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Abstract. With every σ-ideal I on a Polish space we associate
the σ-ideal generated by closed sets in I. We study the quotient
forcings of Borel sets modulo the respective σ-ideals and find con-
nections between forcing properties of the two forcing notions. To
this end, we associate to a σ-ideal on a Polish space an ideal on
a countable set and show how forcing properties of the quotient
forcing depend on the combinatorial properties of the ideal. For
σ-ideal generated by closed sets, we also study the degrees of reals
added by the quotient forcing. Among corollaries of our results,
we get necessary and sufficient conditions for a σ-ideal I generated
by closed sets, under which every Borel function can be restricted
to an I-positive Borel set on which it is either 1-1 or constant. In a
futher application, we show when does a hypersmooth equivalence
relation admit a Borel I-positive independent set.

1. Introduction

This paper is concerned with the study of σ-ideals I on Polish spaces
and associated forcing notions PI of I-positive Borel sets, ordered by
inclusion. If I is a σ-ideal on X, then by I∗ we denote the σ-ideal
generated by the closed subsets of X which belong to I. Clearly, I∗ ⊆ I
and I∗ = I if I is generated by closed sets.

There are natural examples when the forcing PI is well understood,
whereas little is known about PI∗ . For instance if I is the σ-ideal of
Lebesgue null sets, then the forcing PI is the random forcing and I∗ is
the σ-ideal E . The latter has been studied by Bartoszyński and Shelah
[2], [1] but from a slightly different point of view. On the other hand,
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most classical forcing notions, like Cohen, Sacks or Miller forcings fall
under the category of PI for I generated by closed sets.

Some general observations are right on the surface. By the results of
[13, Section 4.1] we have that the forcing PI∗ is proper and preserves
Baire category (for a definition see [13, Section 3.5]). In case when I 6=
I∗ on Borel sets, the forcing PI∗ is not ωω-bounding by [13, Theorem
3.3.1], since any condition B ∈ PI∗ with B ∈ I has no closed I∗-positive
subset. It is worth noting here that the forcing PI∗ depends not only
on the σ-ideal I but also on the topology of the space X.

One of the motivations behind studying the idealized forcing notions
PI is the correspodence between Borel functions and reals added in
generic extensions. The well-known property of the Sacks or Miller
forcing is that all reals in the extension are either ground model reals,
or have the same degree as the generic real. Similar arguments also
show that the generic extensions are minimal, in the sense that there
are no intermediate models. On the other hand, the Cohen forcing adds
continuum many degrees and the structure of the generic extension is
very far from minimality. In [13, Theorem 4.1.7] the second author
showed that under some large cardinal assumptions the Cohen exten-
sion is the only intermediate model which can appear in the PI generic
extension when I is universally Baire σ-ideal generated by closed sets.

The commonly used notion of degree of reals in the generic extensions
is quite vague, however, and in this paper we distinguish two instances.

Definition 1.1. Let V ⊆ W be a generic extension. We say that two
reals x, y ∈ W are of the same continuous degree if there is a partial
homeomorphism from ωω to ωω such that f ∈ V , dom(f), rng(f) are
Gδ subsets of the reals and f(x) = y. We say that x, y ∈ W are of the
same Borel degree if there is a Borel automorphism h of ωω such that
h ∈ V and h(x) = y.

Following the common fashion, we say that a forcing notion PI adds
one continuous (or Borel) degree if for any P generic extension V ⊆ W
any real in W either belongs to V , or has the same continuous (or Borel)
degree as the generic real.

The following results connect the forcing properties of PI and PI∗ .
In some cases we need to make some definability assumption, namely
that I is Π1

1 on Σ1
1. For a definition of this notion see [8, Section 29.E]

or [13, Section 3.8]. Note that if I is Π1
1 on Σ1

1, then I∗ is Π1
1 on Σ1

1

too, by [8, Theorem 35.38].

Theorem 1.2. If the forcing PI is proper and ωω-bounding, then the
forcing PI∗ adds one continuous degree.
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Theorem 1.3. If I is Π1
1 on Σ1

1 and the forcing PI is proper and does
not add independent reals, then the forcing PI∗ does not add indepen-
dent reals.

Theorem 1.4. If I is Π1
1 on Σ1

1 and the forcing PI is proper and
preserves outer Lebesgue measure, then the forcing PI∗ preserves outer
Lebesgue measure.

The methods of this paper can be extended without much effort to
other cases, for example to show that if PI is proper and has the weak
Laver property, then PI∗ inherits this property. As a consequence, by
the results of [14, Theorem 1.4] we get (under some large cardinal as-
sumptions) that if PI proper and preserves P-points, then PI∗ preserves
P-points as well.

Interestingly enough, in this way we will not obtain any new infor-
mation about the Miller forcing.

Proposition 1.5. If I is a σ-ideal such that I 6= I∗, then PI∗ is neither
equivalent to the Miller nor to the Sacks forcing.

To prove the above results we introduce a combinatorial tree forcing
notionQ(J) for J which is a hereditary family of subsets of ω. These are
relatives of the Miller forcing. To determine forcing properties of Q(J)
we study the position of J in the Katětov ordering, a generalization
of the Rudin–Keisler order on ultrafilters. We show that the forcing
PI gives rise to a natural ideal JI on a countable set and we correlate
forcing properties of Q(JI) with the Katětov properies of JI . Finally,
we prove that the forcing PI∗ is, in the nontrivial case, equivalent to
Q(JI). The conjunction of these results proves all the above theorems.

Next, motivated by the examples of the Sacks and the Miller forcing
we prove the following.

Theorem 1.6. Let I be a σ-ideal generated by closed sets on a Polish
space X. Any real in a PI-generic extension is either a ground model
real, a Cohen real, or else has the same Borel degree as the generic
real.

From this we immediately get the following corollary.

Corollary. Let I be a σ-ideal generated by closed sets on a Polish space
X. The following are equivalent:

• PI does not add Cohen reals,
• for any B ∈ PI and any continuous function f : B → ωω there

is C ⊆ B, C ∈ PI such that f is 1-1 or constant on C.
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Now, if we identify a Borel function with a smooth equivalence rela-
tion, then one way to look at the above result is as at a theorem about
selectors for smooth equivalence relations. A much wider class, studied
quite extensively, e.g. in [6], is the class of hypersmooth equivalence re-
lations. An equivalence relation E on a Polish space X is hypersmooth
if there is a sequence of Borel functions fn on X such that for each
x, y ∈ X we have xEy if and only if fn(x) = fn(y) for some n < ω.

Solecki and Spinas [12, Corollary 2.2] showed that for any analytic
set E ⊆ (ωω)2 either all vertical sections of E are σ-compact, or there
is a superperfect set S ⊆ ωω such that S2 ∩ E = ∅. Motivated by this
result, we prove the following.

Theorem 1.7. Let X be a Polish space and I be a σ-ideal on X gener-
ated by closed sets such that the forcing PI does not add Cohen reals. If
E is a Borel hypersmooth equivalence relation on X, then there exists
a Borel I-positive set B ⊆ X such that

• B is contained in one equvalence class,
• or B consists of E-independent elements.

This paper is organized as follows. In Section 3 we introduce the
tree forcing notions Q(J) and relate their forcing properties with the
Katětov properties of J . In Section 4 we show how to assciate an ideal
JI to a σ-ideal I and how forcing properties of PI determine Katětov
properties of J . In Section 6 we prove Proposition 1.5. In Sections 7
and 8 we prove Theorems 1.6 and 1.7.

2. Notation

The notation in this paper follows the set theoretic standard of [4].
Notation concerning idealized forcing follows [13].

For a poset P we write ro(P ) for the Boolean algebra of regular open
sets in P . For a Boolean algebra B we write st(B) for the Stone space
of B. If λ is a cardinal, then Coll(ω, λ) stands for the poset of finite
partial functions from ω into λ, ordered by inclusion.

If T ⊆ Y <ω is a tree and t ∈ T is a node, then we write T � t for the
tree {s ∈ T : s ⊆ t ∨ t ⊆ s}. For t ∈ T we denote by succT (t) the set
{y ∈ Y : tay ∈ T}. We say that t ∈ T is a splitnode if |succT (t)| > 1.
The set of all splitnodes of T is denoted by split(T ).

3. Combinatorial tree forcings

In this section we assume that J is a family of subsets of a countable
set dom(J). We assume that ω /∈ J and that J is hereditary, i.e. if
a ⊆ b ⊆ dom(J) and b ∈ J , then a ∈ J . Occasionally, we will require
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that J is an ideal. We say that a ⊆ dom(J) is J-positive if a /∈ J . For
a J-positive set a we write J � a for the family of all subsets of a which
belong to J .

Definition 3.1. The poset Q(J) consists of those trees T ⊆ dom(J)<ω

for which every node t ∈ T has an extension s ∈ T satisfying succT (s) 6∈
J . Q(J) is ordered by inclusion.

Thus the Miller forcing is just Q(J) when J is the Fréchet ideal on ω.
Q(J) is a forcing notion adding the generic branch in dom(J)ω, which
also determines the generic filter. We write ġ for the canonical name
for the generic branch. Basic fusion arguments literally transfer from
the Miller forcing case to show that Q(J) is proper and preserves the
Baire category.

Proposition 3.2. The forcing Q(J) is equivalent to a forcing PI where
I is a σ-ideal generated by closed sets.

Proof. To simplify notation assume dom(J) = ω. Whenever f : ω<ω →
J is a function, let Af = {x ∈ ωω : ∀n < ω x(n) ∈ f(x � n)}. Note
that the sets Af are closed. Let IJ be the σ-ideal generated by all sets
of this form.

Lemma 3.3. An analytic set A ⊆ ωω is IJ-positive if and only if it
contains all branches of a tree in Q(J).

Proof. For a set C ⊆ ωω × ωω we consider the game G(C) between
Players I and II in which at n-th round Player I plays a finite sequence
sn ∈ ω<ω and a number mn ∈ ω, and Player II answers with a set
an ∈ J . The first element of the sequence sn+1 must not belong to
the set an. In the end let x be the concatenation of sn’s and y be the
concatenation of mn’s. Player I wins if 〈x, y〉 ∈ C.

Claim. Player II has a winning strategy in G(C) if and only if proj(C) ∈
IJ . If Player I has a winning strategy in G(C), then proj(C) contains
all branches of a tree in Q(J).

The proof of the above Claim is standard (cf. [8, Theorem 21.2])
and we omit it. Now, if C ⊆ ωω × ωω is closed such that proj(C) = A,
then determinacy of G(C) gives the desired property of A. �

This shows that PIJ has a dense subset isomorphic to Q(J), so the
two forcing notions are equivalent. �

If J is coanalytic, then the σ-ideal IJ associated with the poset Q(J)
is Π1

1 on Σ1
1. The further, finer forcing properties of Q(J) depend on

the position of J in the Katětov ordering.
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Definition 3.4 ([5]). Let H and F be hereditary families of subsets of
dom(H) and dom(F ) respectively. H is Katětov above F , or H ≥K F ,
if there is a function f : dom(H)→ dom(F ) such that f−1(a) ∈ H for
each a ∈ F .

For a more detailed study of this order see [3]. It turns out that for
many preservation-type forcing properties φ there is a critical heredi-
tary family Hφ such that φ(Q(J)) holds if and only if J � a 6≥K Hφ for
every a /∈ J . This section collects several results of this kind.

Definition 3.5. We say that a ⊆ 2<ω is nowhere dense if every finite
binary sequence has an extension such that no further extension falls
into a. NWD stands for the ideal of all nowhere dense subsets of 2<ω.

Theorem 3.6. Q(J) does not add Cohen reals if and only if J � a 6≥K
NWD for every J-positive set a.

Proof. On one hand, suppose that there exists J-positive set a such
that J � a ≥K NWD as witnessed by a function f : a→ 2<ω. Then, the
tree a<ω forces the concatenation of the f -images of numbers on the
generic sequence to be a Cohen real.

On the other hand, suppose that J � a 6≥K NWD. Let T ∈ Q(J) be
a condition and ẏ be a name for an infinite binary sequence. We must
show that ẏ is not a name for a Cohen real. That is, we must produce
a condition S ≤ T and an open dense set O ⊆ 2ω such that S  ẏ /∈ Ǒ.

Strengthening the condition T if necessary we may assume that there
is a continuous function f : [T ] → 2ω such that T  ẏ = ḟ(ġ). For
every splitnode t ∈ T and for every n ∈ succT (t) pick a branch bt,n ∈ [T ]
such that tan ⊆ bt,n. Use the Katětov assumption to find a J-positive
subset at ⊆ succT (t) such that the set {f(bt,n) : n ∈ at} ⊆ 2ω is nowhere
dense.

Consider the countable poset P consisting of pairs p = 〈sp, Op〉 where
sp is a finite set of splitnodes of T , Op ⊆ 2ω is a clopen set, and
Op ∩ {f(bt,n) : t ∈ sp, n ∈ at} = 0. The ordering is defined by q ≤ p if

• sp ⊆ sq and Op ⊆ Oq,
• if t ∈ sq \ sp, then f(x) /∈ Op for each x ∈ [T ] such that t ⊆ x.

Choose G ⊆ P , a sufficiently generic filter, and define O =
⋃
p∈GOp

and S ⊆ T to be the downward closure of
⋃
p∈G sp. Simple density

arguments show that O ⊆ 2ω is open dense and moreover, S ∈ Q(J),
since for every node t ∈

⋃
p∈G sp and every n ∈ at we have tan ∈ S.

The definitions show that f ′′[S] ∩O = ∅ as desired. �
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Definition 3.7. Let 0 < ε < 1 be a real number. The ideal Sε has
as its domain all clopen subsets of 2ω of Lebesgue measure less than ε,
and it is generated by those sets a with

⋃
a 6= 2ω.

This ideal is closely connected with the Fubini property of ideals on
countable sets, as shown below in a theorem of Solecki.

Definition 3.8. If a ⊆ dom(J) and D ⊆ a× 2ω, then we write∫
a

D dJ = {y ∈ 2ω : {j ∈ a : 〈j, y〉 /∈ D} ∈ J}.

J has the Fubini property if for every real ε > 0, every J-positive set
a and every Borel set D ⊆ a × 2ω with vertical sections of Lebesgue
measure less than ε, the set

∫
a
D dJ has outer measure at most ε.

Obviously, the ideals Sε as well as all families them in the Katětov
ordering fail to have the Fubini property. The following theorem im-
plicitly appears in [11, Theorem 2.1], the formulation below is stated
in [3, Theorem 3.13] and proved in [9, Theorem 3.7.1].

Theorem 3.9 (Solecki). Suppose F is an ideal on a countable set.
Then either F has the Fubini property, or else for every (or equiva-
lently, some) ε > 0 there is a F -positive set a such that F � a ≥K Sε.

By µ we denote the outer Lebesgue measure on 2ω. For a definition of
preservation of outer Lebesgue measure and further discussion on this
property see [13, Section 3.6].

Theorem 3.10. Suppose that J is a universally measurable ideal. Q(J)
preserves outer Lebesgue measure if and only if J has the Fubini prop-
erty.

Proof. Suppose on one hand that J fails to have the Fubini property.
Find a sequence of J-positive sets 〈bn : n ∈ ω〉 such that J � bn ≥K
S2−n , as witnessed by functions fn. Consider the tree T of all sequences
t ∈ dom(J)<ω such that t(n) ∈ bn for each n ∈ dom(t). Let Ḃ be a
name for the set {z ∈ 2ω : ∃∞n z ∈ fn(ġ(n))}. T forces that the set Ḃ
has measure zero, and the definition of the ideals Sε shows that every
ground model point in 2ω is forced to belong to Ḃ. Thus Q(J) fails to
preserve Lebesgue outer measure at least below the condition T .

On the other hand, suppose that the ideal J does have the Fubini
property. Suppose that Z ⊆ 2ω is a set of outer Lebesgue measure δ, Ȯ
is a Q(J)-name for an open set of measure less or equal to ε < δ, and
T ∈ Q(J) is a condition. We must find a point z ∈ Z and a condition
S ≤ T forcing ž /∈ Ȯ.
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By a standard fusion argument, thinning out the tree T if necessary,
we may assume that there is a function h : split(T )→ O such that

T  Ȯ =
⋃
{h(ġ � n+ 1) : ġ � n ∈ split(T )}.

Moreover, we can make sure that if tn ∈ T is the n-th splitting node,
then T � tn decides a subset of Ȯ with measure greater than ε/2n.
Hence, if we write f(tn) = ε/2n, then for every splitnode t ∈ T and
every n ∈ succT (t) we have µ(h(tan)) < f(t).

Now, for every splitnode t ∈ T let Dt = {〈O, x〉 : O ∈ succT (t), x ∈
2ω ∧ x ∈ h(taO)}. It follows from universal measurability of J that
the set

∫
succT (t)

Dt dJ is measurable. It has mass not greater than f(t),

by the Fubini assumption. Since
∑

t∈split(T ) f(t) < δ, we can find

z ∈ Z \
⋃

t∈split(T )

∫
succT (t)

Dt dJ.

Let S ⊆ T be the downward closure of those nodes tan such that t ∈ T
is a splitnode and n ∈ succT (t) is such that z /∈ h(tan). S belongs to
Q(J) by the choice of the point z and S  ž /∈ Ȯ, as required. �

An independent real is a set x of natural numbers in a generic ex-
tension such that both x and the complement of x meet every infinite
set of natural numbers from the ground model.

Definition 3.11. SPL is the family of nonsplitting subsets of 2<ω, i.e.
those a ⊆ 2<ω for which there is an infinite set c ⊆ ω such that t � c is
constant for every t ∈ a.

Obviously, SPL is an analytic set, but it is not clear whether it is also
coanalytic. In the following theorem we show that in two quite general
cases SPL is critical for the property of adding independent reals.

Note that if J is an ideal, H is hereditary and H ′ is the ideal gener-
ated by K, then J ≤K H if and only if J ≤K H ′. Therefore, in case
J is an ideal, J ≥K SPL is equivalent to J being Katětov above the
ideal generated by SPL. The latter is analytic, so in particular it has
the Baire property.

Theorem 3.12. Suppose that J is coanalytic or J is an ideal with
the Baire property. Q(J) does not add independent reals if and only if
J � a 6≥K SPL for every J-positive a.

Proof. Again, the left to right direction is easy. If J � a ≥K SPL for
some J-positive set a, as witnessed by a function f , then the condition
a<ω ∈ Q(J) forces that the concatenation of 〈f(ġ(n)) : n ∈ ω〉 is an
independent real.
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For the right to left direction, we will need two preliminary general
facts. For a set a ⊆ ω by an interval in a we mean a set of the form
[k, l) ∩ a.

First, let a ⊆ ω be a J-positive set, and let Players I and II play
a game G(a), in which they alternate to post consequtive (pairwise
disjoint) finite intervals b0, c0, b1, c1, . . . in the set a. Player II wins if
the union of his intervals

⋃
n<ω cn is J-positive.

Lemma 3.13. Player II has a winning strategy in G(a) for any a /∈ J .

Proof. In case J is an ideal with the Baire property, this follows im-
mediately from the Talagrand theorem [1, Theorem 4.1.2]. Indeed, if
{Ik : k < ω} is a partition of a into finite sets such that each b ∈ J
covers only finitely many of them, then the strategy for II is as follows:
at round n pick cn covering one of the Ik’s.

Now we prove the lemma in case J is coanalytic. Consider a related
game, more difficult for Player II. Fix a continuous function f : ωω →
P(a) such that its range consists exactly of all J-positive sets. The
new game G′(a) proceeds just as G(a), except Player II is required to
produce sequences tn ∈ ω<ω of length and all entries at most n, and in
the end, Player II wins if y =

⋃
n<ω tn ∈ ωω and f(y) ⊆

⋃
n<ω cn.

Clearly, the game G′(a) is Borel and therefore determined. If Player
II has a winning strategy in G′(a), then she has a winning strategy in
G(a) and we are done. Thus, we only need to derive a contradiction
from the assumption that Player I has a winning strategy in G′(a).

Well, suppose σ is such a winning strategy. We construct a strategy
for Player I in G(a) as follows. The first move b0 = σ(∅) does not
change. Suppose Player I is going to make her move after the sets
b0, c0, . . . , bn, cn have been chosen. For each possible choice of the se-
quences tm for m < n consider a run of G′(a) in which Player I plays
according to σ and Player II plays the pairs (b′m, tm), where b′m are the
intervals bm adjusted downward to the previous move of Player I. The
next move of Player I is now the union of all finitely many moves the
strategy σ dictates against such runs in G′(a). It is not difficult to
see that this is a winning strategy for Player I in the original game G.
However, Player I cannot have a winning strategy in the game G since
Player II could immediately steal it and win herself. �

Second, consider the collection F of those subsets a ⊆ ω<ω such that
there is no tree T ∈ Q(J) whose splitnodes all fall into a.

Lemma 3.14. The collection F is an ideal.

Proof. The collection F is certainly hereditary. To prove the closure
under unions, let a = a0 ∪ a1 be a partition of the set of all splitnodes
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of a Q(J) tree into two parts. We must show that one part contains all
splitnodes of some Q(J) tree. For i ∈ 2 build rank functions rki : ai →
Ord∪{∞} by setting rki ≥ 0 and rki(t) ≥ α+ 1 if the set {n ∈ ω : tan
has an extension s in ai such that rki(s) ≥ α} is J-positive. If the rank
rki of any splitnode is ∞ then the nodes whose rank rki is ∞ form a
set of splitnodes of a tree in Q(J), contained in ai. Thus, it is enough
to derive a contradiction from the assumption that no node has rank
∞.

Observe that if t ∈ a is a node with rki(t) <∞, then there is n ∈ ω
such that a contains nodes extending tan, but all of them either have
rank less than rki(t) or do not belong to ai. Thus, one can build a
finite sequence of nodes on which the rank decreases and the last one
has no extension in the set ai. Repeating this procedure twice, we will
arrive at a node of the set a which belongs to neither of the sets a0 or
a1, reaching a contradiction. �

Now suppose that J � a 6≥K SPL for every J-positive set a. Let
T ∈ Q(J) be a condition and ẏ be a Q(J)-name for a subset of ω. We
must prove that ẏ is not a name for an independent real. That is, we
must find an infinite set b ⊆ ω as well as a condition S ≤ T forcing
ẏ � b̌ to be constant. The construction proceeds in several steps.

First, construct a tree T ′ ⊆ T and an infinite set b ⊆ ω such that for
every splitnode t ∈ T ′ there is a bit ct ∈ 2 such that for all but finitely
many n ∈ b, for all but finitely many immediate successors s of t in T ′

we have

T ′ � s  ẏ(n) = ct.

To do this, enumerate ω<ω as 〈ti : i ∈ ω〉, respecting the initial segment
relation, and by induction on i ∈ ω construct a descending sequence of
trees Ti ⊆ T , sets bi ⊆ ω, and bits cti ∈ 2 as follows:

• if ti is not a splitnode of Ti, then do nothing and let Ti+1 = Ti,
bi+1 = bi and cti = 0;
• if ti is a splitnode of Ti, then for each j ∈ succTi

(ti) find a tree

Sj ≤ Ti � tai j deciding ẏ � j, and use the Katětov assumption to
find a J-positive set a ⊆ succTi

(ti), a bit cti ∈ 2, and an infinite
set bi+1 ⊆ bi such that whenever j ∈ a and n ∈ bi+1 ∩ j then
Sj  ẏ(n) = cti . Let Ti+1 = Ti, except below ti replace Ti � ti
with

⋃
j∈a Sj.

In the end, let T ′ =
⋂
i<ω Ti and let b be any diagonal intersection of

the sets bi.
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The second step uses Lemma 3.14 to stabilize the bit ct. Find a
condition T ′′ ⊆ T ′ such that for every splitnode t ∈ T ′′, ct is the same
value, say 0.

The last step contains a fusion argument. For every splitnode t ∈ T ′′
fix a winning strategy σt for Player II in the game G(succT ′′(t)). By
induction on i ∈ ω build sets Si ⊆ T ′′, functions fi on Si, and numbers
ni ∈ b so that

• S0 ⊆ S1 ⊆ . . . , and in fact Si+1 contains no initial segments of
nodes in Si that would not be included in Si already. The final
condition will be a tree S whose set of splitnodes is

⋃
i<ω Si;

• for every node s ∈ Si, the value fi(s) is a finite run of the game
G(succT ′′(s)) according to the strategy σs, in which the union of
the moves of the second player equals {j ∈ ω : ∃t ∈ Si saj ⊆ t}.
Moreover, fi(s) ⊆ fi+1(s) ⊆ . . . . This will ensure that every
node in

⋃
i<ω Si in fact splits into J-positively many immediate

successors in the tree S;
• whenever s ∈ Si and j ∈ ω is the least such that s ∈ Sj, then
T ′′ � s  ∀k ∈ j ẏ(nk) = 0. This will ensure that in the end,
S  ∀i < ω ẏ(ni) = 0.

The induction step is easy to perform. Suppose that Si, fi, nj have
been found for j < i. Let ni ∈ b be a number such that

∀s ∈ Si ∀∞n ∈ succT ′′(s) T ′′ � san  ẏ(ni) = 0.

For every node s ∈ Si, let ds be a finite set such that for all n ∈
succT ′′(s) \ ds and for all j ≤ i

• T ′′ � san  ẏ(nj) = 0
• and san is not an initial segment of any node in Si.

Extend the run fi(s) to fi+1(s) such that the new moves by Player II
contain no numbers in the set ds.

Put into Si+1 all nodes from Si as well as every t which is the smallest
splitnode of T ′′ above some saj where j is one of the new numbers in
the set answered by Player II in fi+1(s).

In the end put S =
⋃
i<ω Si. It follows from the construction that

S  ∀i < ω ẏ(ni) = 0, as desired.
�

We finish this section with an observation about continuous degrees
of reals in Q(J) generic extensions.

Definition 3.15. We say that J has the discrete set property if for
every J-positive set a and every function f : a → X into a Polish
space, there is a J-positive set b ⊆ a such that the set f ′′b is discrete.
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Obviously, the discrete set property is equivalent to being not Katětov
above the family of discrete subsets of Q. It is not difficult to show
that it also equivalent to being not above the ideal of those subsets of
the ordinal ωω which do not contain a topological copy of the ordinal
ωω.

Proposition 3.16. Suppose J has the discrete set property. Then
Q(J) adds one continuous degree.

Proof. Let T be a condition in Q(J) and f : [T ] → ωω a continuous
function. It is enough to find a tree S ∈ Q(J), S ≤ T such that on
[S] the function f is either constant, or is a topological embedding.
Suppose that f is not constant on any such [S]. By an easy fusion
argument we build S ⊆ T , S ∈ Q(J) such that for any splitnode s
of S there are pairwise disjoint open sets Ui for i ∈ succS(s) such
that f ′′[S � sai] ⊆ Ui for each i ∈ succS(s). This implies that f is a
topological embedding on [S]. �

4. Closure ideals

In this section X is a Polish space with a complete metric, I a σ-ideal
on X and O a countable topology basis for the space X.

Definition 4.1. For a set a ⊆ O, define

cl(a) = {x ∈ X : ∀ε > 0 ∃O ∈ a O ⊆ Bε(x)},
where Bε(x) stands for the ball centered at x with radius ε. We write

JI = {a ⊆ O : cl(a) ∈ I}.

It is immediate that the collection JI is an ideal and that JI is dense1,
i.e. every infinite set in O contains an infinite subset in JI . If the
σ-ideal I is Π1

1 on Σ1
1, then JI is coanalytic. On the other hand, if X is

compact and JI is analytic, then it follows from the Kechris Louveau
Woodin theorem [7, Theorem 11] that JI is Fσδ.

Definition 4.2. An ideal J on a countable set is weakly selective if for
every J-positive set a, any function on a is either constant or injective
on a positive subset of a.

Obviously, this is just a restatement of the fact that the ideal is not
Katětov above the ideal on ω×ω generated by vertical lines and graphs
of functions.

Proposition 4.3. JI is weakly selective.

1some authors prefer the term tall
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Proof. Take a JI-positive set a and f : a → ω. Suppose that f is
not constant on any JI-positive subset of a. We must find b ⊆ a such
that f is 1-1 on b. Write Y for cl(a) shrunk by the union of all basic
open sets U such that cl(a) ∩ U ∈ I. Enumerate all basic open sets
which have nonempty intersection with Y into a sequence 〈Un : n < ω〉.
Inductively pick a sequence 〈On ∈ a : n < ω〉 such that On ⊆ Un and
f(On) 6= f(Oi) for i < n. Suppose that Oi are chosen for i < n. Let
Yn = Y ∩Un. This is an I-positive set and hence an = {O ∈ a : O ⊆ Un}
is JI-positive. Note that f assumes infinitely many values on an since
otherwise we could find JI-positive b ⊆ an on which f is constant.
Pick any On ∈ an such that f(On) 6∈ {f(Oi) : i < n}. Now, the set
b = {On : n < ω} is JI-positive since cl(b) contains Y . �

We will now verify several Katětov properties of the ideal JI depend-
ing on the forcing properties of PI .

Proposition 4.4. Suppose that PI is a proper and ωω-bounding notion
of forcing. Then the ideal JI has the discrete set property.

Proof. Take a JI-positive set a and a function f : a → Q. Let B =
cl(a). Let 〈Ȯn : n ∈ ω〉 be a sequence of PI-names for open sets in a
such that Ȯn is forced to be wholly contained in the 2−n-neighborhood
of the PI-generic point in B. Passing to a subsequence and a subset of
a if necessary, we may assume that the sets Ȯn are pairwise distinct
Case 1. Assume the values {f(Ȯn) : n ∈ ω} are forced not to have any
point in the range of f as a limit point. Use the ωω-bounding property
of the forcing PI to find a condition B′ ⊆ B, a sequence of finite sets
〈an : n ∈ ω〉 and numbers εn > 0 such that

• B′  ∀m < ω ∃n < ω Ȯm ∈ ǎn;
• the collection {Bεn(f(O)) : O ∈ an, n ∈ ω} consists of pairwise

disjoint open balls.

To see how this is possible, note that B forces that for every point
y ∈ f ′′a there is an ε > 0 such that all but finitely many points of the
sequence 〈f(Om) : m ∈ ω〉 have distance greater than ε from y.

Now let b =
⋃
n<ω an. Let M be a countable elementary submodel

of a large enough structure and let B′′ ⊆ B′ be a Borel I-positive set
consisting only of generic points over M . It is not difficult to observe
that B ⊆ cl(b) and therefore the set b is as required.
Case 2. If the values {f(Ȯn) : n ∈ ω} can be forced to have a point
in the range of f as a limit point, then, possibly shrinking the set a
we can force the sequence 〈f(Ȯn) : n ∈ ω〉 to be convergent and not
eventually constant, hence discrete. Similarly as in Case 1, we find
b ⊆ a such that f ′′b is discrete. �
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Proposition 4.5. Suppose that PI is a proper and outer Lebesgue mea-
sure preserving notion of forcing. Then JI has the Fubini property.

Proof. Suppose that ε > 0 is a real number, a ⊆ O is a JI-positive set,
and D ⊆ a×2ω is a Borel set with vertical sections of measure at most
ε. Assume for contradiction that the outer measure of the set

∫
a
D dJ

is greater than ε. Let B = cl(a). This condition forces that there is a
sequence 〈Ȯn : n ∈ ω〉 of sets in a such that On is wholly contained in
in the 2−n-neighborhood of the generic point. Let Ċ be a name for the
set {z ∈ 2ω : ∃∞n < ω y /∈ Ȯn}. This is a Borel set of measure greater
or equal to 1 − ε. Since the forcing PI preserves the outer Lebesgue
measure, there must be a condition B′ ⊆ B and a point z ∈

∫
a
DdJ

such that B′  ž ∈ Ċ. Consider the set b = {O ∈ a : z /∈ O}. The
set cl(b) must be I-positive, since the condition B′ forces the generic
point to belong to it. This, however, contradicts the assumption that
z ∈

∫
a
D dJ . �

5. Tree representation and Cohen reals

In this section we show that under suitable assumptions the forcing
PI∗ is equivalent to the tree forcing Q(JI).

Definition 5.1. Let J be an ideal on O and T ∈ Q(J). We say that
T is Luzin if the sets on the n-th level have diameter less than 2−n and
for each t ∈ T the immediate successors of t in T are pairwise disjoint.
If T is Luzin, then we write π[T ] for {

⋂
n<ω x(n) : x ∈ [T ]}.

Proposition 5.2. Let I be a σ-ideal on a Polish space X. If T ∈ Q(JI)
is Luzin, then π(T ) ∈ PI∗.

Proof. The set π[T ] is a 1-1 continuous image of [T ], which is a Polish
space, hence π[T ] is Borel. To see that π[T ] is I∗-positive consider the
function ϕ : [T ] → X which assings to any x ∈ [T ] the single point in⋂
n<ω x(n). Note that ϕ is continuous since the diameters of open sets

on T vanish to 0. Now if π[T ] ⊆
⋃
n<ω En where each En is closed and

belongs to I, then ϕ−1(En) are closed sets covering the space [T ]. By
the Baire category theorem, one of them must have nonempty interior.
So there is n < ω and t ∈ T such that every immediate successor of t in
T belongs to ϕ−1(En). Now for each u ∈ succT (t) we have u∩En 6= ∅,
which implies that cl(succT (t)) ⊆ En and contradicts the fact that
cl(succT (t)) is I-positive. �
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The following proposition, combined with the propositions proved in
the previous section, gives Theorems 1.2, 1.3 and 1.4 from the intro-
duction (recall that the Cohen forcing adds an independent real and
does not preserve outer Lebesgue measure).

Proposition 5.3. Suppose I is a σ-ideal on a Polish space X such
that the poset PI is proper and is not equivalent to the Cohen forcing
under any condition. For any B ∈ PI∗

• either I∗ and I contain the same Borel sets below B,
• or there is C ∈ PI∗ below B such that below C the forcing PI∗

is equivalent to Q(JI).

Proof. Suppose that B ⊆ X is a Borel set which belongs to I but not
to I∗. Assume also that B forces that the generic point is not a Cohen
real. By the Solecki theorem [10, Theorem 1], we may assume that B is
a Gδ set and for every open set O ⊆ X, if B∩O 6= ∅, then B∩O /∈ I∗.
Represent B as a decreasing intersection

⋂
n<ω On of open sets.

We build a Luzin scheme T of basic open sets Ut for t ∈ ω<ω satisfying
the following demands:

• Ut ⊆ O|t| and Ut ∩B 6= ∅,
• the sets in succT (t) have pairwise disjoint closures and are dis-

joint from cl(succT (t)), which is an I-positive set.

To see how this is done, suppose that Ut are built for t ∈ ω≤n and take
any t ∈ ωn. The set cl(B ∩ Ut) is I-positive, and since the PI-generic
real is not forced to be a Cohen real, there is a closed nowhere dense
I-positive subset C of cl(B∩Ut). Find a discrete set D = {dn : n < ω}
such that D ⊆ B∩Ut and C ⊆ cl(D). For each n < ω find a basic open
neighborhood Vn ⊆ Ut ∩ O|t|+1 of dn such that the closures of the sets
Vn are pairwise disjoint, disjoint from C and C ⊆ cl({Vn : n < ω}).
Put Utan = Vn.

Let T ∈ Q(J) be the Luzin scheme constructed above. Clearly, T is
Luzin, as well as each S ∈ Q(JI) such that S ≤ T . For each S ≤ T the
set π(S) ⊆ π(T ) is Borel and I∗-positive by Proposition 5.2. We will
complete the proof by showing that the range of π is a dense subset of
PI∗ below the condition π(T ).

For C ⊆ B which is an I∗-positive set we must produce a tree S ∈
Q(J), S ⊆ T , such that π[S] ⊆ C. By the Solecki theorem we may
assume that the set C is Gδ, a decreasing intersection

⋂
n<ωWn of

open sets and for every open set O ⊆ X if O ∩C 6= ∅, then O ∩C /∈ I.
By tree induction build a tree S ⊆ T such that for every sequence

on n-th splitting level, the last set on the sequence is a subset of Wn,
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and still has nonempty intersection with the set C. In the end, the tree
S ⊆ T will be as required.

Now suppose that immediate successors of nodes on the n-th splitting
level have been constructed. Let t be one of these successors. Find its
extension s ∈ T such that the last set O on it is a subset of Wn+1 and
still has nonempty intersection with C. Note that

cl(π[T ]) ⊆ π[T ] ∪
⋃
u∈T

cl(succT (u)).

Since cl(C ∩ O) /∈ I and π[T ] ⊆ B ∈ I, this means that there must be
an extension u of s such that cl(C ∩ O) ∩ cl(succT (u)) /∈ I. This can
only happen if the set b = {V ∈ au : V ∩ C 6= 0} is J-positive, since
cl(C ∩O)∩ cl(succT (u)) ⊆ cl(b). Put all nodes {uaV : V ∈ b} into the
tree S and continue the construction. �

6. The cases of Miller and Sacks

In this section we prove Proposition 1.5. This depends on a key
property of the Miller and Sacks forcings.

Lemma 6.1. Suppose X is a Polish space, B ⊆ X is a ∆1
2 set, T is a

Miller or a Sacks tree and ẋ is a Miller or Sacks name for an element
of the set B. Then there is S ⊆ T and a closed set C ⊆ X such that
C \B is countable, and S  ẋ ∈ Č.

Proof. For the Sacks forcing it is obvious and we can even require that
C ⊆ B. Let us focus on the Miller case.

Strengthening the tree T if necessary, we may assume that there is a
continuous function f : [T ]→ B such that T  ẋ = f(ġ). The problem
of course is that the set f ′′[T ] may not be closed, and its closure may
contain many points which do not belong to the set B.

For every splitnode t ∈ T and for every n ∈ succT (t) pick a branch
bt,n ∈ [T ] such that tan ⊆ bt,n. Next, find an infinite set at ⊆ succT (t)
such that the points {f(bt,n) : n ∈ at} form a discrete set with at most
one accumulation point xt. For n ∈ at find numbers mt,n ∈ ω and
pairwise disjoint open sets Ot,n such that f ′′[T � (bt,n � mt,n)] ⊆ Ot,n.
Find a subtree S ⊆ T such that for every splitnode t ∈ S, if tan ∈ S,
then n ∈ at and the next splitnode of S past tan extends the sequence
bt,n � mt,n.

It is not difficult to see that cl(f ′′[S]) ⊆ f ′′[S] ∪ {xt : t ∈ ω<ω}, and
therefore the tree S and the closed set C = cl(f ′′[S]) are as needed. �

Proposition 1.5 now immediately follows.
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Proof of Proposition 1.5. If the σ-ideal I does not contain the same
Borel sets as I∗, then any condition B ∈ I \ I∗ forces in PI∗ the generic
point into B but outside of every closed set in the σ-ideal I. However,
by Lemma 6.1 we have that if the Miller or the Sacks forcing forces a
point into a Borel set in a σ-ideal, then it forces that point into a closed
set in that σ-ideal. Thus, PI∗ cannot be in the forcing sense equivalent
neither to Miller nor to Sacks forcing in the case that I 6= I∗. �

7. Borel degrees

In this section we prove Theorem 1.6. To this end, we need to learn
how to turn Borel functions into functions which are continuous and
open.

Lemma 7.1. Suppose I is a σ-ideal on a Polish space X such that PI
is proper. Let B be Borel I-positive, and f : B → ωω be Borel. For
any countable elementary submodel M ≺ Hκ the set

f ′′{x ∈ B : x is PI-generic over M}

is Borel.

Proof. Without loss of generality assume that B = X. Let ẏ be a PI-
name for f(ġ), where ġ is the canonical name for the generic real for
PI . Take R ⊆ ro(PI) the complete subalgebra generated by ẏ. Notice
that for each y ∈ ωω we have

y ∈ f ′′C iff y is R-generic over M.

Hence, it is enough to prove that C ′ = {y ∈ ωω : y is R-generic over M}
is Borel. C ′ is a 1-1 Borel image of the set of ultrafilters on R ∩M
which are generic over M . The latter set is Gδ, so C ′ is Borel. �

Now we show that Borel functions can turned into continuous and
open functions after restriction their domain and some extension of
topology. If Y is a Polish space and I is a σ-ideal on Y , then we say
that Y is I-perfect if I does not contain any nonempty open subset of
Y .

Proposition 7.2. Suppose I is a σ-ideal on a Polish space X such
that PI is proper. Let B ⊆ X be I-positive, and f : B → ωω be Borel.
There are Borel sets Y ⊆ B and Z ⊆ ωω such that Y is I-positive,
f ′′Y = Z and

• Y and Z carry Polish zero-dimensional topologies which extend
the original ones, preserve the Borel structures and the topology
on Y is I-perfect.
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• the function f � Y : Y → Z is continuous and open in the
extended topologies.

Proof. Fix κ big enough and let M ≺ Hκ be a countable elementary
submodel coding B and f . Let Y = {x ∈ B : x is PI-generic over M}.
By Lemma 7.1 we have that Z = f ′′Y is Borel.

Note that if a Σ0
α set A is coded in M , then there are sets An coded

in M , An ∈ Π0
<α such that A =

⋃
nAn. Therefore, we can perform

the construction from [8, Theorem 13.1] and construct a Polish zero-
dimensional topology on X which contains all Borel sets coded in M .
Note that the Borel sets coded in M form a basis for this topology.
Moreover, Y is homeomorphic to the set of ultrafilters in st(PI ∩M)
which are generic over M . So Y is a Gδ set in the extended topology.
Let τ be the restriction of this extended topology to Y . The fact that
τ is I-perfect on Y follows directly from properness of PI .

Let σ be the topology on Z generated by the sets f ′′(Y ∩ A) and
their complements, for all A ⊆ B which are Borel and coded in M .

Now we prove that f � Y is a continuous open from (Y, τ) to (Z, σ).
The fact that f is open follows right from the definitions. Now we

prove that f is continuous. Fix a cardinal λ greater than 22|PI | and a
Borel set A coded in M .

Lemma 7.3. Given x ∈ Y we have

• f(x) ∈ f ′′(A ∩ Y ) if and only if

M [x] |= Coll(ω, λ)  ∃x′ PI-generic over M [x′ ∈ A ∧ f(x) = f(x′)],

• f(x) 6∈ f ′′(A ∩ Y ) if and only if

M [x] |= Coll(ω, λ)  ∀x′ PI-generic over M [x′ ∈ A ⇒ f(x) 6= f(x′)].

Proof. We prove only the first part. Note that in M there is a surjection
from λ onto the family of all dense sets in PI as well as sujections from
λ onto each dense set in PI . Therefore, if x ∈ Y and g ⊆ Coll(ω, λ) is
generic over M [x], then in M [x][g] the formula

∃x′ PI-generic over M [x′ ∈ A ∧ f(x) = f(x′)]

is analytic with parameters A, f and a real which encodes the family
{D ∩M : D ∈ M is dense in PI} and therefore it is absolute between
M [x][g] and V . Hence

M [x][g] |= ∃x′ PI-generic over M [x′ ∈ A ∧ f(x) = f(x′)]

if and only if f(x) ∈ f−1(f ′′(A ∩ Y )). �
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Now it follows from from Lemma 7.3 and the forcing theorem that
both sets Y ∩ f−1(f ′′(A ∩ Y )) and Y ∩ f−1(Z \ f ′′(A ∩ Y )) are in τ .
This proves that f is continuous.

We need to prove that Z with the topology σ is Polish. Note that it is
a second-countable Hausdorff zero-dimensional space, so in particular
metrizable. As a continuous open image of a Polish space, Z is Polish
by the Sierpiński theorem [8, Theorem 8.19].

The fact that σ has the same Borel structure as the original one
follows directly from Lemma 7.1.

�

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let C ∈ PI and ẋ be a name for a real such that

C  ẋ is not a Cohen real and ẋ 6∈ V.

Without loss of generality assume that C = X and C  ẋ = f(ġ) for
some continuous function f : X → ωω. We shall find B ∈ PI and a
Borel automorphism h of ωω such that

B  h(f(ġ)) = ġ.

Find Polish spaces Y ⊆ X and Z ⊆ ωω as in Proposition 7.2. With-
out loss of generality assume that Y = X and the extended topologies
are the original ones (note that I is still generated by closed sets in any
extended topology).

Now we construct T ∈ Q(JI) and a Borel automorphism h of ωω.
To this end we build two Luzin schemes Ut ⊆ X and Ct ⊆ ωω (for
t ∈ ω<ω), both with the vanishing diameter property and such that

• Ut is basic open and Ct is closed,
• f ′′Ut ⊆ Ct
• for each t ∈ ω<ω the set {Utak : k < ω} is JI-positive.

We put U∅ = X and C∅ = ωω. Suppose Ut and Ct are built for all
t ∈ ω<n. Pick t ∈ ωn−1. Now f ′′Ut is an open set. Let K be the perfect
kernel of f ′′Ut. K is nonempty since ẋ is forced not to be in V . Hence
K is a perfect Polish space and Ut  ẋ ∈ K. Note that there is a closed
nowhere dense N ⊆ K such that f−1(N) is I-positive, since otherwise

Ut  ẋ is a Cohen real in K.

Pick such an N and let M = f−1(N). N is closed nowhere dense in
f ′′Ut too, so M is closed nowhere dense in Ut because f is continuous
and open.
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Enumerate all basic open sets in Ut having nonempty intersection
with M into a sequence 〈Vk : k < ω〉. Inductively pick clopen sets
Wk ⊆ Ut and Ck ⊆ ωω such that

• Wk ⊆ f−1(Ck) ∩ Vk is basic open,
• Ck are pairwise disjoint,
• f−1(Ck) are disjoint from M .

Do this as follows. Suppose that Wi and Ci are chosen for i < k. Since
f−1(Ci) are disjoint from M and Vk ∩M 6= ∅, the set Vk \

⋃
i<k f

−1(Ci)
is a nonempty clopen set. Pick xk ∈ Vk \

⋃
i<k f

−1(Ci) \ M . Since
f(xk) 6∈ N ∪

⋃
i<k Ci, there is a clopen neighborhood Ck of f(xk) which

is disjoint from N ∪
⋃
i<k Ci. Let Wk be a basic neighborhood of xk

contained in f−1(Ck) ∩ Vk. Put Utak = Wk and Ctak = Ck. Since
M ⊆ cl({Wk : k < ω}), we have that {Utak : k < ω} is JI-positive.

This ends the construction of T ∈ Q(JI). It is routine now to define
a Borel automorphism h of ωω out of the sets Uτ and Cτ so that T 
ġ = h(f(ġ)). This ends the proof.

�

8. Hypersmooth equivalence relations

In this section we prove Theorem 1.7. If F is an equivalence relation
on X and A ⊆ X, then by [A]F we denote the F -saturation of A, i.e.
the set {x ∈ X : ∃y ∈ A xFy}.

Lemma 8.1. Let I be a σ-ideal on a Polish space X and let F be
an analytic equivalence relation on X. There is an I-positive Borel
set Y ⊆ X which carries a Polish zero-dimensional I-perfect topology
preserving the original Borel structure such that the F -saturation of
any basic clopen set is clopen.

Proof. Let M ≺ Hκ be an elementary countable submodel coding the
relation F . As in Proposition 7.2 we take Y to be the set of all PI-
generic points over M and take the topology generated by all Borel
sets which are coded in M . Now if B is a Borel set coded in M , then
[B]F ∩ Y is equal to J∃x ∈ B ġFxKro(PI) ∩ Y . �

Proof of Theorem 1.7. Let E =
⋃
n<ω En where each En is a smooth

Borel equivalence relation on X. By continuous reading of names for
PI we can assume that each En is given by a continuous function and
consequently En is closed. If for some n < ω there is a Borel I-positive
set consisting of En-independent elements, then we are done. Suppose
this is not the case. Suppose also that all equivalence classes of E
are in I. We will construct then an I-positive Borel set consisting of
E-independent elements.
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By Lemma 8.1 we may assume that for each basic clopen set U its
saturation [U ]E is clopen and that all closed sets from I are nowhere
dense. Since each class of En is closed and contained in a class of E,
which belongs to I, the equivalence classes of En are closed nowhere
dense.

Lemma 8.2. For each n < ω and each nonempty open set U ⊆ X
there is an I-positive closed nowhere dense set C which is contained in
one class of Ei for every i ≤ n.

Proof. By Theorem 1.6 applied for En, for each I-positive Borel set
U ⊆ X there is an I-positive Borel set C ⊆ U which is either contained
in one equivalence class of En, or is En-independent. We excluded the
second possibility in the beginning, so applying Theorem 1.6 n-many
times we get the desired set. �

We will construct S ∈ Q(JI) such that for each x, y ∈ π[S] if x 6= y,
then ¬xEy. Enumerate ω<ω into a sequence 〈tk : k < ω〉 respecting
the lexicographical order. We write sk = tk � (|tk| − 1). Let Tk = {ti :
i ≤ k} and let T ′k denote the set of terminal nodes of Tk.

Inductively we construct a sequence of finite Luzin schemes Sk =
〈Uk

t : t ∈ Tk〉 with the properties:

• Uk+1
t ⊆ Uk

t if t ∈ Tk and Uk+1
t = Uk

t if t ∈ Tk \ T ′k
• if sk+1 = tl, then for each s ∈ T ′k+1 \ {tk+1} we have

[Uk+1
s ]Ei

∩ [Uk+1
tk+1

]Ei
= ∅

for each i ≤ l.

At the end let Ut =
⋂
k<ω U

k
t and let S be the Luzin scheme 〈Ut :

t ∈ ω<ω〉. Note that π[S] will then be E-independent. Indeed, take
x, y ∈ π[S] such that x 6= y and let n < ω. Find k < ω such that
all terminal nodes of Tk are indexed with numbers greater than n and
x � i and y � j are in T ′k for some i, j ∈ ω such that x � i 6= y � j. Then
clearly ¬x′Eny′ for every x′ ⊇ x � (i + 1) and y′ ⊇ y � (j + 1). Thus,
all we need is to make sure that S ∈ Q(JI).

To this end, additionally, along the construction, we build I-positive
nowhere dense sets Ct for t ∈ Tk \T ′k. We ensure that if t = tl ∈ Tk \T ′k,
then

• Ct ⊆ Uk
t ,

• for each i ≤ l the set [Ct]Ei
is nowhere dense,

• for each s ∈ T ′k and each i ≤ l we have

[Uk
s ]Ei
∩ [Ct]Ei

= ∅,
• Ct ⊆ cl(succS(t))
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Each set Ct gets constructed at the first step k such that t ∈ Tk \T ′k.
At this step we also fix an enumeration 〈V l

t : l < ω〉 of all basic open
subsets of Uk

t which have nonempty intersection with Ct and we futher
make sure that Utal ⊆ V l

t for each l < ω. The latter will imply that
Ct ⊆ cl(succS(t)) and consequently S ∈ Q(JI).

We begin the construction by setting U0
∅ = X. Now we make the

induction step from k to k + 1. Let j < ω be such that sk+1 = tj.
There are two cases.
Case 1. The node sk+1 is a terminal node in Tk. In this case we
need to construct Csk+1

. Using Lemma 8.2 we find Csk+1
⊆ Uk

sk+1
such

that [Csk+1
]Ei

is nowhere dense for each i ≤ j. At this point, fix an
enumeration 〈V l

sk+1
: l < ω of all basic clopen subsets of Uk

sk+1
which

have nonempty intersection with Csk+1
.

Next, for each t ∈ T ′k we shrink Uk
t to Uk+1

t which is disjoint from⋃
i≤j[Csk+1

]Ei
. To construct Uk+1

tk+1
notice that the set

W = V 0
sk+1
\

⋃
i≤j

⋃
t∈T ′k

[Uk+1
t ]Ei

is a clopen set and it is nonempty since V 0
sk+1
∩ Csk+1

6= ∅. Since for

each l < ω such that tl ∈ Tk+1 \ T ′k+1 the set
⋃
i≤l[Ctl ]Ei

is nowhere

dense, we can pick Uk+1
tk+1
⊆ W which is disjoint from all these sets.

Case 2. The node sk+1 is not a terminal node in Tk. In this case Csk+1

is already constructed. Let m < ω be maximal such that sk+1
am ∈ Tk.

We put Uk+1
t = Uk

t for each t ∈ T ′k and we only construct Uk+1
tk+1

. The
set

W = V m
sk+1
\

⋃
i<j

⋃
t∈T ′k

[Uk
t ]Ei

is again a nonempty clopen set. As previously, let Uk+1
tk+1

be a basic
clopen subset of W which is disjoint from

⋃
i≤l[Ctl ]Ei

for each l < ω
such that tl ∈ Tk \ T ′k.

This ends the construction of the Luzin scheme S and the whole
proof.

�

9. Questions

Question 1. Suppose that PI is proper and does not add Cohen reals.
Is it true that PI∗ does not add Cohen reals either?

Question 2. Let I be a σ-ideal generated by closed sets such that PI
does not add Cohen reals. Does JI necessarily have the discrete set
property?
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Question 3. Let J be a dense Fσδ and weakly selective ideal on ω.
Does there exist a Polish space with a countable base O and a σ-ideal
I on X such that under some identification of ω and O the ideal J
becomes JI?

Question 4. Is SPL a Borel set?
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