Definition 0.1. A graph is a pair (V, E) where V is a set and F is a set of
pairs from V. An anticlique in the graph is a set A C V such that [A]>NE = 0.
A chromatic number of the graph is the smallest possible number of anticliques
which together cover V. If in addition the set V' is equipped with a topology, the
Borel chromatic number of the graph is the smallest possible number of Borel
anticliques which cover V.

Definition 0.2. Let {s,: n € w} be any collection of finite binary strings such
that s, € 2™ and for every ¢ € 2<% there is n € w such that ¢t C s,. The graph
G on 2% is the set of all pairs of the form {s;07z, 172} such that n € w and
z € 2%,

Theorem 0.3. The chromatic number of Gy is 2 while the Borel chromatic
number of Gy is uncountable.

Proof. For the evaluation of the chromatic number of Gy, let Ey be the equiv-
alence relation on 2“ connecting binary sequences y,z € 2% just in case they
differ on only finitely many entries. Use the axiom of choice to find a set A C 2¥
which visits each Ey class in exactly one point. Let By = {y € 2¥: writing z
for the unique element of AN [y]g,, ¥y and z differ at even number of entries}
and By = {y € 2¥: writing z for the unique element of AN [y]g,, v and z
differ at odd number of entries}. Check that By, By are Gy-anticliques. Clearly,
2¥ = By U By and so the chromatic number of Gg is 2.
The evaluation of the Borel chromatic number uses a small claim:

Claim 0.4. If B C 2% is a Borel non-meager set, then B contains a Gy edge.

Proof. The Borel set B is modulo the meager ideal equal to an open set. Since
the set B is nonmeager, this means that there is a finite binary string ¢t € 2<%
such that BNt] is comeager in [t]; let {O,,: m € w} be some countable collection
of sets open dense in [t] such that ,, O C B. Let n € w be such that ¢t C s,,.
By induction on m € w find binary strings t,, € 2<% so that 0 =tq C t; C s C

. and both sets [s,0"tm,+1] and [s, 17 ¢,+1] are subsets of O,,. This is easily
possible using the density of the set O,,. In the end, let z = Um t,, € 2¥ and
r = 5,07z and y = s;,;172. Both points z,y belong to (,, O, and therefore
to B, and they form a Gg-edge. O

As a result, every Borel Gg-anticlique is meager, and so by the Baire category
theorem, countably many Borel Gy-anticliques cannot cover 2%. O

Theorem 0.5. Suppose that G is an analytic graph on a Polish space X. Then
ezxactly one of the following happens:

1. the Borel chromatic number of G is countable;

2. there is a continuous homomorphism of Gy to G.



Here, a continuous homomorphism of Gy to G is a continuous map h from 2
to X such that for any yo, 11 € 2¥, yo Go y1 implies h(yo) G h(y1). Note the
important difference between a homomorphism and reduction: in the reduction
definitions, one finds an equivalence, in the homomorphism definitions, one finds
an implication.

Proof. To see that (1,2) are mutually exclusive, suppose for contradiction that
h: 2% — X is a continuous homomorphism of Gy to G and X = J,, B, is a
countable union of Borel G-anticliques. Then, for each n € w, h~!'B,, is a Borel
Go-anticlique, and (J,, h~1B, = 2¥. This, however, is impossible in view of
Theorem 0.3.

To show that at least one of (1,2) must occur, start with a general preliminary
claim:

Claim 0.6. Whenever A C X is an analytic G-anticlique, then there is a Borel
anticligue B C X such that A C B.

Proof. Let Ag = {z € X: 3y € A {z,y} € G}. The set Ay C X is analytic
and disjoint from A, so by the Lusin separation theorem, there is a Borel set
By C X containing A as a subset and disjoint from Ag. Let 41 = {x € X: Jy €
By {z,y} € G}. Againg, this is an analytic set disjoint from A and so there
is a Borel set By C X containing A as a subset and disjoint from A;. Let
B = By N By and check that B works. O

The plan now is the following: attempt to build the homomorphism as in
(2) with “finite approximations”; if this attempt fails, extract from the fail-
ure countably many Borel G-anticliques covering X. We will need some nota-
tion. Fix a continuous surjection f: w“ — X and another continuous surjection
g: w* — G.

Say that p is an approzimation if p = (a,,b,) so that for some n = n, €
w, ap is a function from 2" to w™ and b, is a function such that dom(b,) =
Usen 2" %71 and rng(b,) C w™.

If p, g are approximations, write ¢ < p if n, < ng, for every t € 2" q,(t) |
ny, = ay(t | n,), and for every k € n, and every t € 2ma=*=1 p (t) [ n, = b,(t |
n, —k —1).

If p = (ap,b,) is an approximation, then a validation of p is a pair (a,,by)
such that

e dom(a,) = dom(ay), rng(a,) C w* and for every ¢t € dom(a,) ap(t) C
&p(t)§

e dom(b,) = dom(b,), g(b,) C w* and for every t € dom(b,) b,(t) C b(t);

e whenever k € n is a number and ¢ € 2"»~*~! is a binary string, then

9(bp(t)) = (f(ap(s;,071)), f(@p(s; 171)))-

Claim 0.7. Whenever (p,: n € w) is a descending sequence of approrimations
such that n,, = n and each p, has a validation, then there is a continuous
homomorphism from Gy to G.



Proof. Just define the function h: 2* — X by h(y) = f(U,, ap, (¥ | n)). It must
be proved that for yo,y1 € 2¢, if yo Go y1 then h(yg) G h(y1). To see this,
suppose that 9 Go y1 holds and find k € w and z € 2% such that yo = 5,072
and y1 = 5,172, and let w = {J,5, bp, (2 [ n —k —1). It will be enough to
show that g(w) = (h(yo), h(y1))-

if this failed, then by the continuity of the functions g, f there would have
to be a number n such that for no elements 7y, 71, w which agree with yg, y1,w
respectively on the first n entries, g(@w) = (h(Jo,1). This in turn means that
the approximation p,, has no validation, a contradiction. O

Thus, we are really seeking a decreasing sequence of validated approxima-
tions. The difficulty is that while p may be validated, it may still occur that
none of its one step extensions are, and we have to avoid such dead ends. To do
that, for a set Y C X call an approximation p Y-terminal if none of its one-step
extensions ¢ < p, ¢ = (ay, by) has a validation with rng(foa,) C Y.

Claim 0.8. Suppose that p is an approximation and Y C X is a Borel set. If
all one step extensions of p are Y -terminal, then there are countably many Borel
G-anticliques {By,: n € w} such that p is Y \ J,, Bn-terminal.

Proof. Let ¢ < pbe a one step extension of p. Write A(q,Y) = {f(aq(sn,): (aq,bq)
is a validation of ¢ such that rng(f o a,) C Y} C Y. There are two cases.

Case 1. Suppose first that A(q,Y) contains a G-edge for some ¢ < p. Then
q is not terminal: there must be two validations (al,bJ) and (a;,bs) of ¢ such
that rng(f o a)) and rng(f o a,) are both subsets of ¥ and f(a)(sn,) is G-
connected to f(ag(sn,). Define the functions a,, b, as follows: dom(a,) = 2"+,
a-(t70) = ag(t), ar(t"1) = ag(t) for all t € 2%, b,.(t70) = by(t), b (t"1) = by(t)
for all ¢t € 2"=*~1 and all k < n,, and b,(0) = z for some z € w* such that
9(z) = (f(a)(sn,)), f(ay(sn,))). This latter demand can be fulfilled since by the
assumptions, the f(ad(sy,) is G-connected to f(a}(sn,). Finally, let r = (a,, b,.)

be an approximation obtained from (a,,b.) by restricting all outputs of the
functions @, b, to ng+1. Then r < ¢ is an approximation validated by (a,, b,.).
This shows that ¢ is not Y-terminal.
Case 2. Suppose that A(g,Y) contains no G-edge for any one step extension
q < p. Then each A(q,Y) is an analytic G-anticlique, and it can be covered
by a Borel G-anticlique B(g,Y") by Claim 0.6. There are only countably many
one-step extensions of p, and so these Borel anticliques can be enumerated by
{Bn: n € w}. We claim that this collection of anticliques works as in the claim.
To see this, let Y/ = Y \ |J,, B and suppose that p is not Y’-terminal;
i.e. there is a one step extension ¢ < p with a validation (ag,bq) such that
mg(f oa,) CY'. Now, f(ay(sn,) € A(q,Y) C B(q,Y) by the definition of
A(q,Y), and at the same time rng(f oa,) C Y and Y’ N B(q,Y) = 0 by the
construction of the set Y’. This is a contradiction proving the claim. O

Now, by transfinite recursion on an ordinal «, build countable sets C, of
Borel anticliques such that



e Co=0andaepB—C,CCs;

e writing Y, = X \ JC,, whenever p is an approximation all of whose
extensions are Y,-terminal, then p is Y, i-terminal.

This is easy to do using Claim 0.8. Note that the sets P, = {p: p is an ap-
proximation which is not Y,-terminal} are decreasing with «. Since the set of
all approximations is countable, there must be a countable ordinal « such that

P, = P,+1. There are two cases:
Case 1. The empty approximation belongs to P,. In such a case, by induction
on n build a sequence of approximations 0 = pg > p; > p2 > ... in P,, using the

fact that P, = P,4+1 and so every approximation in P, has a one step extension
in Pyy1. In the end, use Claim 0.7 to construct a continuous homomorphism h
of Gy to G.

Case 2. The empty approximation does not belong to P,. In this case, the
space X is covered by the anticliques in the set C,,. The theorem follows. [

We will now consider, without proof, several powerful generalizations of the
G dichotomy.

Definition 0.9. Let m € w be a natural number greater than 1. Let ¥ = m®
be equipped with the product topology. Let {s,: n € w} C m<* be a dense
collection of strings such that s,, € m™. Let G,, be the hypergraph of dimension
n on Y defined by G, = {{(simall frowni~z:i € m): n € w,z € m“}.

Theorem 0.10. Let m € w be a natural number greater than 1.

1. The chromatic number of G, is two;
2. the Borel chromatic number of G, is uncountable;

8. whenever G is an analytic hypergraph of dimension w on a Polish space X,
then exactly one of the following occurs: either the Borel chromatic number
of G is countable, or there is a continuous homomorphism h: Y — X of
G, to G.

Definition 0.11. Let {s,: n € w} C w< be a dense collection of strings such
that s, € m™. Let G, be the hypergraph of dimension w on Y defined by
G, = {{(ssmallfrowni”z:i € wy:n € w,z € w}. Let Y C w* be the G5 set
{z e w:Ym3k > mVi < k 2(i) < k}.

Theorem 0.12. 1. The chromatic number of G, is two;
2. the Borel chromatic number of G, is uncountable;

3. whenever G is an analytic hypergraph of dimension w on a Polish space X,
then exactly one of the following occurs: either the Borel chromatic number
of G is countable, or there is a continuous homomorphism h:Y — X of
G, to G.



1 Applications

We will now apply the graph dichotomy theorems to prove a number of more
intuitive dichotomy results. The first two applications rely on a simple obser-
vation:

Proposition 1.1. For every x € 2%, the connected component [x] of Go con-
taining  is equal to {y € 2¥: {m € w: z(m) # y(m)} is finite}.

Proof. The left-to-right inclusion is clear since two Gy-connected points differ
at exactly one entry. For the right-to-left inclusion, for every number n € w
consider the graph H,, on 2" consisting of all pairs of the form {s;, 07¢, s 17t}
for m < n and t € 27~ We will prove that each graph H,, is connected.

This is proved by induction on n. The case n = 0 is trivial. Suppose now
that H,, is connected and argue that H,; must be connected as well. Let
to,t1 € 2" be arbitrary binary strings and look for a H,,1-path between the
two. If the last bit of tg,t; is the same, then find an H,-path from tg | n to
t1 | n and extend each string on the path by this bit. By the definitions, this
yields an H,,1-path from ¢y to ¢;. If the last bits of ¢y, ;1 are distinct, first use
the induction hypothesis to find an H,-path from ¢y [ n to s, and then one to
S$n to t1 | n. Then, extend the strings on the first path by the last bit of ¢
and the strings on the second path by the last bit of ¢;. The two paths taken
together form an H,,41-path from ¢y to ¢; as desired.

Now, if 2,y € 2% are points such that the set {m € w: x(m) # y(m)} is
finite, find n € w larger than all elements of this set, find an H,-path from = [ n
to y [ n and append to its elements the sequence z [ (w\n) =y | (w\n). This
yields a Gp-path from z to y as desired for the right-to-left inclusion. O

Corollary 1.2. If C C 2¥ is a closed set which, with each of its elements
contains also all its Go-neighbors, then C' =0 or C = 2.

Proof. By the previous proposition, the Gp-components are dense. If C is
nonempty, it must contain at least one whole dense Gg-component and since C'
is closed, C' = 2%. O

Theorem 1.3. (Perfect set theorem) Let A C X be an analytic subset of a
Polish space. Then either A is countable or A contains a nonempty perfect
subset.

Proof. Consider the graph G on X connecting points z,y just in case they are
distinct elements of A. The graph G is analytic, and the Gy dichotomy gives
two options.

Either, the Borel chromatic number of G is countable. Since every G-
anticlique contains at most one element of A, in this case the set A must be
countable. Or, there is a continuous homomorphism h: 2* — X of Gy to G.
The range of h, as a continuous image of a compact space, is compact. It is also
a subset of A, since every point of 2% does have some neighbors in Gy and the



points in X \ A do not have neighbors in G and the function h is a homomor-
phism of graphs. Thus, by the Cantor-Bendixson theorem, it will be enough to
show that rng(h) is uncountable. To see this, note that for every point z € X
the set h=1{z} C 2% is a closed Gg-anticlique since h is a continuous homomor-
phism. Since countably many closed Gg-anticliques cannot cover 2%, it follows
that rng(h) is uncountable as required. O

Theorem 1.4. (Lusin-Novikov theorem) Let B C X X Y be a Borel subset of
a product of two Polish spaces. Then either B is the union of countably many
Borel (partial) functions from X to 'Y, or there is a vertical section of B which
contains a perfect subset.

Proof. Let G be the graph on X x Y connecting two points just in case they
are distinct elements of the same vertical section of the set B. The graph G is
even Borel, and so the G dichotomy gives us two options.

Either, the Borel chromatic number of G is countable. Since the intersection
of every G-anticlique with the set B is a function, in this case the set B is
covered by countably many functions. Or, there is a continuous homomorphism
of h: 2% — X xY of Gy to G. First, observe that the range of h must be
contained in a single vertical section of X x Y. For this, note that the h-
preimages of the vertical sections are closed by the continuity of A and apply
Corollary 1.2. The rest of the argument is literally the same as in the perfect
set theorem proof. O

For the next two applications, we will need an old anticlique existence the-
orem due to Mycielski. It says that every small (meager) graph has a perfect
anticlique.

Proposition 1.5. (Mycielski Theorem) Let X be a Polish space without isolated
points and G a meager graph on X. Then there is a nonempty perfect G-
anticlique.

Proof. Let O,, for n € w be open dense subsets of X2 such that GN N, On =0.
By induction on n € w build nonempty open sets P, for all t € 2™ so that

e t C s implies P, C P,, and if t is incomparable with s then P, N P, = 0;

e the diameter of P, is smaller than 2~ /¥l for some fixed complete metric on
X.

b

e if t # s are distinct elements of 2" then Ps x P, C () Om.

men

In the end, define a map h: 2* — X by h(z) =the unique element of the
intersection (1, Psjn. The image of h is a perfect subset of X; we must verify
that it is an anticlique. Indeed, if y # z are distinct elements of 2¢ and m € w
is a number, find an n € w which is greater than m and such that y [ n # 2z [ n.
Then, h(y) € Pyn, h(2) € P.jp, and Py, X P.py, C Oy, It follows that the pair
(h(y),h(2)) € X x X belongs to the open set O,, for every m € w and so it is
not in the graph G as desired. U



The next proposition is going to be used to conclude that various graphs
are meager. It ascertains that every non-meager graphon 2“ with the Baire
property contains a certain four point pattern in it. A Go-rectangle is a set
{yo,y1} X {z0,21} C 2¥ x 2% where yo,¥y1, 20,21 € 2 are points such that
yo Go y1 and zg Go 21 holds. The points yo,y1, 20,21 (in this order) will be
called the corners of the rectangle

Proposition 1.6. Let G be a graph on 2% with the Baire property. If G is not
meager then G contains a Go-rectangle.

Proof. Since the graph G C 2 x 2“ has the Baire property, it is equal to an open
set modulo a meager set. Since G is not meager, that open set is nonempty. This
means that there are binary strings ¢t,u € 2<% and sets O,, for n € w such that
O,, C [t] x [u] is open dense in [t] x [u] and (),, O, C G. Find incompatible binary
strings o, ug extending ¢, u such that each of them is on the list {s,: n € w}
defining the graph Gy. For every binary string v write (¢;07v) = ¢;’17v and
similarly
Now, by induction on n > 0 build binary strings t,, u, so that

o t;0Ct CtaC... andug0Cug Cug C...

e the four open sets [t,41] X [Uny1], [tns1] X [ug 1], [tho1] X [uns1], and
[tr41] X [u], 1] are all subsets of O,,.

To perform the induction step and get t,,41 and u,+1 from t,,u,, just extend
the binary strings t¢,,, u,, repeatedly four times to handle each of the four sets in
the fourth item. Each time use the assumption that O, C [¢] x [u] is an open
dense set.

In the end, let zg =, tn, 21 = U, t,, yo = U, un and y1 = J,, u},. By the
choice of the strings tg, ug, it is the case that zg Go 1 and yg Go y1. By the
inductive construction, the Go-rectangle {xo, z1} x {yo,y1} is a subset of (,, Oy,
and therefore a subset of the graph G as required. O

Theorem 1.7. (Silver’s theorem) Let E be a coanalytic equivalence relation
on a Polish space X. Then either E has countably many classes or there is a
perfect set of pairwise E-unrelated elements.

Proof. Let G be the complement of E; this is an analytic graph. The Gy
dichotomy gives us two possibilities.

Either, the graph G has countable Borel chromatic number. In such a case,
note that every G-anticlique is a subset of a single F-class, and therefore there
are only countably many FE-classes. Or, there is a continuous homomorphism
h:2“ — X of Gy to G. The h-preimage F' of E is an equivalence relation on
2¢. Tt is coanalytic, and therefore has the Baire property. Note that F' cannot
contain a G rectangle: writing yo,y1, 20, 21 for corners of such a rectangle,
it would be the case that h(yg) F h(z9) E h(z1), by the transitivity of the
equivalence relation E h(yo) E h(y1), and this contradicts the assumption that
h is a homomorphism of Gy to the complement of E. By Proposition 1.6,



the graph F' is meager, and by Proposition 1.5 there is a perfect F-anticlique
C C 2%, and then h”C is a perfect set of pairwise E-unrelated elements. O

For the next application, a quasimetric on a set X is a function d: X2 — R
such that its vaues are non-negative, it is symmetric, and it satisfies the triangle
inequality. Unlike with a metric, the set X can contain distict points with
d-distance zero. As good examples, consider the usual metric on [0,1]? and
then the metric on [0,1]? which assigns points in the same vertical section their
usual Euclidean distance, and points in distinct sections distance 1. These two
metrics are not isomorphic: the former is separable, while the latter is not.
The easiest way to see that the latter metric is not separable is to note that
{{(0,r): r € [0,1]} is an uncountable, in fact perfect, collection of points with
pairwise distance > 1. The following dichotomy shows that this is the only way
of proving non-separability of a definable quasimetric.

Theorem 1.8. Let X be a Polish space and d a quasimetric on it such that for
every € > 0, the set d~'[e,00) C X x X is analytic. Then either d is separable
or there is € > 0 and a perfect set of elements of X with pairwise distances
greater than €.

Proof. For each € > 0 let G, be the graph on X connecting x,y if d(x,y) > ¢;
this is an analytic graph. The G| dichotomy gives us two options.

Either, for every € > 0, the Borel chromatic number of G, is countable. Note
that every G.-anticlique is a set of points of pairwise distance < ¢, and so in
this case for every € > 0 the space X can be covered by countably many e-balls,
for every € > 0. This implies that the metric d is separable.

Or, there is a real ¢ > 0 an a continuous homomorphism h: 2 — X of
Go to Ge. Let e be the quasimetric on 2¢ defined by e(y,z) = d(h(y), h(2))
and consider the graph H on 2“ connecting points y, z if their e-distance is
< &/2. The graph H is coanalytic and therefore has the Baire property. It
cannot contain a Gg-rectangle: if yg,y1, 20, 21 were corners of such a rectangle,
then d(h(yo), h(20)) < €/2, d(h(y1,20)) < €/2 would hold. At the same time,
d(h(yo), h(y1)) > € since h is a homomorphism of Gy to G.. This contradicts
the triangle inequality for the quasimetric d. By Proposition 1.6, the graph H
is meager, and by Proposition 1.5 there is a perfect H-anticlique C' C 2¥. Then
R C is a perfect set of points of pairwise d-distance at least £/2. This completes
the proof. O

The next application concerns linear quasiorders on Polish spaces. Here, a
quastorder on a set is a transitive relation < which contains the diagonal. It is
linear if for all z,y in its domain, either x < y or y < . To motivate the result,
consider the linear ordering < on R and the linear ordering < on R? defined by
(x0,21) < (Yo, y1) if g < 1 or zg = x1 and yo < y;. They are not isomorphic
since < has a countable dense set while < does not. One way to see that <
does not have a countable dense set is to observe that [(x,0), (z,1)] for x € R
is an uncountable collection of pairwise disjoint intervals in <. The following
dichotomy shows that this is in fact the only way of showing that a definable
linear quasiorder is not separable.



Theorem 1.9. Let X be a Polish space and < an analytic linear quasiordering
on X. Then either < is separable or else there is a perfect collection of pairwise
disjoint <-intervals.

Proof. We will need a notational convention. Say that a pair (z,y) € X? de-
termines a nontrivial interval in < if either z < y or y < z fails; the closed
interval determined by the pair will be the set {z € X: 2 < z < y} or
{z € X:y < z < z} depending on whether < y or y < z fails. We will
identify the pairs with the closed intervals that they determine.

Consider the graph G on X x X connecting pairs (xo, z1) and (yo,y1) if they
determine nontrivial closed <-intervlsl and these intervals have empty intersec-
tion. An inspection reveals that this is an analytic graph. The Gy dichotomy
provides us with two options.

Either, the (Borel) chromatic number of the graph G is countable. In such a
case, the nontrivial closed intervals can be organized into countably many sets
B, for n € w such that in each B,,, any two intervals have nonempty intersection.
In this case, we will argue that the completion <* of the quasiordering < is
separable, which certainly means that < is separable. For each interval I € B,,
write I* for the corresponding interval in <*. Let x, be the least upper bound
of the left endpoints of intervals in B,,, and observe that z}, € (\{I*: I € B,}.
The set {x: n € w} is dense in <* since every nontrivial closed interval in <*
contains one of the points x7,.

Or, there is a continuous map h: 2% — X x X which is a homomorphism of
Go to G. Note that for every z € 2* the pair h(z) defines a nontrivial interval
in <, since only such pairs have any neighbors in the graph G. We must find
a perfect set C' C 2% such that h”C consists of pairs defining pairwise disjoint
intervals. Let H be the graph on 2“ which is the complement of the h-preimage
of G. This is a coanalytic graph, and therefore has the Baire property. It
cannot contain a Gy-rectangle; to see this, observe that if I, J are disjoint closed
intervals and K, L are closed intervals intersecting both I,.J in a nonempty set
then K, L cannot be disjoint. Thus, the graph H is meager by Proposition 1.6,
and so by Proposition 1.5, there is a perfect H-anticlique C' C 2¥. Then, h"C
is the requested perfect collection of pairwise disjoint intervals. O



