Scott Complexity and Finitely α -generated Structures

Rachael Alvir University of Notre Dame

February 2020

What's a Scott Sentence?

Everything in this talk is motivated by a theorem of Scott's:

Scott's Isomorphism Theorem

Every countable structure can be described up to isomorphism (among countable structures) by a sentence φ of $L_{\omega_1\omega}$.

Such a sentence is called a **Scott sentence** for *A*.

This is exactly the kind of categoricity result which is not possible in the finitary first-order context.

Every formula of $L_{\omega_1\omega}$ has a normal form.

Every formula of $L_{\omega_1\omega}$ has a normal form.

• A $\Sigma_0 = \Pi_0$ formula is a finitary quantifier-free formula of L.

Every formula of $L_{\omega_1\omega}$ has a normal form.

- A $\Sigma_0 = \Pi_0$ formula is a finitary quantifier-free formula of L.
- A Σ_{α} formula is a formula of the form $\bigvee_{i \in \omega} \exists \bar{x} \phi_i(\bar{x})$ where each ϕ_i is Π_{β} for $\beta < \alpha$.

Every formula of $L_{\omega_1\omega}$ has a normal form.

- A $\Sigma_0 = \Pi_0$ formula is a finitary quantifier-free formula of L.
- A Σ_{α} formula is a formula of the form $\bigvee_{i \in \omega} \exists \bar{x} \phi_i(\bar{x})$ where each ϕ_i is Π_{β} for $\beta < \alpha$.
- A Π_{α} formula is the negation of a Σ_{α} formula. Equivalently, a formula of the form $\bigwedge_{i \in \omega} \forall \bar{x} \phi_i(\bar{x})$ where each ϕ_i is Σ_{β} for $\beta < \alpha$.

Every formula of $L_{\omega_1\omega}$ has a normal form.

- A $\Sigma_0 = \Pi_0$ formula is a finitary quantifier-free formula of L.
- A Σ_{α} formula is a formula of the form $\bigvee_{i \in \omega} \exists \bar{x} \phi_i(\bar{x})$ where each ϕ_i is Π_{β} for $\beta < \alpha$.
- A Π_{α} formula is the negation of a Σ_{α} formula. Equivalently, a formula of the form $\bigwedge_{i \in \omega} \forall \bar{x} \phi_i(\bar{x})$ where each ϕ_i is Σ_{β} for $\beta < \alpha$.

A d- Σ_{α} formula is a finite conjunction of Π_{α} and Σ_{α} formulas

A Measure of Internal Complexity

The standard proof of Scott's isomorphism theorem uses the following fact:

Fact

For any structure A, there is some ordinal α such that whenever two finite tuples agree on all Σ_{α} and Π_{α} formulas, they must be automorphic.

A Measure of Internal Complexity

The standard proof of Scott's isomorphism theorem uses the following fact:

Fact

For any structure A, there is some ordinal α such that whenever two finite tuples agree on all Σ_{α} and Π_{α} formulas, they must be automorphic.

The least such α , denoted **SR(A)**, is one definition of the *Scott Rank* of *A*, and is thought be an "internal" measure of *A*'s descriptive complexity.

Disagreement in the Literature

Unfortunately, many non-equivalent definitions of Scott Rank exist in the literature. Antonio Montalban in "A Robuster Scott Rank" argued to standardize the following definition:

Definition (A. Montalban)

The (Categoricity) Scott Rank of A is the least α such that A has a $\Pi_{\alpha+1}$ Scott sentence.

Note briefly that the complexity of a Scott sentence gives an "external" measure of the structure's complexity.

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).
- **3** The set Iso(A) of presentations of A is $\Pi_{\alpha+1}$ in the Borel hierarchy.

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).
- **3** The set Iso(A) of presentations of A is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- **4 a** is uniformly boldface Δ_{α} -categorical.

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).
- **3** The set Iso(A) of presentations of A is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- **4 a** is uniformly boldface Δ_{α} -categorical.

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).
- **3** The set Iso(A) of presentations of A is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- **4** A is uniformly boldface Δ_{α} -categorical.
- And so on...

Montalban believed this notion was most robust, having many other conditions equivalent to it.

$\mathsf{Theorem}$

The following are equivalent:

- **1** A has a $\Pi_{\alpha+1}$ Scott sentence.
- ② The automorphism orbit of any tuple can be defined by a Σ_{α} formula (without parameters).
- **3** The set Iso(A) of presentations of A is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- **4** A is uniformly boldface Δ_{α} -categorical.
- And so on...

In other words, Scott Sentences are also related to notions in computability theory and descriptive set theory.

Scott Complexity

Why just consider $\Pi_{\alpha+1}$ Scott sentences?

Theorem (A. Miller)

For $\alpha \geq 1$, if A has a Scott sentence that is Π_{α} and one that is Σ_{α} , then it has one that is d- $\Sigma_{<\alpha}$.

Scott Complexity

Why just consider $\Pi_{\alpha+1}$ Scott sentences?

Theorem (A. Miller)

For $\alpha \geq 1$, if A has a Scott sentence that is Π_{α} and one that is Σ_{α} , then it has one that is d- $\Sigma_{<\alpha}$.

The sentences of $L_{\omega_1\omega}$ can be sorted into classes $(\Pi_\alpha, \Sigma_\alpha, \Delta_\alpha)$ by complexity and arranged in a hierarchy in the natural way. Miller's result implies a unique least class in this hierarchy containing a Scott sentence for the structure.

Scott Complexity

Definition (R.A*, M. Harrison-Trainor, D. Turetsky, N. Greenberg)

The **Scott Complexity** of a structure A is the least complexity of a Scott sentence for A.

Scott Complexity is finer than Scott Rank, and just as robust.

Fact: A structure has a $\Sigma_{\alpha+2}$ Scott sentence iff there is some finite tuple \bar{c} such that (A,\bar{c}) has a $\Pi_{\alpha+1}$ Scott sentence. The least such α is called the **parametrized Scott Rank** by Montalban.

Finitely α -generated Structures: Motivation

In previous work with Dino Rossegger, we gave sharp upper bounds on the Scott Complexity of an arbitrary scattered linear order.

A linear order A is **scattered** if there is no embedding from η into A. Equivalently, a linear order is scattered if it has a **Hausdorff** rank, which we define by induction:

Finitely α -generated Structures: Motivation

In previous work with Dino Rossegger, we gave sharp upper bounds on the Scott Complexity of an arbitrary scattered linear order.

A linear order A is **scattered** if there is no embedding from η into A. Equivalently, a linear order is scattered if it has a **Hausdorff** rank, which we define by induction:

- $\operatorname{rk}_H(A) = 0$ iff $A \in \{n : n \in \omega\}$
- $\operatorname{rk}_H(A) = \alpha$ iff A is in the class of linear orders of the form $\sum_{i \in \omega} A_i$ or $\sum_{i \in \omega^*} A_i$ where each A_i is of lower rank, closed under finite sum.

Finitely α -generated Structures: Motivation

To give a $\Sigma_{\alpha+1}$ Scott sentence for a scattered linear order A, we had to identify the tuple \bar{c} such that (A, \bar{c}) has a Π_{α} Scott sentence.

In doing so, we noticed that such a tuple acted in many ways like the generating tuple of the structure, even though the structure was not finitely generated.

How formally could one capture this intuition?

Finitely α -generated

While one could call the desired tuple \bar{c} "a tuple over which no other tuple of the structure is α -free," this is cumbersome.

Definition

A tuple \bar{c} is said to be an α -generator for a structure A if:

1 the automorphism orbit of each finite tuple of A is Σ_{α} -definable over \bar{c} .

Finitely α -generated

While one could call the desired tuple \bar{c} "a tuple over which no other tuple of the structure is α -free," this is cumbersome.

Definition

A tuple \bar{c} is said to be an α -generator for a structure A if:

- the automorphism orbit of each finite tuple of A is Σ_{α} -definable over \bar{c} .
- ② The ordinal α is the least such that (1) holds.

A structure A with an α -generator is called an α -generated structure. These are exactly the structures with Scott complexity $\Sigma_{\alpha+2}$, d- $\Sigma_{\alpha+1}$, or $\Sigma_{\alpha+1}$ for limit α .

Example: Finitely α -generated Structures

The structure $\mathbb{Z} + \mathbb{Z}$ has a Σ_4 Scott sentence; in fact, its Scott complexity is d- Σ_3 .

It is not finitely generated in the language of linear orders, but is finitely generated in the language with the ordering, the predecessor, and the successor relations.

The generating tuples for $\mathbb{Z}+\mathbb{Z}$ in this expanded language are precisely the tuples which are 2-generators for $\mathbb{Z}+\mathbb{Z}$ as a linear order.

Finitely α -generated Structures

In the case where A is almost rigid, being finitely α -generated and being finitely generated (after some alterations) coincide.

Finitely α -generated Structures

In the case where A is almost rigid, being finitely α -generated and being finitely generated (after some alterations) coincide.

Lemma (R.A.*)

Suppose that A is finitely α -generated by \bar{c} and almost rigid, witnessed by \bar{d} . Let $\{\phi_{\bar{a}}(\bar{x},\bar{c},\bar{d}): \bar{a}\in A\}$ be the family of $\Sigma_{<\alpha}$ -formulas defining the automorphism orbits of $(A,\bar{c}\bar{d})$. In the definitional expansion which includes a relation predicate for each $\phi_{\bar{a}}$, A is finitely generated by $\bar{c}\bar{d}$.

Examples: Finitely α -generated Structures

There are examples of α -generated structures at arbitrarily large levels, even when the structure is not almost rigid.

The structure $\mathbb{Z}^{\alpha} + \mathbb{Z}^{\alpha} + \mathbb{Z}^{\alpha}$ has Scott Complexity d- $\Sigma_{2\alpha+1}$. The 2α -generators are precisely the ones which contain an element from each copy of \mathbb{Z}^{α} .

Finitely α -generated Structures

Theorem (R.A.*)

A structure A has a d- $\Sigma_{\alpha+1}$ Scott sentence iff some α -generator has a Π_{α} automorphism orbit.

This is a generalization of a result on finitely generated groups obtained with Julia Knight and Charlie McCoy.

Back to Scott Rank and Scott Complexity

Theorem (R.A.*)

A structure A has a d- $\Sigma_{\alpha+1}$ Scott sentence iff some α -generator has a Π_{α} automorphism orbit.

r(A):The least α such that every tuple's automorphism orbit is Π_{α} -definable.

Corollary: A has Scott Complexity d- $\Sigma_{\alpha+1}$ iff for some \bar{c} , $r(A, \bar{c}) = \alpha$.

Thanks + References

Thank You!

R. A*, J. Knight, C.McCoy, "Complexity of Scott Sentences." Accepted, *Fundamenta Mathematicae*.

R.A.*, D. Rossegger, "Complexity of Scott Sentences of Scattered Linear Orders." Submitted.

R.A.*, M. Harrison-Trainor, D. Turetsky, N. Greenberg, "Scott Complexity of Countable Structures." Submitted.

R.A.*, "Finitely α -generated structures." In preparation.

A. Montalban, "A Robuster Scott Rank." 2015.

