
Definition 0.1. A graph is a pair 〈V,E〉 where V is a set and E is a set of
pairs from V . An anticlique in the graph is a set A ⊂ V such that [A]2 ∩E = 0.
A chromatic number of the graph is the smallest possible number of anticliques
which together cover V . If in addition the set V is equipped with a topology, the
Borel chromatic number of the graph is the smallest possible number of Borel
anticliques which cover V .

Definition 0.2. Let {sn : n ∈ ω} be any collection of finite binary strings such
that sn ∈ 2n and for every t ∈ 2<ω there is n ∈ ω such that t ⊂ sn. The graph
G0 on 2ω is the set of all pairs of the form {san 0az, san 1az} such that n ∈ ω and
z ∈ 2ω.

Theorem 0.3. The chromatic number of G0 is 2 while the Borel chromatic
number of G0 is uncountable.

Proof. For the evaluation of the chromatic number of G0, let E0 be the equiv-
alence relation on 2ω connecting binary sequences y, z ∈ 2ω just in case they
differ on only finitely many entries. Use the axiom of choice to find a set A ⊂ 2ω

which visits each E0 class in exactly one point. Let B0 = {y ∈ 2ω : writing z
for the unique element of A ∩ [y]E0

, y and z differ at even number of entries}
and B1 = {y ∈ 2ω : writing z for the unique element of A ∩ [y]E0

, y and z
differ at odd number of entries}. Check that B0, B1 are G0-anticliques. Clearly,
2ω = B0 ∪B1 and so the chromatic number of G0 is 2.

The evaluation of the Borel chromatic number uses a small claim:

Claim 0.4. If B ⊂ 2ω is a Borel non-meager set, then B contains a G0 edge.

Proof. The Borel set B is modulo the meager ideal equal to an open set. Since
the set B is nonmeager, this means that there is a finite binary string t ∈ 2<ω

such that B∩[t] is comeager in [t]; let {Om : m ∈ ω} be some countable collection
of sets open dense in [t] such that

⋂
mOm ⊂ B. Let n ∈ ω be such that t ⊂ sn.

By induction on m ∈ ω find binary strings tm ∈ 2<ω so that 0 = t0 ⊂ t1 ⊂ t2 ⊂
. . . and both sets [san 0atm+1] and [san 1atm+1] are subsets of Om. This is easily
possible using the density of the set Om. In the end, let z =

⋃
m tm ∈ 2ω and

x = san 0az and y = san 1az. Both points x, y belong to
⋂
mOm and therefore

to B, and they form a G0-edge.

As a result, every Borel G0-anticlique is meager, and so by the Baire category
theorem, countably many Borel G0-anticliques cannot cover 2ω.

Theorem 0.5. Suppose that G is an analytic graph on a Polish space X. Then
exactly one of the following happens:

1. the Borel chromatic number of G is countable;

2. there is a continuous homomorphism of G0 to G.
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Here, a continuous homomorphism of G0 to G is a continuous map h from 2ω

to X such that for any y0, y1 ∈ 2ω, y0 G0 y1 implies h(y0) G h(y1). Note the
important difference between a homomorphism and reduction: in the reduction
definitions, one finds an equivalence, in the homomorphism definitions, one finds
an implication.

Proof. To see that (1,2) are mutually exclusive, suppose for contradiction that
h : 2ω → X is a continuous homomorphism of G0 to G and X =

⋃
nBn is a

countable union of Borel G-anticliques. Then, for each n ∈ ω, h−1Bn is a Borel
G0-anticlique, and

⋃
n h
−1Bn = 2ω. This, however, is impossible in view of

Theorem 0.3.
To show that at least one of (1,2) must occur, start with a general preliminary

claim:

Claim 0.6. Whenever A ⊂ X is an analytic G-anticlique, then there is a Borel
anticlique B ⊂ X such that A ⊂ B.

Proof. Let A0 = {x ∈ X : ∃y ∈ A {x, y} ∈ G}. The set A0 ⊂ X is analytic
and disjoint from A, so by the Lusin separation theorem, there is a Borel set
B0 ⊂ X containing A as a subset and disjoint from A0. Let A1 = {x ∈ X : ∃y ∈
B0 {x, y} ∈ G}. Againg, this is an analytic set disjoint from A and so there
is a Borel set B1 ⊂ X containing A as a subset and disjoint from A1. Let
B = B0 ∩B1 and check that B works.

The plan now is the following: attempt to build the homomorphism as in
(2) with “finite approximations”; if this attempt fails, extract from the fail-
ure countably many Borel G-anticliques covering X. We will need some nota-
tion. Fix a continuous surjection f : ωω → X and another continuous surjection
g : ωω → G.

Say that p is an approximation if p = 〈ap, bp〉 so that for some n = np ∈
ω, ap is a function from 2n to ωn and bp is a function such that dom(bp) =⋃
k∈n 2n−k−1 and rng(bp) ⊂ ωn.

If p, q are approximations, write q ≤ p if np ≤ nq, for every t ∈ 2nq aq(t) �
np = ap(t � np), and for every k ∈ np and every t ∈ 2nq−k−1, bq(t) � np = bp(t �
np − k − 1).

If p = 〈ap, bp〉 is an approximation, then a validation of p is a pair 〈āp, b̄p〉
such that

• dom(āp) = dom(ap), rng(āp) ⊂ ωω and for every t ∈ dom(ap) ap(t) ⊂
āp(t);

• dom(b̄p) = dom(bp), rng(b̄p) ⊂ ωω and for every t ∈ dom(bp) bp(t) ⊂ b̄(t);

• whenever k ∈ n is a number and t ∈ 2np−k−1 is a binary string, then
g(b̄p(t)) = 〈f(āp(s

a
k 0at)), f(āp(s

a
k 1at))〉.

Claim 0.7. Whenever 〈pn : n ∈ ω〉 is a descending sequence of approximations
such that npn = n and each pn has a validation, then there is a continuous
homomorphism from G0 to G.
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Proof. Just define the function h : 2ω → X by h(y) = f(
⋃
n apn(y � n)). It must

be proved that for y0, y1 ∈ 2ω, if y0 G0 y1 then h(y0) G h(y1). To see this,

suppose that y0 G0 y1 holds and find k ∈ ω and z ∈ 2ω such that y0 = sak 0az

and y1 = sak 1az, and let w =
⋃
n>k bpn(z � n − k − 1). It will be enough to

show that g(w) = 〈h(y0), h(y1)〉.
if this failed, then by the continuity of the functions g, f there would have

to be a number n such that for no elements ȳ0, ȳ1, w̄ which agree with y0, y1, w
respectively on the first n entries, g(w̄) = 〈h(ȳ0, ȳ1). This in turn means that
the approximation pn has no validation, a contradiction.

Thus, we are really seeking a decreasing sequence of validated approxima-
tions. The difficulty is that while p may be validated, it may still occur that
none of its one step extensions are, and we have to avoid such dead ends. To do
that, for a set Y ⊂ X call an approximation p Y -terminal if none of its one-step
extensions q ≤ p, q = 〈aq, bq〉 has a validation with rng(f ◦ āq) ⊂ Y .

Claim 0.8. Suppose that p is an approximation and Y ⊂ X is a Borel set. If
all one step extensions of p are Y -terminal, then there are countably many Borel
G-anticliques {Bn : n ∈ ω} such that p is Y \

⋃
nBn-terminal.

Proof. Let q ≤ p be a one step extension of p. WriteA(q, Y ) = {f(āq(snq ) : 〈āq, b̄q〉
is a validation of q such that rng(f ◦ āq) ⊂ Y } ⊂ Y . There are two cases.
Case 1. Suppose first that A(q, Y ) contains a G-edge for some q ≤ p. Then
q is not terminal: there must be two validations 〈ā0q, b̄0q〉 and 〈ā1q, b̄1q〉 of q such
that rng(f ◦ ā0q) and rng(f ◦ ā1q) are both subsets of Y and f(ā0q(snq

) is G-

connected to f(ā1q(snq
). Define the functions ār, b̄r as follows: dom(ār) = 2nq+1,

ār(t
a0) = ā0q(t), ār(t

a1) = ā1q(t) for all t ∈ 2nq , b̄r(t
a0) = b̄0q(t), b̄r(t

a1) = b̄1q(t)

for all t ∈ 2nq−k−1 and all k < nq, and b̄r(0) = z for some z ∈ ωω such that
g(z) = 〈f(ā0q(snq )), f(ā1q(snq ))〉. This latter demand can be fulfilled since by the
assumptions, the f(ā0q(snq

) is G-connected to f(ā1q(snq
). Finally, let r = 〈ar, br〉

be an approximation obtained from 〈ār, b̄r〉 by restricting all outputs of the
functions ār, b̄r to nq + 1. Then r ≤ q is an approximation validated by 〈ār, b̄r〉.
This shows that q is not Y -terminal.
Case 2. Suppose that A(q, Y ) contains no G-edge for any one step extension
q ≤ p. Then each A(q, Y ) is an analytic G-anticlique, and it can be covered
by a Borel G-anticlique B(q, Y ) by Claim 0.6. There are only countably many
one-step extensions of p, and so these Borel anticliques can be enumerated by
{Bn : n ∈ ω}. We claim that this collection of anticliques works as in the claim.

To see this, let Y ′ = Y \
⋃
nBn and suppose that p is not Y ′-terminal;

i.e. there is a one step extension q ≤ p with a validation 〈āq, b̄q〉 such that
rng(f ◦ āp) ⊂ Y ′. Now, f(āp(snq ) ∈ A(q, Y ) ⊂ B(q, Y ) by the definition of
A(q, Y ), and at the same time rng(f ◦ āp) ⊂ Y ′ and Y ′ ∩ B(q, Y ) = 0 by the
construction of the set Y ′. This is a contradiction proving the claim.

Now, by transfinite recursion on an ordinal α, build countable sets Cα of
Borel anticliques such that
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• C0 = 0 and α ∈ β → Cα ⊂ Cβ ;

• writing Yα = X \
⋃
Cα, whenever p is an approximation all of whose

extensions are Yα-terminal, then p is Yα+1-terminal.

This is easy to do using Claim 0.8. Note that the sets Pα = {p : p is an ap-
proximation which is not Yα-terminal} are decreasing with α. Since the set of
all approximations is countable, there must be a countable ordinal α such that
Pα = Pα+1. There are two cases:
Case 1. The empty approximation belongs to Pα. In such a case, by induction
on n build a sequence of approximations 0 = p0 ≥ p1 ≥ p2 ≥ . . . in Pα, using the
fact that Pα = Pα+1 and so every approximation in Pα has a one step extension
in Pα+1. In the end, use Claim 0.7 to construct a continuous homomorphism h
of G0 to G.
Case 2. The empty approximation does not belong to Pα. In this case, the
space X is covered by the anticliques in the set Cα. The theorem follows.

We will now consider, without proof, several powerful generalizations of the
G0 dichotomy.

Definition 0.9. Let m ∈ ω be a natural number greater than 1. Let Y = mω

be equipped with the product topology. Let {sn : n ∈ ω} ⊂ m<ω be a dense
collection of strings such that sn ∈ mn. Let Gm be the hypergraph of dimension
n on Y defined by Gm = {〈ssnmallfrowniaz : i ∈ m〉 : n ∈ ω, z ∈ mω}.

Theorem 0.10. Let m ∈ ω be a natural number greater than 1.

1. The chromatic number of Gm is two;

2. the Borel chromatic number of Gm is uncountable;

3. whenever G is an analytic hypergraph of dimension ω on a Polish space X,
then exactly one of the following occurs: either the Borel chromatic number
of G is countable, or there is a continuous homomorphism h : Y → X of
Gm to G.

Definition 0.11. Let {sn : n ∈ ω} ⊂ ω<ω be a dense collection of strings such
that sn ∈ mn. Let Gω be the hypergraph of dimension ω on Y defined by
Gω = {〈ssnmallfrowniaz : i ∈ ω〉 : n ∈ ω, z ∈ ωω}. Let Y ⊂ ωω be the Gδ set
{z ∈ ωω : ∀m∃k > m∀i < k z(i) < k}.

Theorem 0.12. 1. The chromatic number of Gω is two;

2. the Borel chromatic number of Gω is uncountable;

3. whenever G is an analytic hypergraph of dimension ω on a Polish space X,
then exactly one of the following occurs: either the Borel chromatic number
of G is countable, or there is a continuous homomorphism h : Y → X of
Gω to G.
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1 Applications

We will now apply the graph dichotomy theorems to prove a number of more
intuitive dichotomy results. The first two applications rely on a simple obser-
vation:

Proposition 1.1. For every x ∈ 2ω, the connected component [x] of G0 con-
taining x is equal to {y ∈ 2ω : {m ∈ ω : x(m) 6= y(m)} is finite}.

Proof. The left-to-right inclusion is clear since two G0-connected points differ
at exactly one entry. For the right-to-left inclusion, for every number n ∈ ω
consider the graph Hn on 2n consisting of all pairs of the form {sam0at, sam1at}
for m < n and t ∈ 2n−m−1. We will prove that each graph Hn is connected.

This is proved by induction on n. The case n = 0 is trivial. Suppose now
that Hn is connected and argue that Hn+1 must be connected as well. Let
t0, t1 ∈ 2n+1 be arbitrary binary strings and look for a Hn+1-path between the
two. If the last bit of t0, t1 is the same, then find an Hn-path from t0 � n to
t1 � n and extend each string on the path by this bit. By the definitions, this
yields an Hn+1-path from t0 to t1. If the last bits of t0, t1 are distinct, first use
the induction hypothesis to find an Hn-path from t0 � n to sn and then one to
sn to t1 � n. Then, extend the strings on the first path by the last bit of t0
and the strings on the second path by the last bit of t1. The two paths taken
together form an Hn+1-path from t0 to t1 as desired.

Now, if x, y ∈ 2ω are points such that the set {m ∈ ω : x(m) 6= y(m)} is
finite, find n ∈ ω larger than all elements of this set, find an Hn-path from x � n
to y � n and append to its elements the sequence x � (ω \ n) = y � (ω \ n). This
yields a G0-path from x to y as desired for the right-to-left inclusion.

Corollary 1.2. If C ⊂ 2ω is a closed set which, with each of its elements
contains also all its G0-neighbors, then C = 0 or C = 2ω.

Proof. By the previous proposition, the G0-components are dense. If C is
nonempty, it must contain at least one whole dense G0-component and since C
is closed, C = 2ω.

Theorem 1.3. (Perfect set theorem) Let A ⊂ X be an analytic subset of a
Polish space. Then either A is countable or A contains a nonempty perfect
subset.

Proof. Consider the graph G on X connecting points x, y just in case they are
distinct elements of A. The graph G is analytic, and the G0 dichotomy gives
two options.

Either, the Borel chromatic number of G is countable. Since every G-
anticlique contains at most one element of A, in this case the set A must be
countable. Or, there is a continuous homomorphism h : 2ω → X of G0 to G.
The range of h, as a continuous image of a compact space, is compact. It is also
a subset of A, since every point of 2ω does have some neighbors in G0 and the

5



points in X \ A do not have neighbors in G and the function h is a homomor-
phism of graphs. Thus, by the Cantor–Bendixson theorem, it will be enough to
show that rng(h) is uncountable. To see this, note that for every point x ∈ X
the set h−1{x} ⊂ 2ω is a closed G0-anticlique since h is a continuous homomor-
phism. Since countably many closed G0-anticliques cannot cover 2ω, it follows
that rng(h) is uncountable as required.

Theorem 1.4. (Lusin–Novikov theorem) Let B ⊂ X × Y be a Borel subset of
a product of two Polish spaces. Then either B is the union of countably many
Borel (partial) functions from X to Y , or there is a vertical section of B which
contains a perfect subset.

Proof. Let G be the graph on X × Y connecting two points just in case they
are distinct elements of the same vertical section of the set B. The graph G is
even Borel, and so the G0 dichotomy gives us two options.

Either, the Borel chromatic number of G is countable. Since the intersection
of every G-anticlique with the set B is a function, in this case the set B is
covered by countably many functions. Or, there is a continuous homomorphism
of h : 2ω → X × Y of G0 to G. First, observe that the range of h must be
contained in a single vertical section of X × Y . For this, note that the h-
preimages of the vertical sections are closed by the continuity of h and apply
Corollary 1.2. The rest of the argument is literally the same as in the perfect
set theorem proof.

For the next two applications, we will need an old anticlique existence the-
orem due to Mycielski. It says that every small (meager) graph has a perfect
anticlique.

Proposition 1.5. (Mycielski Theorem) Let X be a Polish space without isolated
points and G a meager graph on X. Then there is a nonempty perfect G-
anticlique.

Proof. Let On for n ∈ ω be open dense subsets of X2 such that G∩
⋂
nOn = 0.

By induction on n ∈ ω build nonempty open sets Pt for all t ∈ 2n so that

• t ⊂ s implies P̄s ⊂ Pt, and if t is incomparable with s then Ps ∩ Pt = 0;

• the diameter of Pt is smaller than 2−|t| for some fixed complete metric on
X;

• if t 6= s are distinct elements of 2n then Ps × Pt ⊂
⋂
m∈nOm.

In the end, define a map h : 2ω → X by h(z) =the unique element of the
intersection

⋂
n Pz�n. The image of h is a perfect subset of X; we must verify

that it is an anticlique. Indeed, if y 6= z are distinct elements of 2ω and m ∈ ω
is a number, find an n ∈ ω which is greater than m and such that y � n 6= z � n.
Then, h(y) ∈ Py�n, h(z) ∈ Pz�n, and Py�n×Pz�n ⊂ Om. It follows that the pair
〈h(y), h(z)〉 ∈ X ×X belongs to the open set Om for every m ∈ ω and so it is
not in the graph G as desired.
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The next proposition is going to be used to conclude that various graphs
are meager. It ascertains that every non-meager graphon 2ω with the Baire
property contains a certain four point pattern in it. A G0-rectangle is a set
{y0, y1} × {z0, z1} ⊂ 2ω × 2ω where y0, y1, z0, z1 ∈ 2ω are points such that
y0 G0 y1 and z0 G0 z1 holds. The points y0, y1, z0, z1 (in this order) will be
called the corners of the rectangle

Proposition 1.6. Let G be a graph on 2ω with the Baire property. If G is not
meager then G contains a G0-rectangle.

Proof. Since the graph G ⊂ 2ω×2ω has the Baire property, it is equal to an open
set modulo a meager set. Since G is not meager, that open set is nonempty. This
means that there are binary strings t, u ∈ 2<ω and sets On for n ∈ ω such that
On ⊂ [t]×[u] is open dense in [t]×[u] and

⋂
nOn ⊂ G. Find incompatible binary

strings t0, u0 extending t, u such that each of them is on the list {sn : n ∈ ω}
defining the graph G0. For every binary string v write (ta0 0av)′ = ta0 1av and
similarly

Now, by induction on n > 0 build binary strings tn, un so that

• ta0 0 ⊂ t1 ⊂ t2 ⊂ . . . and ua0 0 ⊂ u1 ⊂ u2 ⊂ . . .

• the four open sets [tn+1] × [un+1], [tn+1] × [u′n+1], [t′n+1] × [un+1], and
[t′n+1]× [u′n+1] are all subsets of On.

To perform the induction step and get tn+1 and un+1 from tn, un, just extend
the binary strings tn, un repeatedly four times to handle each of the four sets in
the fourth item. Each time use the assumption that On ⊂ [t] × [u] is an open
dense set.

In the end, let x0 =
⋃
n tn, x1 =

⋃
n t
′
n, y0 =

⋃
n un and y1 =

⋃
n u
′
n. By the

choice of the strings t0, u0, it is the case that x0 G0 x1 and y0 G0 y1. By the
inductive construction, the G0-rectangle {x0, x1}×{y0, y1} is a subset of

⋂
nOn

and therefore a subset of the graph G as required.

Theorem 1.7. (Silver’s theorem) Let E be a coanalytic equivalence relation
on a Polish space X. Then either E has countably many classes or there is a
perfect set of pairwise E-unrelated elements.

Proof. Let G be the complement of E; this is an analytic graph. The G0

dichotomy gives us two possibilities.
Either, the graph G has countable Borel chromatic number. In such a case,

note that every G-anticlique is a subset of a single E-class, and therefore there
are only countably many E-classes. Or, there is a continuous homomorphism
h : 2ω → X of G0 to G. The h-preimage F of E is an equivalence relation on
2ω. It is coanalytic, and therefore has the Baire property. Note that F cannot
contain a G0 rectangle: writing y0, y1, z0, z1 for corners of such a rectangle,
it would be the case that h(y0) E h(z0) E h(z1), by the transitivity of the
equivalence relation E h(y0) E h(y1), and this contradicts the assumption that
h is a homomorphism of G0 to the complement of E. By Proposition 1.6,
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the graph F is meager, and by Proposition 1.5 there is a perfect F -anticlique
C ⊂ 2ω, and then h′′C is a perfect set of pairwise E-unrelated elements.

For the next application, a quasimetric on a set X is a function d : X2 → R
such that its vaues are non-negative, it is symmetric, and it satisfies the triangle
inequality. Unlike with a metric, the set X can contain distict points with
d-distance zero. As good examples, consider the usual metric on [0, 1]2 and
then the metric on [0, 1]2 which assigns points in the same vertical section their
usual Euclidean distance, and points in distinct sections distance 1. These two
metrics are not isomorphic: the former is separable, while the latter is not.
The easiest way to see that the latter metric is not separable is to note that
{〈0, r〉 : r ∈ [0, 1]} is an uncountable, in fact perfect, collection of points with
pairwise distance ≥ 1. The following dichotomy shows that this is the only way
of proving non-separability of a definable quasimetric.

Theorem 1.8. Let X be a Polish space and d a quasimetric on it such that for
every ε > 0, the set d−1[ε,∞) ⊂ X ×X is analytic. Then either d is separable
or there is ε > 0 and a perfect set of elements of X with pairwise distances
greater than ε.

Proof. For each ε > 0 let Gε be the graph on X connecting x, y if d(x, y) ≥ ε;
this is an analytic graph. The G0 dichotomy gives us two options.

Either, for every ε > 0, the Borel chromatic number of Gε is countable. Note
that every Gε-anticlique is a set of points of pairwise distance < ε, and so in
this case for every ε > 0 the space X can be covered by countably many ε-balls,
for every ε > 0. This implies that the metric d is separable.

Or, there is a real ε > 0 an a continuous homomorphism h : 2ω → X of
G0 to Gε. Let e be the quasimetric on 2ω defined by e(y, z) = d(h(y), h(z))
and consider the graph H on 2ω connecting points y, z if their e-distance is
≤ ε/2. The graph H is coanalytic and therefore has the Baire property. It
cannot contain a G0-rectangle: if y0, y1, z0, z1 were corners of such a rectangle,
then d(h(y0), h(z0)) ≤ ε/2, d(h(y1, z0)) ≤ ε/2 would hold. At the same time,
d(h(y0), h(y1)) > ε since h is a homomorphism of G0 to Gε. This contradicts
the triangle inequality for the quasimetric d. By Proposition 1.6, the graph H
is meager, and by Proposition 1.5 there is a perfect H-anticlique C ⊂ 2ω. Then
h′′C is a perfect set of points of pairwise d-distance at least ε/2. This completes
the proof.

The next application concerns linear quasiorders on Polish spaces. Here, a
quasiorder on a set is a transitive relation ≤ which contains the diagonal. It is
linear if for all x, y in its domain, either x ≤ y or y ≤ x. To motivate the result,
consider the linear ordering ≤ on R and the linear ordering ≺ on R2 defined by
〈x0, x1〉 ≺ 〈y0, y1〉 if x0 < x1 or x0 = x1 and y0 ≤ y1. They are not isomorphic
since ≤ has a countable dense set while ≺ does not. One way to see that ≺
does not have a countable dense set is to observe that [〈x, 0〉, 〈x, 1〉] for x ∈ R
is an uncountable collection of pairwise disjoint intervals in ≺. The following
dichotomy shows that this is in fact the only way of showing that a definable
linear quasiorder is not separable.
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Theorem 1.9. Let X be a Polish space and ≤ an analytic linear quasiordering
on X. Then either ≤ is separable or else there is a perfect collection of pairwise
disjoint ≤-intervals.

Proof. We will need a notational convention. Say that a pair 〈x, y〉 ∈ X2 de-
termines a nontrivial interval in ≤ if either x ≤ y or y ≤ x fails; the closed
interval determined by the pair will be the set {z ∈ X : x ≤ z ≤ y} or
{z ∈ X : y ≤ z ≤ x} depending on whether ≤ y or y ≤ x fails. We will
identify the pairs with the closed intervals that they determine.

Consider the graph G on X×X connecting pairs 〈x0, x1〉 and 〈y0, y1〉 if they
determine nontrivial closed ≤-intervlsl and these intervals have empty intersec-
tion. An inspection reveals that this is an analytic graph. The G0 dichotomy
provides us with two options.

Either, the (Borel) chromatic number of the graph G is countable. In such a
case, the nontrivial closed intervals can be organized into countably many sets
Bn for n ∈ ω such that in each Bn, any two intervals have nonempty intersection.
In this case, we will argue that the completion ≤∗ of the quasiordering ≤ is
separable, which certainly means that ≤ is separable. For each interval I ∈ Bn
write I∗ for the corresponding interval in ≤∗. Let x∗n be the least upper bound
of the left endpoints of intervals in Bn, and observe that x∗n ∈

⋂
{I∗ : I ∈ Bn}.

The set {x∗n : n ∈ ω} is dense in ≤∗ since every nontrivial closed interval in ≤∗
contains one of the points x∗n.

Or, there is a continuous map h : 2ω → X ×X which is a homomorphism of
G0 to G. Note that for every z ∈ 2ω the pair h(z) defines a nontrivial interval
in ≤, since only such pairs have any neighbors in the graph G. We must find
a perfect set C ⊂ 2ω such that h′′C consists of pairs defining pairwise disjoint
intervals. Let H be the graph on 2ω which is the complement of the h-preimage
of G. This is a coanalytic graph, and therefore has the Baire property. It
cannot contain a G0-rectangle; to see this, observe that if I, J are disjoint closed
intervals and K,L are closed intervals intersecting both I, J in a nonempty set
then K,L cannot be disjoint. Thus, the graph H is meager by Proposition 1.6,
and so by Proposition 1.5, there is a perfect H-anticlique C ⊂ 2ω. Then, h′′C
is the requested perfect collection of pairwise disjoint intervals.
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