 × 10−5 0
ReA2,2 1.43 × 10−3 0
ImA2,1 3.64 × 10−5 0
ImA2,2 3.28 × 10−5 0
A4,0 −3.15 × 10−5 8.4 × 10−6

ReA4,1 −1.56 × 10−4 0
ReA4,2 1.02 × 10−4 0
ReA4,3 6.30 × 10−5 0
ReA4,4 −8.54 × 10−5 −1.73 × 10−3

ImA4,1 −8.01 × 10−5 0
ImA4,2 0.9961.55× 10−4 0
ImA4,3 1.41 × 10−5 0
ImA4,4 3.63 × 10−5 0

We then applied our model (16)-(17) to the noisy s(x, θ, φ) to test the effectiveness
of the model, with λ0,0 = 4, λ2,m = 40(m = −2, . . . , 2), λ4,m = 60(m = −4, . . . , 4).
By solving the system of equations (20) in 2.5 seconds on computer with PIV
2.8GHZ CPU and 2G RAM using Matlab script code, we obtained 15 reconstructed
functions as in (9). Using these Al,m (the solutions of (20)) we computed d(x, θ, φ)
via (10). The reconstructed d(x, θ, φ) is shown in Figure 1C). Comparing these
three figures, it is clear that the noisy measurements s have changed Figure 1A),
the original shapes of d, into Figure 1B). After applying our model (16)-(17) to
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reconstruct the ADC profiles, the shapes of d in Figure 1A) were recovered, as shown
in Figure 1C). These simulated results demonstrate that our model is effective in
simultaneously regularizing and recovering ADC profiles.

5.2. Analysis of human MRI data. The second test is to reconstruct and char-
acterize ADC profiles d(x, θ, φ) from human HARD MRI data.

The raw DWI data, usually contains a certain level of noise, were obtained on
a GE 3.0 Tesla scanner using a single shot spin-echo EPI sequence. The scanning
parameters for the DWI acquisition are: repetition time (TR)=1000ms, echo time
(TE) =85ms, the field of view (FOV)=220 mm x 220 mm. 24 axial sections covering
the entire brain with the slice thickness=3.8 mm and the intersection gap=1.2 mm.
The diffusion-sensitizing gradient encoding is applied in fifty-five directions (selected
for the HARD MRI acquisition) with b = 1000s/mm2. Thus, a total of fifty-six
diffusion-weighted images, with a matrix size of 256 x 256, were obtained for each
slice section. We applied model (16) to these data to compute the ADC profiles in
the entire brain volume. By solving a system of equations (20) we obtained all the
coefficients Al,m’s in (9), and determined d(x, θ, φ) using (10).

Then, we used these Al,m(x) to calculate R0 and R2 defined in (23) and (24)
respectively, as well as the variance σ(x) of d(x, θ, φ) about its mean: σ(x) =∫ π
0

∫ 2π

0 (d(x, θ, φ) −
∑55

i=1 d(x, θi, φi)/55)2dθdφ. Based on results from the HARD
MRI data of this particular patient, we characterized the diffusion anisotropy ac-
cording to the following procedure. If R0(x) > 0.856, or σ(x) < 19.65 the diffusion
at x is classified as isotropic. For the remaining voxels if R2(x) > 0.75, the diffusion
at such voxels is considered as one-fiber diffusion. For uncharaterized voxels from
these two steps we further classified them by the principles stated in the section
3. The selection of the thresholds mentioned above for R0, R2 and σ involves ex-
perts’ input and large sample experiments. Experimental results definitely depend
on these thresholds, but not sensitively.

Figure 2 presents A2,0(x), one of the coefficients in (10), for the particular slice
in the volume. The images A2,0(x) in Figure 2A) and 2B) are estimated by using
(14) and solving (16), respectively.

Figure 3 compares FA and three R2(x)’s with Al,m(x)’s obtained from three
different models for the same slice as shown in Figure2. Figure 3A) displays the FA
image obtained by using advanced system software from GE. The Al,m(x)’s used
to obtain R2(x) in Figure 3B) are directly computed from (14). Those used to
obtain R2(x) in Figures. 3C) and 3D) are the least-squares solutions of (7) and the
solutions of (16), respectively. In Figures. 3C) and 3D) the voxels with high levels
of intensities (red, yellow, yellow-light blue) are characterized as one-fiber diffusion.

Although the FA image in Figure 3A) is obtained based on a conventional DTI
model (4), it is still comparable with the R2 map, since single tensor diffusion
characterized by SHS representation from the HARD images agrees with that char-
acterized by the DTI model. However, in DTI a voxel with a low intensity of FA
indicates isotropic diffusion, while using our algorithm, multi-fibers diffusion may
occur at the location with the low value of R2.

The ability to characterize anisotropic diffusion is enhanced by this algorithm,
as shown in Figures. 3A)-3D). Figure 3B) indicates again that the estimates of
Al,m directly from the log signals usually are not good. Even the least-squares
solution of (7) is not always effective. This can be seen by comparing the anatomic
region inside the red square of Figures. 3C) and 3D), which are zoomed in Figures.
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4A) and 4B), respectively. There is a dark broken line showing on the map of the
external capsule (arrow to the right on Figure 4A), this same region was recovered
by the proposed model and characterized by the third step in our algorithm as two-
fiber anisotropic diffusion (arrow to the right in Figure 4B). (The model solutions
reduced the value of R0, increased the values of R1 slightly, and made the 3rd
step in our characterization to be applied). Our results also show the connection
in a cortical associative tract (arrow to the left in Figures. 4B), however, this
connection was not mapped out on Figure 3C) or the zoomed image in Figure 4A).
In fact this connection was not mapped out on Figures 3A)-B) either. All these
mapped connections are consistent with known neuroanatomy. Combined together,
our results indicate that our proposed model for joint recovery and smoothing of
the ADC profiles has an advantage over existing models for enhancing the ability
to characterize diffusion anisotropy.

Figure 5A) shows a partition of isotropic, one-fiber, and two-fiber diffusion for the
same slice used in Figure 4. The two-fiber, one-fiber, and isotropic diffusion regions
were further characterized by the white, gray, and black regions, respectively. The
region inside the white square in Figure 5A), which is the same one squared in
Figures. 3C) and 3D), is zoomed in Figure 4C). It is seen that the two arrayed
voxels in Figure 4B) are classified as two-fiber diffusion. The characterization of
the anisotropy on the voxels and their neighborhoods is consistent with the known
fiber anatomy.

Figure 5 B) represents the shapes of d(x, θ, φ) at three particular voxels (upper,
middle and lower rows). The d in all three voxels is computed using (10). However,
the Al,m(x) used in computing d on the left column are the least-squares solutions
of (7), while in the right column they are the solutions of the proposed model (16).
The first and second rows show two voxels that can be characterized as isotropic
diffusion before denoising, but as two-fiber diffusion after applying model (16).
These two voxels are the same voxels as in Figure 4 directed by arrows. The lower
row of Figure 5 B) shows the one-fiber diffusion was enhanced after applying our
model.

Solving Al,m’s of size 15 × 109 × 86 × 8 from 4-D data of size 55 × 109 × 86 × 8
takes 46.2 seconds for each iteration on computer with PIV 2.8GHZ CPU and 2G
RAM in Matlab script code.

6. An existence theorem for the model. In this section we will discuss the
existence of a solution to our minimization problem (16) using the idea developed
in [20].

Recall that for a function u ∈ BV (Ω),

Du = ∇u · Ln +Dsu

is a Radon measure, where ∇u is the density of the absolutely continuous part ofDu
with respect to the n-dimensional Lebesgue measure Ln, and Dsu is the singular
part. To minimize (16) over the functions in BV (Ω), we first need to give a precise
definition for E1.
Definition: For Al,m ∈ BV (Ω), define

∫

Ω

φl,m(x,DAl,m) :=

∫

Ω

φl,m(x,∇Al,m)dx +

∫

Ω

|DsAl,m|

where φl,m is defined as in (12), and
∫
Ω |DsAl,m| is the total variation norm of Al,m.
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Then, energy functional (16) is defined as

E(Al,m) = λ

∫

Ω

∑

l=0,2,4

l∑

m=−l

φl,m(x,∇Al,m) + λ

∫

Ω

|DsAl,m|

(29) +
1

2

∫

Ω

∫ 2π

0

∫ π

0

|s(x, θ, φ) − s0(x)e
−bd(x,θ,φ)|2sinθdθdφdx.

In the discussion of existence, without loss of generality, we set the parameter
λ = 1 in (16) and threshold Ml,m = 1 in (12) to reduce the complexity in the
formulation.

Next we will show lower semi-continuity of the energy functional (16) in L1, i.e.
if for each l,m (l = 0, 2, 4 and m = −l, . . . , l), as k → ∞,

Akl,m → A0
l,m in L1(Ω),

then

(30) E(A0
l,m) ≤ liminfk→∞E(Akl,m),

To prove this we need the following lemma:
Lemma: Let

(31) φ(x, r) :=

{
1

p(x) |r|
p(x), |r| ≤ 1

|r| − (1 − 1
p(x) ), |r| > 1

For u ∈ BV (Ω) denote

Φ(u) :=

∫

Ω

φ(x,Du),

and

Φ̃(u) := sup
ψ∈C1

0(Ω,Rn)
|ψ|≤1

∫

Ω

−udivψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 dx.

Then,

(32) Φ(u) = Φ̃(u)

Furthermore, Φ is lower semi-continuous on L1(Ω), i.e. if uj, u ∈ BV (Ω) satisfy
uj → u weakly in L1(Ω) as j → ∞ then

Φ(u) ≤ lim inf
j→∞

Φ(uj).

Proof. First note that for each ψ ∈ C1
0 (Ω,Rn), the map

u 7−→

∫

Ω

−udivψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 dx

is continuous and affine on L1(Ω). Therefore, Φ̃ is convex and lower semi-continuous

on L1(Ω) and the domain of Φ̃, {u | Φ̃(u) <∞}, is precisely BV (Ω).
Next we show (32). For u ∈ BV (Ω), we have that for each ψ ∈ C1

0 (Ω,Rn),

−

∫

Ω

udivψdx =

∫

Ω

∇u · ψdx+

∫

Ω

Dsu · ψ

and so

Φ̃(u) = sup
ψ∈C1

0(Ω,Rn)
|ψ|≤1

∫

Ω

∇u · ψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 dx+

∫

Ω

Dsu · ψ
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Since the measures dx and Dsu are mutually singular, by a standard argument we
can have

Φ̃(u) = sup
ψ∈C1

0(Ω,Rn)
|ψ|≤1

∫

Ω

(∇u · ψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 )dx +

∫

Ω

|Dsu|.

To prove (32) it only remains to show that

(33)

∫

Ω

φ(x,∇u)dx = sup
ψ∈C1

0(Ω,Rn)
|ψ|≤1

∫

Ω

(∇u · ψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 )dx.

Since any ρ ∈ L∞(Ω, Rn) can be approximated in measure by ψ ∈ C1
0 (Ω, Rn), we

have that

sup
ψ∈C1

0(Ω,Rn)
|ψ|≤1

∫

Ω

∇u · ψ −
p(x) − 1

p(x)
|ψ|

p(x)
p(x)−1 dx

= sup
ρ∈L∞(Ω,Rn)

|ρ|≤1

∫

Ω

∇u · ρ−
p(x) − 1

p(x)
|ρ|

p(x)
p(x)−1 dx.(34)

Choosing ρ(x) = 1{|∇u|≤1}|∇u|
p(x)−1 ∇u

|∇u| +1{|∇u|>1}
∇u
|∇u| , where χE is the indicator

function on E, we see that the right hand side of (34) is

≥

∫

Ω

1

p(x)
|∇u|p(x)1{|∇u|≤1} +

[
|∇u| −

p(x) − 1

p(x)

]
1{|∇u|>1}dx =

∫

Ω

φ(x,∇u)dx.

(35)

To show the opposite inequality, we argue as follows. For any ρ ∈ L∞(Ω, Rn), since
p(x) > 1 we have that for almost all x,

∇u(x) · ρ(x) ≤
1

p(x)
|∇u|p(x) +

p(x) − 1

p(x)
|ρ(x)|

p(x)
p(x)−1

In particular, if |∇u| ≤ 1,

(36) ∇u(x) · ρ(x) −
p(x) − 1

p(x)
|ρ(x)|

p(x)
p(x)−1 ≤

1

p(x)
|∇u|p(x)

If |∇u| > 1, noticing p(x) > 1 and |ρ| ≤ 1 for almost all x we have that

∇u · ρ = |∇u|
∇u

|∇u|
· ρ ≤ |∇u|

[
1

p(x)
+
p(x) − 1

p(x)
|ρ|

p(x)
p(x)−1

]

and so
(37)

∇u·ρ−
p(x) − 1

p(x)
|ρ|

p(x)
p(x)−1 ≤

1

p(x)
|∇u|+(|∇u|−1)

p(x) − 1

p(x)
|ρ|

p(x)
p(x)−1 ≤ |∇u|−

p(x) − 1

p(x)

Combining, (34), (35), (36), and (37), we have (33), and hence for all u ∈ BV (Ω),

Φ̃(u) = Φ(u).
Note that φ(x, r) = φl,m(x, r) if p(x) = pl,m(x). A direct consequence of this

lemma is that we have that E1 in (11) is weakly lower semi-continuous in L1 topology
on BV (Ω) norm.
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Furthermore, we can show that E2 in (11) is lower semi-continuous on L1(Ω).
Indeed, when

Akl,m → A0
l,m, in L1(Ω), as k → ∞,

for all l = 0, 2, 4 and m = −l, . . . , l), Akl,m → A0
l,m a.e. on Ω. Then, if s(x, θ, φ) ∈

L2(Ω × S2) and s0(x) ∈ L2(Ω), by the Dominated Convergence Theorem we have

E2(A
k
l,m) → E2(A

0
l,m).

Therefore, E = E1 + E2 is lower semi-continuous in L1 topology on BV (Ω) norm,
and (30) holds.

Now we can prove our existence results. �

Theorem: Let Ω be a bounded open set of R
n. Assume that s(x, θ, φ) ∈ L2(Ω×S2)

and s0(x) ∈ L2(Ω). Then, there exists a solution consisting of functions A0
l,m

(l = 0, 2, 4 and m = −l, . . . , l) to the minimization problem (16) over the space of
BV (Ω).
Proof. Let Akl,m (l = 0, 2, 4 and m = −l, . . . , l) be the minimizing sequences of (16)

in BV (Ω). Then for each (l,m) the sequence Akl,m is bounded in BV (Ω). From the

compactness of BV (Ω) there exist subsequences of Akl,m (still denoted by Akl,m) and

functions A0
l,m ∈ BV (Ω) satisfying

Akl,m → A0
l,m strongly in L1(Ω).

By the lower semi-continuity of the energy functional on L1(Ω) (see (30)), we have

E(A0
l,m) ≤ liminfk→∞E(Akl,m) ≤ infAl,m∈BV (Ω)E(Al,m).

Hence, all these A0
l,m (l = 0, 2, 4 and m = −l, . . . , l) together form a solution to the

minimization problem (16). �

7. Conclusion. A novel variational framework was introduced for simultaneous
smoothing and estimation of ADC profiles in the form of truncated SHS based on
HARD MRI. Features of this model included minimizing a nonstandard growth
function with nonlinear data fitting. Moreover, the constraints on the positivity
and antipodal symmetry properties of d was also accommodated in the model. We
also demonstrated our algorithm for using the variance of d from its mean and the
coefficients of its truncated SHS approximation to characterize diffusion anisotropy.

Our experiments on both synthetic data and human HARD MRI data showed
the effectiveness of the proposed model in the estimation of ADC profiles and the
enhancement of the characterization of diffusion anisotropy. The characterization
of non-Gaussian diffusion from the proposed method was consistent with known
neuroanatomy.

The choice of the current parameters, however, may affect the results. Our choice
was made based on the principle that classification for one-fiber diffusion from the
model solution should agree with a priori knowledge of the fiber connections.
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A) B) C)

Figure 1. Comparing shapes of d. A) True d. B) The d generated
by (10), with Al,m’s the least square solution of (14) with the noisy
measurement s. C) Recovered d by applying model (16).
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Figure 2. Comparison of A20. A) A20 computed from (14). B)
A20 obtained from model(16).
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Figure 4. Zoomed FA and A20. A)-B) Enlarged portions inside
the red squares in Figures. 3 C) and 3D), respectively. C) Enlarged
portions inside the white squares in Figure 5A).
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Figure 5. Classification of voxels based on d. A) Classification:
white, gray, and black voxels are identified as two-fiber, one-fiber,
and isotropic diffusion respectively. B) Shapes of d(x, θ, φ) at three
particular points (upper, middle and lower rows). The d is com-
puted via (10). Al,m(x) used in (10) in the left columns are the
least-squares solutions of (7), while in the right column are the
solutions from our model.
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