Exam 1.

Due Wednesday Nov. 21 (before Thanksgiving).

- 1. Let $X = \mathbb{R}$. Show that the set $\{K \in K(X) : K \text{ has an accumulation point}\}$ is Borel.
- 2. Let $X = \mathcal{P}(\mathbb{Q})$ with the usual topology (what is it?). Show in detail that the set $\{a \subset \mathbb{Q}: a \text{ contains an infinite decreasing sequence}\} \subset \mathcal{P}(\mathbb{Q})$ is analytic.
- 3. Show that there is no universal Borel set on ω^{ω} . That is, there is no Borel set $B \subset \omega^{\omega} \times \omega^{\omega}$ such that every Borel subset of ω^{ω} is a vertical section of ω^{ω} .
- 4. Let X be a Polish space. Let Γ be an analytic graph on X. Say that sets $A_0, A_1 \subset X$ are disconnected if there is no Γ -edge $\langle x_0, x_1 \rangle$ such that $x_0 \in A_0$ and $x_1 \in A_1$. Show that for any two disconnected, disjoint analytic sets $A_0, A_1 \subset X$ there are Borel, disconnected, and disjoint sets B_0, B_1 such that $A_0 \subseteq B_0$ and $A_1 \subseteq B_1$.