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Abstract

We prove parametrized partition theorem on products of finite sets
equipped with submeasures, improving the results of DiPrisco, Llopis,
and Todorcevic.

1 Introduction

The polarized partition theorems have a long history. The behavior of finite
products of finite sets is governed by the positive answer to the Zarankiewicz
problem:

Fact 1.1. [6, Theorem 5, Section 5.1] For every number k ∈ ω, every m ∈ ω
and every sequence rn : n ∈ m of natural numbers there is a sequence of finite
sets an : n ∈ m such that for every partition of the product Πnan into k many
pieces, one of the pieces contains a product Πnbn, where bn ⊂ an are sets of
respective cardinality at least rn.

It is not difficult to provide a precise formula for the necessary size of the sets
an. The infinite version of this theorem holds as well.

Fact 1.2. [1] For every number k ∈ ω and every sequence rn : n ∈ ω of natural
numbers there is a sequence an : n ∈ ω of finite sets such that for every partition
of the product Πnan into k many Borel pieces, one of the pieces contains a
product of the form Πnbn where bn ⊂ an are sets of respective size at least rn.
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Here, the space Πnan is equipped with the product topology of the discrete
topologies on the finite sets an. The computation of the sequence of needed
sizes of the finite sets an : n ∈ ω turned out to be more complicated, and the
first non-primitive-recursive estimate appeared in [2]. One can parametrize this
theorem with one more infinite dimension:

Fact 1.3. [3] Suppose k is a number and rn : n ∈ ω are natural numbers. Then
there is a sequence an : n ∈ ω of finite sets such that for every partition of the
product Πnan × ω into k many Borel pieces, one of the pieces contains a subset
of the form Πnbn × c where bn ⊂ an are sets of size at least rn, and c ⊂ ω is an
infinite set.

The difficult proof contains a reference to the Galvin-Prikry partition the-
orem [5], and it provides no estimate for the growth of the sequence necessary
for the partition property to hold. We will greatly improve on these efforts.
Our theorems are more general, they offer many more applications, and the
argument yields direct primitive recursive computations. The arguments differ
greatly from those of [3]; they employ the powerful method of creature forcing
of [12] which promises many more applications to Ramsey theory in the future.

One can attempt to measure the size of homogeneous products not in terms
of the cardinality of the finite sets in the product, but in terms of a different
measure or submeasure. The arguments of [3] do not work in such a case.
However, we can provide a nearly complete information.

Theorem 1.4. Suppose k ∈ ω is a number and rn : n ∈ ω is a sequence of
real numbers. Then for every sequence of submeasures φn : n ∈ ω on finite
sets, increasing fast enough, and for every partition Bi : i ∈ k of the product
Πndom(φn) × ω into Borel pieces, one of the pieces contains a product of the
form Πnbn×c where c ⊂ ω is an infinite set, and bn ⊂ dom(φn) and φn(bn) > rn

for every number n ∈ ω.

Here, the phrase ”for every fast enough increasing sequence of submeasures”
means that Player I has a winning strategy in the infinite game in which he
indicates real numbers sn : n ∈ ω, to which Player II responds with submeasures
φn on finite sets such that φn(dom(φn)) ≥ sn. Player I wins if for the resulting
sequence of submeasures, the partition property holds. It will be clear from the
proof that a rate of growth corresponding to a stack of exponentials of linear
height is sufficient for the partition property to hold. The proof also shows that
a number of other effects can be achieved. For example, if f : Πndom(φn) → 2ω

is a Borel function, then the sets bn : n ∈ ω can be found such that g � Πnbn is
continuous.

This fairly general theorem allows for several variations. One of them deals
with the size of the homogeneous set in the infinite coordinate. An abstract
argument based on Theorem 1.4 will show

Theorem 1.5. Suppose k ∈ ω is a number, K a Fσ-ideal on ω, and rn : n ∈ ω is
a sequence of real numbers. Then for every sequence of submeasures φn : n ∈ ω
on finite sets, increasing fast enough, and for every partition Bi : i ∈ k of the
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product Πndom(φn) × ω into Borel pieces, one of the pieces contains a product
of the form Πnbn × c where c ⊂ ω is a K-positive set, and bn ⊂ dom(φn) and
φn(bn) > rn for every number n ∈ ω.

Another possible variation arises from adding another axis to the partitions. We
will state and prove a measure parametrized version:

Theorem 1.6. Suppose that ε > 0 is a real number and rn : n ∈ ω is a sequence
of real numbers. Then for every sequence of measures φn : n ∈ ω on finite sets
increasing fast enough, and every Borel set B ⊂ Πndom(φn) × ω × [0, 1] with
vertical sections of Lebesgue mass at least ε, there are sets bn ⊂ dom(φn) with
φn(bn) > rn, an infinite set c ⊂ ω and a point z ∈ [0, 1] such that Πnbn × c ×
{z} ⊂ B.

For the second author, the stated theorems are really results about forcing,
and their main applications also lie in the realm of forcing theory. They seem to
be the strongest tool known to date for proving that various bounding forcings
do not add independent reals. Here, a set a ⊂ ω in a generic extension is
independent if neither it nor its complement contain a ground model infinite
subset. We get

Corollary 1.7. Suppose that In is a σ-ideal on a Polish space Xn generated by
a compact family of compact sets, this for every number n ∈ ω. The countable
support product of posets PIn : n ∈ ω does not add an independent real.

Here, the symbol PI stands for the poset of I-positive Borel sets ordered by
inclusion. The partial orders of the form described in the corollary have been
studied in [13, Theorem 4.1.8]; they include for example the Sacks forcing, or all
the tree limsup infinity forcings of [12]. Thus the corollary can be understood
as a far-reaching generalization of Laver’s theorem on independent reals and
product of Sacks reals [9].

Corollary 1.8. The Halpern-Läuchli forcing, the E0 and E2 forcings do not
add independent reals.

The notation in this paper follows the set theoretic standard of [7]. An atom
of a partial order is an element with no elements below it. An independent real
over a transitive model of set theory is a set a ⊂ ω such that neither it nor its
complement contain an infinite subset from the model. All logarithms in this
paper are evaluated with base 2. Theorems 1.3 and 1.4 can be stated in a
stronger form: with an axis [ω]ℵ0 and homogeneous combinatorial cubes [c]ℵ0

instead of the infinite axis and a homogeneous infinite set c. However, no such
reasonable stronger form exists for Theorems 1.5 and 1.6.

2 The creature forcing

In order to prove theorems from the introduction, we need to consider a forcing
from the family of creature forcings introduced in [12]. The general approach of
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that book may seem daunting to many readers; our special case is fairly simple
and still quite useful.

Definition 2.1. Let a be a nonempty finite set. A setup on a is an atomic
partially ordered set C, with a =the set of atoms of C, and an order-preserving
function nor : C → R which is constantly zero on the set a.

In the nomenclature of Ros lanowski-Shelah, the nonatomic elements of a setup
are called creatures. The set of atoms below a given creature c ∈ C is a set of
its possibilities, pos(c).

Definition 2.2. Let an be pairwise disjoint finite sets, and Cn, norn a setup
on each. The forcing P consists of all functions p with domain ω such that
∀n p(n) ∈ Cn and the numbers norn(p(n)) tend to infinity. The ordering is that
of coordinatewise strengthening.

The partial order P will add a function ẋgen ∈ Πnan defined as the unique
function in the product which is coordinatewise below every condition in the
generic filter. In the specific cases discussed in this paper, the whole generic
filter can be reconstructed from this function. Note that partitioning ω into
finitely many disjoint infinite sets one can present P as a product of finitely
many similar forcings; this feature makes P a natural tool for the investigation
of product forcing. The forcing P is not separative. If p, q ∈ P are two conditions
such that for every n ∈ ω, pos(q(n)) ⊂ pos(p(n)), and for all but finitely many
n ∈ ω q(n) ≤ p(n), then there is no strengthening of q incompatible with p,
even though q ≤ p may fail. This feature appears to be essential, and it will be
exploited in several places.

The forcing properties of P depend on subtle combinatorial properties of the
setups. We will need the following notions.

Definition 2.3. Let ε > 0 be a real number. The setup C has ε-bigness if for
every c ∈ C and every partition of the set a into two parts, there is d ≤ c with
nor(d) > nor(c)− ε such that all atoms below d fall into the same piece of the
partition.

The simplest example of a setup with ε-bigness arises from a submeasure φ on
the set a. Define C = P(a), nor(b) = ε log(1 + φ(b)) if b ⊂ a is not a singleton,
and nor(b) = 0 if b is a singleton. Another example starts with an arbitrary
partially ordered set C with a finite set a of atoms such that every nonatomic
element has at least two atoms below it. For every nonatomic c ∈ C and n ∈ ω
consider the game of length n in which Player I plays partitions of the set a into
two parts and player II plays a descending chain of nonatomic creatures below
c such that the atoms below i-th condition are all contained in the same set of
i-th partition. Player II wins if he survives all rounds. Now let nor(c) = ε·the
largest number n such that player II has a winning strategy in the game of
length n below c, and norm of the atoms will be again zero.

The setups we will use will have to be a little more complicated, since they
have to satisfy the following subtle condition.
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Definition 2.4. Let ε > 0 be a real number. The setup C has ε-halving if for
every c ∈ C there is d ≤ c (so called half of c) such that nor(d) > nor(c) − ε
and for every nonatomic d′ ≤ d there is c′ ≤ c such that nor(c′) > nor(c) − ε
and every atom below c′ is also below d′.

This may sound mysterious, but in fact there is a mechanical procedure to
adjust any setup to a setup with halving. Suppose C is a setup with a norm
norC . Let D be the partial order whose nonatomic elements are of the form
〈c, r〉, where c ∈ C is not an atom and nor(c) ≥ r. The ordering is defined by
〈d, s〉 ≤D 〈c, r〉 if d ≤C c and r ≤ s. The atoms of D are exactly the atoms of
C, and if i is such an atom then i ≤D 〈c, r〉 if and only if i ≤C c. The norm on
D is defined by norD(c, r) = ε log(norC(c) − r + 1), where ε is a real number;
the norm of atoms is again zero. The adjusted setup D has ε-halving: the half
of the creature 〈c, r〉 is the creature 〈c, r + norC(c)−r

2 〉. It is not difficult to see
that if 〈d, s〉 is a creature below the half, the creature 〈d, r〉 has norm ε-close to
〈c, r〉 and the same set of possibilities as 〈d, s〉.

Another approach for building a norm function with ε-halving on a given
partial order C uses a two player game of length n. In i-th round Player I
produces nonatomic creatures ci ≥ di and Player II responds with a nonatomic
creature ei ≤ di. If Player II chooses ei = di then Player I must choose ci+1

smaller than di, and if ei < di then pos(ci+1) must be a subset of pos(ei). Player
I wins if he survives all rounds. One can then define nor(c) = ε· the largest
number n for which Player I has a winning strategy in the game of length n
with the first move equal to c.

In spite of the grammar used in this paper, the half of a creature is not
necessarily unique.

Definition 2.5. Let ε > 0 be a real number. The setup C has ε-Fubini property
if for every creature c ∈ C with nor(c) > 2 and every Borel set B ⊂ a × [0, 1]
with vertical sections of Lebesgue mass at least ε there is a creature d ≤ c such
that nor(d) > nor(c)− 1 and a point z ∈ [0, 1] such that pos(d)× {z} ⊂ B.

This is a property used for preservation of outer Lebesgue measure. One
possible way to obtain a setup with the ε-Fubini property for a given real number
0 < ε < 1 starts with a measure φ on a finite set a and defines C = P(a), with
nor(b) = log(φ(a)+1)

− log ε for a non-singleton set b ⊂ a.
The following proposition is the heart of this paper.

Proposition 2.6. Let an : n ∈ ω be a collection of pairwise disjoint finite sets,
with a setup Cn, norn on each, and let P be the resulting partial order.

1. Let εn = 1/Πm∈n|am|. If every setup Cn has εn-halving and bigness, the
forcing P is proper and bounding.

2. Let εn = 1/Πm∈n2|am|. If every setup Cn has εn-halving and bigness, the
forcing P adds no independent reals.
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3. Let εn = 1/Πm∈n22n|am|. If every setup Cn has εn-halving, bigness and
Fubini property, then the forcing P adds no V -independent sequence of
sets of positive mass.

The first item is just a rehash of [12]. The third item introduces a new forcing
preservation property.

Definition 2.7. A V -independent sequence of sets of positive mass in the
generic extension is a collection Di : i ∈ ω of closed subsets of some Borel
probability space with masses bounded away from zero, such that for no ground
model infinite set c ⊂ ω and no ground model element z of the probability space
it is the case that z ∈

⋂
i∈c Di.

This is a property that implies adding no independent reals and preservation
of outer Lebesgue measure. The estimates for εn : n ∈ ω in this proposition as
well as other assumptions are almost certainly not the best possible.

The proofs are essentially just careful fusion arguments. We will need several
pieces of notation and terminology. For a condition p ∈ P let [p] = Πnpos(p(n)).
If moreover a ⊂ ω is a finite set, then [p] � a = Πn∈apos(p(n)). For every
sequence t ∈ [p] � a, p �� t is the condition q ≤ p defined by q � a = t and
∀n ∈ ω \ a q(n) = p(n).

We will proceed with a sequence of simple claims.

Claim 2.8. (the halving trick) Suppose that Di : i ∈ k are open subsets of
P invariant under the inseparability equivalence. Suppose that all setups have
1/k-halving, and suppose that p ∈ P is a condition on which all the norms are
equal to at least r > 3. Then there is q ≤ p on which all the norms are at least
r − 1, and for every i ∈ k either q ∈ Di or there is no q′ ≤ q with all norms
nonzero and q′ ≤ q.

Here, an open set is invariant under inseparability if, whenever p, q are con-
ditions such that q has no extension incompatible with p, and p ∈ D, then
q ∈ D. Note that if π is the natural map of P into the separative quotient of
P , and D′ is an open subset of the separative quotient, then π−1D is invariant
under inseparability. Thus, in forcing we only need to care about the open sets
that are invariant under inseparability.

Proof. By induction on i ∈ k construct a sequence of conditions pi : i ≤ k
starting with p0 = p using the following rules.

• if there is a condition q ≤ pi in Di whose norms are at least r− (i + 1)/k,
then let pi+1 be such a condition;

• otherwise let pi+1 be the half of pi; that is, for every n ∈ ω pi+1(n) is the
half of pi(n).

In the end, the condition q = pk will satisfy the conclusion of the claim. To
see that, pick i ∈ k. If the first case occurred at i, then q ∈ Di and we are done.
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If the second case occurred, there is no q′ ≤ q with all norms nonzero in the set
Di. Since if such a condition q′ existed, we could find m ∈ ω such that ∀n ≥
m norn(q′(n)) ≥ r − i/k, and use the properties of halving to find a condition
q′′ ≤ pi such that ∀n < m pos(q′′(n)) ⊂ pos(q′(n)), ∀n < m nor(q′′(n) ≥ r−i/k,
and ∀n ≥ m q′′(n) = q′(n). Such a condition is inseparable from q′, it therefore
must be in Di, and it contradicts the assumption that the first case failed at
i.

Claim 2.9. (the bigness trick) Suppose that Oi : i ∈ k are clopen sets covering
the space Πnan. Suppose that all setups have 1/k bigness, and suppose that
p ∈ P is a condition with all norms greater than 3. Then there is a condition
q ≤ p in which all the norms decreased by at most one, and such that the set [q]
belongs to at most one piece of the partition.

Proof. Let m ∈ ω be a number such that the membership of any point x ∈ [p]
in the given clopen sets depends only on x � m. By downward induction on
i ∈ m construct a decreasing chain pi : i ≤ m of conditions such that p = pm

• pi = pi+1 at all entries except i and there the norm is decreased by at
most one;

• the membership of x ∈ [pi] in the clopen sets depends only on x � i.

This is easily done using the bigness property. In the end, q = p0 is the
requested condition.

Now we need to introduce standard fusion terminology. Suppose that p, q ∈ P
and r ∈ R. Say that q ≤r p if q ≤ p and for every n ∈ ω such that norn(p(n)) ≤ r
it is the case that p(n) = q(n), and for all other n ∈ ω it is the case that
norn(q(n) ≥ r. A fusion sequence is a sequence pi : i ∈ ω such that for some
numbers ri ∈ R tending to infinity, pi+1 ≤ri pi. It is immediate to verify that a
fusion sequence in the poset P has a lower bound. Finally, a condition p ∈ P
is almost contained in a set D if there is a number m ∈ ω such that for every
t ∈ [p] � m, p � t ∈ D.

Claim 2.10. Suppose that D ⊂ P is an open dense subset invariant under
inseparability, p ∈ P , and r ∈ R. Then there is q ≤r p such that q is almost
contained in D.

Proof. Fix D, p, and r and suppose that the claim fails. By induction on i ∈ ω
construct conditions pi and numbers mi so that p0 = p and m0 is such that
∀n ≥ m0 norn(p(n)) ≥ r + 1 and for all i ∈ ω,

• pi+1 � mi = pi � mi;

• for all mi ≤ n < mi+1, norn(pi(n)) ≥ r + i and for all n ≥ mi+1,
norn(pi(n)) > r + i + 2;

• for all t ∈ [pi+1] � [m0,mi+1), no condition q′ ≤ pi+1 � t with ∀n ≥
mi+1 norn(q′(n)) > 0 is almost contained in D.
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If this has been done, consider the condition q which is the natural limit of
the sequence pi : i ∈ ω. The first and second items imply that indeed, q exists
as an element of the forcing P . Find a condition q′ ≤ q and a number i ∈ ω such
that ∀n ≥ mi+1 norn(q′(n)) > 0 and ∀t ∈ [p] � m0 q′ � t ∈ D. Then certainly
the condition q′ is almost contained in the set D and therefore contradicts the
third item above.

In order to perform the induction, suppose that pi,mi have been defined.
Find mi+1 ∈ ω such that ∀n ≥ mi+1 norn(pi(n)) ≥ r + i + 1. Use Claim 2.8
and halving to find a condition p′i ≤ pi so that ∀n ≤ mi p′i(n) = pi(n) and
∀n ≥ mi+1 norn(p′i(n)) > r+i such that for every sequence t ∈ [p′n] � [m0,mi+1),
either (1) p′i � t is almost contained in D or else (2) there is no q′ ≤ p′i � t
such that ∀n < m0 q′(n) = p′(n), ∀n ≥ mi+1 norn(q′(n)) > 0, and q′ is almost
contained in D. Use the bigness and Claim 2.9 to thin out the condition p′i in the
interval [mi,mi+1) to find a condition pi+1 ≤ p′i such that ∀n < mi pi+1(n) =
pi(n), ∀mi ≤ n < ni+1 norn(pi+1(n) > r + i, ∀n ≥ mi+1 pi+1(n) = p′i(n), and
for every sequence t ∈ pi+1 � [m0,mi+1), whether case (1) or (2) above takes
place depends only on t � [m0,mi). Now, the induction hypothesis implies that
for no such t case (1) can hold: the condition pi+1 �� (t � [m0,mi)) would then
violate the third item of the induction hypothesis at i. Reviewing the resulting
situation, we see that the condition pi+1 and the number mi+1 have successfully
been chosen in a way that makes the induction hypothesis hold at i + 1.

The properness of the forcing P now immediately follows. Suppose that
p ∈ P is a condition and M is a countable elementary submodel. Let Di : i ∈ ω
be a list of all open dense subsets of the poset P in the model M . Construct a
fusion sequence pi : i ∈ ω of conditions in the model M such that pi is almost
contained in the set Di. The fusion q will be a master condition for the model
M stronger than P . Note that every element x ∈ [q] defines an M -generic
filter; namely, the filter of those conditions p ∈ M such that there exists n ∈ ω
such that the condition q with the first n coordinates replaced with the first n
coordinates of x is below p.

The bounding property of the forcing is proved in exactly the same way.
Note that if a condition almost belongs to an open dense set, then there is a
finite subset of the dense set which is predense below the condition. Not adding
splitting reals is more sophisticated. Also note the stronger requirement on the
growth of the numbers 1/εn : n ∈ ω. Suppose that p ∈ P is a condition and
ẋ a name for an infinite binary sequence. We need to find a condition q ≤ p
deciding infinitely many values of the name ẋ.

Strengthening the condition p as in the previous paragraphs we may assume
that for every number i ∈ ω the condition p is almost contained in the set
of conditions deciding the value ẋ(i). Now use Claim 2.8 repeatedly to build a
fusion sequence pi : i ∈ ω and numbers mi ∈ ω in such a way that for every i ∈ ω
and every sequence of sets cm : np ≤ m < mi if there is a condition q ≤ pi with
∀n < mi pos(q(n)) = cm, ∀n ≥ mi nor(q(n)) > 0 and and q decides a value of
ẋ(j) for some j > i, then there is such a condition q with ∀n > mi q(n) = pi(n).
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Let q ≤ p be the fusion of this sequence. For every number j ∈ ω, use Claim 2.9
to find a condition qj ≤ q such that qj decides the value of the bit ẋj , and
qj(n) = q(n) for all but finitely many n, and nor(qj(n)) ≥ nor(q(n)) for all
n ∈ ω. Use a compactness argument to find a condition r ≤ q and an infinite
set a ⊂ ω such that the sequences 〈pos(qj(n)) : n ∈ ω〉 : j ∈ a converge in
the natural topology to the sequence 〈pos(r(n)) : n ∈ ω〉. We claim that the
condition r decides infinitely many values of the name ẋ.

To see this, let i ∈ ω be a number. Let j ∈ a be a number such that
pos(qj(n)) = pos(r(n)) for all n < mi. Consider the condition qj . It witnesses
that there is a condition s ≤ q deciding a value of the name ẋ(j) such that ∀n <
mi pos(r(n)) = pos(s(n)) and ∀n nor(s(n)) > 0. By the fusion construction, it
must be the case that already q is such a condition, and therefore r ≤ q is such
a condition!

The second item of the theorem can be improved to the following.

Claim 2.11. Suppose that p ∈ P , r ∈ R, u ⊂ ω is infinite, and p 
 Ȧ ⊂
P(ω)/Fin is open dense. Then there is q ≤r p and an infinite set v ⊂ u such
that q 
 v̌ ∈ Ȧ.

Proof. We will provide an abstract argument in the spirit of [13] which can be
applied in many similar situations. There is also an alternative argument which
proceeds through tightening the fusion process above.

Let Q be the quotient partial order of P(ω)/Fin below u. Consider the
partial order P × Q, with respective generic filters G ⊂ P , H ⊂ Q. The
following is easy to check.

• In V [H], H is a Ramsey ultrafilter on ω containing u;

• In V [H], P is a proper bounding forcing adding no independent reals;

• R ∩ V [G][H] = R ∩ V [G];

• H still generates a Ramsey ultrafilter in V [G][H].

The first item is entirely standard. For the second item, repeat the proof of
(1) and (2) of the theorem in the model V [H]. For the third item, note that
by a properness argument, every real in V [H][G] is obtained from a countable
collection of countable sets predense below some condition in P which exists in
the model V [H]. But countable subsets of P are the same in V as in V [H], and
therefore the real belongs to V [G]. For the last item, use mutual genericity and
the no independent real property to show that H indeed generates an ultrafilter
in V [G][H]. To check that this ultrafilter is selective, use the bounding property
of the poset P to find, for every partition π of ω into finite sets in the model
V [G][H], a partition π′ of ω into finite sets in V [H] such that every set in π is
contained in the union of two successive pieces of π′. use the selectivity of H in
the model V [H] to find a set u ∈ H that meets every set in π′ in at most one
point. Either the set of even indexed numbers in u or the set of odd indexed
numbers in u belongs to H, and it meets every set in π in at most one point.
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Now note that every Ramsey ultrafilter meets every analytic open dense
subset of P(ω)/Fin [13, Claim 4.3.4]. Working in V [H], p 
there is an element
v ∈ H ∩ Ȧ. The proof of the bounding property shows that there is q ≤r p
and a finite set h ⊂ H such that q 
 h ∩ Ȧ 6= 0. Clearly, q 
 ǔ ∩

⋂
ȟ ∈ Ȧ as

required!

Towards the proof of Proposition 2.6(3), suppose p ∈ P , ε > 0, and p 

Ḃn : n ∈ ω is a sequence of Borel subsets of 2ω of Lebesgue mass greater than
ε. Passing to subsets, we may assume that all the sets on the sequence are
forced to be closed. We may also assume that there is a continuous function
f : [p] → K(2ω)ω such that p 
the sequence is recovered as the functional
value at the generic point ẋgen . Find a number m0 such that εm0 < ε and
∀n ≥ m0 nor(p(n)) > 3. Thinning out the condition p if necessary, assume that
p(n) ∈ an for all n ∈ m0.

By induction on i ∈ ω build conditions pi ∈ P , infinite sets ui ⊂ ω, finite
sets vi ⊂ ω, and binary sequences si : i ∈ ω so that

• pi form a fusion sequence: pi+1 ≤i pi. The limit of the sequence will be a
condition q;

• vi strictly increase, ui strictly decrease, and vi ⊂ ui. Thus u =
⋂

i ui ⊂ ω
will be an infinite set;

• the sequences si are linearly ordered by the initial segment relation. The
union y =

⋃
i si will be a point in 2ω.

We want to achieve q 
 y̌ ∈
⋂

n∈ui
Ḃn. For that, another induction assump-

tion is necessary. A piece of notation: whenever a P -generic filter is overwritten
on a finite set of coordinates with a sequence t of atoms, the result is again a
P -generic filter. Whenever τ is a P -name, then τ/t is the name for the evalua-
tion of τ according to the overwritten generic filter. Here is the last item of the
induction hypothesis.

• for every number k ∈ ui, the condition pi forces the closed set Ḃi
k =

Oti
∩

⋂
{Ḃn/t : n ∈ vi ∪ {k}, t ∈ [pi] � [m0,m0 + i)} to have Lebesgue

measure larger than εm0+i.

Suppose that pi, ui, vi have been constructed. Fix k ∈ ui. For every element
e ∈ [pi] � {m0 + i} and every k ∈ ui, the set Ḃi

k/e is forced by pi to have
mass at least εm0+i. Therefore, by the Fubini property of the setup Cm0+i, the
condition pi forces that there is a creature c ≤ pi(m0 +i) with a large norm such
that the set

⋂
e∈pos(c) Bi

k/e has mass at least εm0+1/2|an|. Now we will apply
the previous Claim 2.11 successively three times. First, there is a condition
p′i ≤ p and an infinite set u′i ⊂ u such that there is a creature c ≤ pi(m0 + 1)
which is forced to work for all k ∈ u′ simultaneously. Second, there is an
infinite set u′′i ⊂ u′i and a one-step extension ti+1 of of the binary sequence ti
such that it is forced that the sets Oti+1 ∩

⋂
e∈pos(c) Bi

k/e have mass at least
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εm0+1/2|an|+1 for all k ∈ u′′i . And finally, and most importantly, by a theorem
of [4] applied in the generic extension, these infinitely many sets are going to
have an infinite subcollection with pairwise intersections of mass bounded away
from zero: there is a condition p′′′i ≤ p′′i and an infinite set u′′′i ⊂ u′′i such that
the sets Oti+1 ∩

⋂
e∈pos(c) Bi

k : k ∈ u′′′i are forced to have pairwise intersections
of mass at least 1

2 ( εm0+1

2|an|+1 )2 > εm0+i+1. Claim 2.11 shows that the conditions
p′i, p

′′
i , and p′′′i can be chosen ≤i pi. Now let pi+1 be the condition p′′′i with its

m0+i-th coordinate replaced by c, ui+1 = u′′′i ∪vi, and vi+1 = vi∪min(ui+1\vi).
It is not difficult to see that the induction hypothesis is satisfied.

In the end, let u =
⋂

i ui and let q ≤ p be the lower bound of the conditions
pi. Let y =

⋃
i ti. The last item of the induction hypothesis shows that indeed,

∀x ∈ [q]∀n ∈ u y ∈ f(x)(n), and therefore q 
 y̌ ∈
⋂

n∈u Ḃn, as desired.

3 The proofs of the parametrized theorems

With the key properties of the creature forcing at hand, the parametrized theo-
rems follow fairly easily. Suppose that k ∈ ω is a natural number and rn : n ∈ ω
is a sequence of real numbers. Suppose that φn : n ∈ ω is a sequence of sub-
measures on finite sets an : n ∈ ω such that, writing εn = 1/Πm∈n2|am|, the
numbers εn log(log(1 + sφn(an)) − log(1 + rn) + 1) are all defined, larger than
k, and tend to infinity. We will prove that every partition of the Polish space
Πnan × ω into k many Borel pieces Di : i ∈ k, one of the pieces contains a
product of the form Πnbn × c, where bn ⊂ an are sets of respective φn-mass at
least rn and c ⊂ ω is an infinite set. This will prove theorem 1.4.

For every number n ∈ ω, define a setup Cn on the set an with a norm norn.
Nonatomic elements of Cn are pairs 〈b, r〉 where b ⊂ an, r ∈ R+ and log(1 +
φn(b)) ≥ r; the norm is defined by norn(b, r) = εn log(log(1 + φn(b) − r + 1).
The ordering is defined by 〈c, s〉 ≤ 〈b, r〉 if c ⊂ b and s ≥ r. Define the creature
forcing P derived from the setups Cn on the sets an and consider the condition
p ∈ P such that p(n) = 〈an, log(1 + rn)〉. Consider the P -name for a partition
of ω into k pieces (Di)ẋgen

: i ∈ k obtained as a vertical section of the Borel
partition of Πnan ×ω above the generic sequence ẋgen . The forcing P does not
add independent reals, and therefore there is a condition q ≤ p and an infinite set
c ⊂ ω and an index i ∈ k such that q 
 č is a subset of i-th piece of this partition.
Reviewing the proof of Proposition 2.6 (2), or using Claim 2.11, it becomes
clear that the condition q can be found in such a way that ∀n norn(q(n)) > 0.
Now let M be a countable elementary submodel of a large enough structure
containing the condition q, and find an M -master condition q′ ≤ q. The proof
of Proposition 2.6 (1) in fact shows that the master condition q′ can be chosen
so that ∀n ∈ ω norn(q′(n)) > 0 and all points in [q′] are M -generic in the sense
that for every x ∈ [q′] the filter gx = {r ∈ M ∩ P : ∃n q′ �� (x � n) ≤ r} ⊂ P
is M -generic. An absoluteness argument between M [gx] and V will show that
〈x, n〉 ∈ Di and so [q′]× c ⊂ Di. Theorem 1.4 follows.

Theorem 1.5 can now be derived abstractly. Suppose that K is an Fσ-ideal
and rn : n ∈ ω are real numbers. Use a theorem of Mazur [10] to find a
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lower semicontinuous submeasure µ on ω such that K = {a ⊂ ω : µ(a) < ∞}.
Suppose that φn : n ∈ ω is a fast increasing sequence of submeasures on finite
sets an, and Πnan×ω =

⋃
i∈k Bi is a partition of the product into finitely many

Borel sets. There will be pairwise disjoint finite subsets bn : n ∈ ω of ω such
that the sequence φn, µ � bn : n ∈ ω of submeasures still increases fast enough to
apply Theorem 1.4. Let Πnan×Πnbn×ω =

⋃
i∈k Ci be the partition defined by

〈x, y, n〉 ∈ Ci ↔ 〈x, y(n)〉 ∈ Bi. Use Theorem 1.4 to find sets a′n ⊂ an, b′n ⊂ bn

and c ⊂ ω such that φn(a′n) ≥ rn, µ(b′n) ≥ n, and c is infinite, and the product
Πna′n × Πnb′n × c is wholly contained in one of the pieces of the partition, say
Ci. The review of the definitions reveals that c′ =

⋃
n∈c b′n is a K-positive set,

and Πnb′n × c′ ⊂ Bi. This proves Theorem 1.5.
To derive Theorem 1.6, suppose that ε > 0 is a real number, φn : n ∈ ω is a

fast increasing sequence of measures on finite sets, and B ⊂ Πndom(φn)×ω×2ω

is a Borel set with vertical sections of mass at least ε. Choose the setups as in
the proof of Theorem 1.4 and observe that they do have the Fubini property.
It follows from Proposition 2.6(3) that the derived forcing does not add a V -
independent sequence of sets of mass > ε. In fact, the proof shows that there
is a condition p ∈ P , a point z ∈ 2ω, and an infinite set u ⊂ ω such that p 
 ž
belongs to the vertical section of the set B corresponding to ẋgen and any n ∈ u.
Moreover, the condition p can be chosen with all norms nonzero. Let M be a
countable elementary submodel of a large structure and find a condition q ≤ p
with all norms nonzero such that the set [q] consists of M -generic points only.
Then [q]× u× {z} ⊂ B, and Theorem 1.6 follows.

4 Applications

Theorem 1.4 is one of the strongest tools available to prove that certain bounding
forcings do not add independent reals.

The first application concerns the independent reals in countable support
products. Suppose that for every number n ∈ ω, In is a σ-ideal on a compact
space Xn generated by a σ-compact collection of compact sets in the hyperspace
K(Xn). The quotient forcings PIn

of Borel In-positive sets ordered by inclusion
have been studied in [13, Theorem 4.1.8]. They include such posets as Sacks
forcing, cmin-forcing, the limsup ∞ tree forcings of [12], as well as some more
mysterious entities such as the quotient forcing of Borel non-σ-finite packing
mass sets ordered by inclusion. They are proper, bounding, and do not add
independent reals. The proof of [13, Theorem 4.1.8] easily generalizes to show
that even their finite products share these properties. The infinite product is
proper, bounding, and preserves category [13, Theorem 5.2.6]. The question of
independent reals in the infinite product is more subtle:

Proposition 4.1. Countable product of quotient forcings PIn
: n ∈ ω, where

each In is σ-generated by a σ-compact collection of compact sets, does not add
independent reals.

In fact, it is not difficult to argue that the product has the weak Laver prop-
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erty, which in conjuction with this proposition and [14] shows that the product
preserves P-points.

Proof. For the simplicity of notation assume that the underlying space Xn is
always equal to the Cantor space 2ω. For every number n ∈ ω, fix compact
sets Kn,i ⊂ K(2ω) : i ∈ ω whose union σ-generates the ideal In; assume that
these sets are closed under taking compact subsets. Let On,i = {a ⊂ 2<ω finite:
there is a set b ∈ Kn,i such that ∀t ∈ a∃x ∈ b t ⊂ x}. In order to be able
to apply Theorem 1.4 in this context, we must identify the submeasures on
finite sets. Suppose T ⊂ 2<ω is a tree, n, i ∈ ω, and m0 < m1 are natural
numbers. We will define a submeasure φ = φ(T, n, i, m0,m1) on the finite set
a(T,m0,m1) = Πs∈2m0∩T {t ∈ 2m1 ∩ T : s ⊂ t}. Denote the elements of the set
a(T,m0,m1) as functions with the domain 2m0 ∩ T . Define W = {b ⊂ a : ∃s ∈
2m0 ∩T {w(s) : w ∈ b} ∈ On,i}, and then define φ(b) =the number of sets in W
necessary for covering the set b. The main claim:

Claim 4.2. For every n, i ∈ ω every In-positive tree T , every number m0 and
every number r there is m1 such that the submeasure φ(T, n, i, m0,m1) assigns
a value larger than r to its domain.

Proof. Suppose this fails for T, n, i, m0 and r. For every number m > m0

find a partition of the set a(T,m0,m) into sets bm
j in the set Wm = {b ⊂

a(T,m0,m) : ∃s ∈ 2m0 ∩ T {w(s) : w ∈ b ∈ On,i}. Consider the product forcing
Πs∈2m0∩T PIn

� T � s. Consider the name for the function ḟ : ω → r defined by
ḟ(m) = that value of j ∈ r for which ~xgen � m ∈ bm

j , where ~xgen is the product
name for the finite sequence of generic points. Since the finite product does not
add independent reals, there must be an infinite set c ⊂ ω, a number j ∈ r, and
a condition 〈Ss : s ∈ 2m0 ∩ T 〉 which forces ḟ � č to return the constant value
j. Find a number m ∈ C such that the sets Ss � m : s ∈ 2m0 ∩ T all fall out of
On,i. It must be the case then that Πs∈2m0∩T Ss � m ⊂ bm

j , which contradicts
the assumption that bm

j ∈ Wm.

Now suppose that Tn : n ∈ ω is a condition in the product of the quotient
posets, forcing that ẏ ∈ 2ω is a point. We must find a stronger condition deciding
infinitely many values of the point ẏ. Strengthening the condition if necessary,
we may assume that there is a continuous function f : Πn[Tn] → 2ω such that
the condition forces the point ẏ to be the functional value of f at the generic
point. Using the claim, it is not difficult to find natural numbers mn,i : n, i ∈ ω
so that

• mn,0 = 0 < mn,1 < mn,2 < . . . ;

• the submeasures φn,i = φ(Tn, n, i,mi,mi+1) on the sets an,i = a(Tn,mi,mi+1)
form a sufficiently fast increasing sequence of submeasures under a suitable
enumeration of all pairs (n, i) ∈ ω × ω in ordertype ω.

Note that every sequence x ∈ Πn,ian,i defines a point z(x) ∈ Πn[Tn] as the
unique point z such that ∀n, i z(n) � mn,i+1 = (x(n))(z(n) � mn,i). Moreover,
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if bn,i ⊂ an,i are sets with φni-mass at least 2 for every pair (n, i) ∈ ω × ω,
then {z(x) : x ∈ Πn,ibn,i} = Πn[Sn] for some In-positive trees Sn ⊂ Tn : n ∈
ω. Consider the partition Πn,ian,i × ω = C0 ∪ C1 defined by 〈x, n〉 ∈ C0 ↔
f(z(x))(n) = 0. Theorem 1.4 yields sets bn,i ⊂ an,i of respective φn,i mass
greater than 2, an infinite set c ⊂ ω and a bit b ∈ 2 such that ∀x ∈ Πn,ibni

∀n ∈
c f(z(x))(n) = b. For every n ∈ ω let Sn ⊂ Tn be the In-positive trees such
that {z(x) : x ∈ Πn,ibn,i = ΠnSn}. Then the condition 〈Sn : n ∈ ω〉 decides the
values of the point ẏ to be equal to b at all numbers n ∈ c. This completes the
proof.

It is possible to use Theorem 1.4 to show that some other, otherwise in-
tractable, forcings do not add independent reals or preserve P-points. All the
arguments also show that the countable support products of arbitrary combina-
tions of these forcings add no independent reals. It is in general not true that
not adding an independent real is preserved in product, as an example in [14]
shows.

Ros lanowski [11] and others considered the Halpern-Läuchli forcing. A tree
T ⊂ 2<ω is said to be strongly embedded if there is an infinite set c ⊂ ω such
that a node of T is a splitnode iff its length belongs to the set c. The Halpern-
Lauchli forcing is just the poset of strongly embedded trees with inclusion. This
is a proper and bounding forcing with the Sacks property, as simple fusion
arguments immediately show.

Proposition 4.3. The Halpern-Läuchli forcing does not add independent reals.

Proof. Suppose T 
 ẏ ∈ 2ω. We must produce a stronger condition S deciding
infinitely many values of ẏ. Strengthening the condition T if necessary, we can
find a continuous function f : [T ] → 2ω such that T forces ẏ to be the functional
value of f at the canonical generic point. By a simple homogeneity argument we
may assume that in fact T = 2<ω. Choose a fast increasing sequence mn : n ∈ ω
of natural numbers, and consider the sets an = 2mn+1\mn with the counting
measure on each. For every point x ∈ Πnan let z(x) =

⋃
n x(n) and note that

whenever bn : n ∈ ω are subsets of the respective sets an of cardinality at least
2, there is a strongly embedded tree S ⊂ 2<ω such that [S] = {z(x) : x ∈ Πnbn.
Consider the partition Πnan × ω = C0 ∪ C1 into two Borel parts defined by
〈x, n〉 ∈ C0 ↔ f(z(x))(n) = 0. Theorem 1.4 provides sets bn ⊂ an : n ∈ ω of
size at least 2 and an infinite set c ⊂ ω such that the product Πnbn× c is wholly
contained in one piece of the partition. Obviously, if S ⊂ 2<ω is the strongly
embedded tree such that [S] = {z(x) : x ∈ Πnbn}, then S decides all values of
the sequence ẏ on the infinite set c.

[13] and [8] considered the E2 forcing. E2 is the Borel equivalence relation
on 2ω defined by xE2y iff xn = yn for all numbers n ∈ ω except for a summable
set of exceptions; that is, Σ{1/n + 1 : x(n) 6= y(n)} < ∞. This is a standard ex-
ample of a Borel equivalence relation not Borel reducible to an orbit equivalence
relation of an action of the infinite symmetric group. Consider the collection
I of all Borel subsets B ⊂ 2ω such that E � B is reducible to such an orbit
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equivalence relation. This turns out to be a σ-ideal, and a Borel set B ⊂ 2ω is
in I if and only if E � B is Borel reducible to a Borel equivalence relation with
countably many classes, if and only if E2 is reducible to E2 � B. The quotient
partial order PI has been investigated in [13]. It is proper and has the Sacks
property. Its combinatorial presentation is fairly complicated.

Proposition 4.4. The E2 forcing does not add independent reals.

Proof. The method of proof depends on a simple fact. Let E′
2 be the equivalence

relation on ωω of equality modulo the summable ideal. Then the equivalence
relations E2 and E′

2 are Borel bireducible to each other.
Suppose B ∈ PI is a condition and ẏ is an name for an infinite binary

sequence. We must find a stronger condition that decides inifnitely many values
of the sequence ẏ. Strengthening the condition B if necessary, we may assume
that there is a Borel function f : B → 2ω such that B forces ẏ to be the f -image
of the canonical generic point. Since E2 is reducible to E2 � B, so is E′

2, via a
Borel reduction g : ωω → B. Choose a fast increasing sequence kn : n ∈ ω of
natural numbers, each equipped with a counting measure. Note that whenever
bn ⊂ kn : n ∈ ω are sets of size at least 2, then E2 reduces to E′

2 � Πnbn, and
therefore to the set g′′Πnbn ⊂ B, and this set will be I-positive. Now consider
the partition of the product Πnkn × ω = C0 ∪ C1 into two Borel parts defined
by 〈x, i〉 ∈ C0 ↔ f(g(x))(n) = 0. Theorem 1.4 yields sets bn ⊂ kn : n ∈ ω, each
containing at least two elements, and an infinite set c ⊂ ω such that g � Πnbn

is continuous and the set Πnbn × c is wholly contained in one of the pieces of
the partition. Since E2 clearly Borel reduces to E′

2 � Πnbn, it also reduces to
g′′Πnbn. A review of the definitions shows that the set g′′Πnbn ⊂ B is a compact
I-positive set that decides all values ẏ(n) : n ∈ c as desired.

The E0 forcing studied in [13] offers a similar story. E0 is the equivalence
relation on 2ω defined by xE0y if the two binary sequences x, y agree on all
but finitely many entries. This is a canonical example of a Borel equivalence
relation that is not Borel reducible to the identity. Let I be the collection of
Borel sets such that E0 � B is reducible to the identity. It turns out that I is a
σ ideal, and the quotient forcing is proper and has the Sacks property.

Proposition 4.5. The E0 forcing does not add independent reals.

Proof. Observe that the equivalence relation E′
0 on ωω, defined by xE′

0y if the
two sequences differ only at finitely many entries, is bireducible with E0. The
remainder of the proof is exactly the same as before.

The measure parametrized theorem can be used to prove the preservation of
outer Lebesgue measure in various products.

Proposition 4.6. The product of Miller forcing with countably many copies of
Sacks forcing preserves outer Lebesgue measure.

Proof. The key observation for this proposition is the fact that the product
of countably many copies of the Sacks forcing does not add a V -independent
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sequence of sets of positive measure. To see this, suppose that p is a condition
in the product, forcing Ḃi : i ∈ ω to be a sequence of closed sets of mass at
least ε > 0. We must find an infinite set a ⊂ ω and a point z ∈ 2ω as well as
a condition q ≤ p forcing ž ∈

⋂
i∈a Ḃi. By a usual proper forcing argument,

strengthening the condition p if necessary we can find a continuous function
f : (2ω)ω → K(2ω)ω such that p forces Ḃi = ḟ(~xgen)(i). By a homogeneity
argument, we may assume that p is in fact the largest condition in the product.
Now, it is not difficult to find numbers ml

k : k ∈ ω, l ∈ ω so that ml
k : l ∈ ω

form an increasing sequence starting with zero for every k ∈ ω, and moreover
the sets 2ml

k\ml−1
k : k, l ∈ ω equipped with counting measures form a sequence

increasing fast enough so that Theorem 1.6 can be applied. There will be sets
bl
k of size at least 2 each for k, l ∈ ω, a point z ∈ 2ω, and an infinite set

a ⊂ ω such that for every i ∈ a and every sequence 〈xk : k ∈ ω〉 ∈ (2ω)ω with
∀k, l xk � [ml

k,ml+1
k ) ∈ bl

k it is the case that z ∈ f(xk : k ∈ ω)(i). Consider the
condition q ≤ p in the product in which the k-th tree q(k) ⊂ 2<ω consists of
those finite binary sequences s such that for every l ∈ ω, s � [ml

k,ml+1
k ) ∈ bl

k.
Clearly, q 
 ž ∈

⋂
i∈a Ḃi as desired.

Suppose that p is a condition in the product forcing Ȯ ⊂ 2ω to be an open
set of mass ε < 1. We must produce a condition q ≤ p and a point z ∈ 2ω such
that q 
 ž /∈ Ȯ. The proposition then follows from [13, Proposition 3.2.11].

For a Miller tree T ⊂ ω<ω let πT : ω<ω → T be the natural order-preserving
map with the range consisting of all the splitnodes of T . Let εt : t ∈ ω<ω be
positive real numbers whose sum is less than 1−ε

2 . A standard fusion argument
will yield a condition p′ = 〈T, Sn : n ∈ ω〉 ≤ p such that for every sequence
t ∈ ω<ω there is a Sacks product name Ȯt for a clopen set such that 〈T �
πT (t), Sn : n ∈ ω〉 forces Ȯt ⊂ Ȯ and λ(Ȯ \ Ȯt) < εt; moreover, Ȯt is forced to
contain all basic clopen sets of radius < 2−|t| that are a subset of Ȯ. For the
simplicity of notation, we will assume that T = ω<ω and Sn = 2<ω for every
number n ∈ ω.

For every number i ∈ ω, consider the product Sacks name Ṗi for the set⋃
t∈ω<ω (Ȯtai) \ Ȯt) ∪ Ȯ0. The Lebesgue measure of the set Ṗi is forced to

be smaller than ε + Σtεt < 1+ε
2 . Since the product Sacks forcing does not

add a V -independent sequence of sets of positive measure, there must be a
condition 〈S′

n : n ∈ ω〉 in the Sacks product, a point z ∈ 2ω, and an infinite
set a ⊂ ω such that the condition forces y̌ /∈

⋃
i∈a Ṗi. Consider the condition

q = 〈T ′, S′
n : n ∈ ω〉 where T ′ is the tree of all sequences whose entries come

from the infinite set a. A review of the definitions shows that indeed, q 
 y̌ /∈ Ȯ
as required.

The previous arguments can be repeated with a large class of other forcing
notions. Borderline unclear cases include the following:

Question 4.7. Does the product of Laver and Sacks forcing preserve the outer
Lebesgue measure?
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Question 4.8. Let I be the σ-ideal generated by finite Hausdorff 1/2-dimensional
mass sets on 2ω with the minimum difference metric. Does the product PI ×PI

add an independent real?

Question 4.9. Is not adding a V -independent sequence of sets of positive mass
equivalent to the conjunction of not adding an independent real and preserving
outer Lebesgue measure for some large class of proper forcing notions?
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