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Abstract

Many forcing notions obtained using the creature technology are nat-
urally connected with certain integer games.

1 Introduction

The paper [7] revealed an intimate connection between the proper forcing tech-
nology and determinacy of infinite games. Many definable proper forcings P
adding a real turn out to have an integer game attached to them. This means
that there are Borel sets C,D ⊂ ωω and a Borel function f : C → R such that

1. the set I = {A ⊂ R : the second player has a winning strategy in the
integer game with payoff set D ∪ f−1A} is a σ-ideal

2. every analytic I-positive set has a Borel I-positive subset

3. the poset P is forcing equivalent to the poset of all Borel I-positive sets
ordered by inclusion.

This is in fact a very natural concept, but it must be illustrated on examples.

Example 1.1. The game attached to Sacks forcing is just the perfect set game
[1] Theorem 102. Just let C = ωω, D = 0 and use a reasonable coding of the
perfect set game into an integer game to let f : ωω → R be given by f(x) =the
real resulting from the run of the perfect set game coded by x.

Example 1.2. The game attached to Miller forcing is the unboundedness game
of [2]
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Example 1.3. The game attached to Cohen forcing is the Baire category game
[1] Theorem 102.

Example 1.4. Mathias forcing does not have an integer game attached to it.
This follows from the fact that Mathias forcing can be written as a two step
σ-closed*c.c.c. iteration, see the next paragraph.

In this paper we show that there is a pattern extending to many partial orders
obtained by the creature technology of [4], and in fact the proofs of properness
of such posets naturally generate the related games. Why are we interested in
the connection? First of all, the concepts of both properness and determinacy
have been around for several decades and it is a priori interesting to see if
they have anything in common. But there are practical reasons as well. Under
suitable determinacy assumptions every forcing P with a game ideal I attached
to it satisfies a dichotomy: every projective set of reals has either a Borel I-
positive subset or a coanalytic I-small superset–Lemma 4.1. Such a dichotomy
simplifies the treatment of the countable support iteration of the poset P and
the statement of the absoluteness theorems in [7]. Such a dichotomy also means
that all intermediate forcing extensions within the P -extension are c.c.c. [8]

Let us now describe the results of the paper. The creature technology is quite
complex and it is difficult–indeed self-defeating–to treat it in its full generality.
In the language of [4] we will deal with partial orders given by suitably definable
tree-creating pairs of countable character whose subcomposition operation is
trivial, with no glueing. The information carried by such pairs can be coded
into a simple norm, a Borel function whose domain is the set of all creatures
of the form 〈t,X〉 where t ∈ ω<ω is a sequence and X is a set of its one-step
extensions. The values of the function are nonnegative real numbers. A simple
norm gives rise to several forcing notions, among them

Q0 This is the partial order of all trees T ⊂ ω<ω such that for every natural
number n and a node s ∈ T there is a longer node t ∈ T such that
norm(t, succT (t)) > n. The ordering is by inclusion.

Q1 This is the partial order of all trees T ⊂ ω<ω such that for every path x ∈ [T ]
the limes inferior of the numbers norm(x � n, succT (x � n)) : n ∈ ω is
infinity. The ordering is again by inclusion.

Of course these forcings depend on the choice of the norm, but in this paper
all theorems are stated for the general case of an arbitrary simple norm, and we
will not mention the dependence. We will always tacitly assume that the full
tree ω<ω belongs to the poset Q1. There are many standard notions of forcing
that can be obtained in this way: Sacks, Miller and Laver forcing, PTfg of [6]
7.3.3, the LT forcings of [5] and others.

Example 1.5. Let norm(t,X) be the length of the sequence t if X is infinite
and norm(t,X) = 0 otherwise. Then Q0 is the Miller forcing and Q1 is the
Laver forcing.
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The exact syntactical complexity of the norm is not critical as long as it is
a projective function. For norms more complex than Borel we would have to
change the wording of our theorems a bit. However, the norms occurring in
practice are very simple. Note that in the case of finitely branching trees the
norm is actually a hereditarily countable object.

It turns out that under our assumptions the forcings Q0 are always proper
and they carry a particularly simple game. This case is treated in Section 2.
The forcings Q1 do not have to be proper, however the most common way of
guaranteeing the properness automatically provides an integer game for them.
This is shown in Section 3. In Section 4 we investigate the resulting dichotomies.

The notation of this paper follows the set theoretic standard of [1]. For
a tree T ⊂ ω<ω and a node t ∈ T the symbol succT (t) denotes the set of
immediate successors of the node t in the tree T . In forcing, we follow the
western convention of writing q ≤ p when q is a condition more informative
than p. For forcings Q0 and Q1 the symbol ṙgen stands for the name for the
generic function in ωω, in both cases equal to the intersection of all the trees in
the generic filter. The abbreviation LC denotes a use of a suitable large cardinal
hypothesis.

2 The Q0 forcing

For the Q0 forcing arising from some simple norm, it is natural to consider the
collection

Definition 2.1. I0 is the collection of all sets A ⊂ ωω which have an Fσ-superset
B such that for no tree T ∈ Q1 we have [T ] ⊂ B.

This collection can be restated in terms of an infinite game:

Definition 2.2. Let A ⊂ ωω be a set. The infinite game G0(A) is played
between Adam and Eve. First, Adam plays a sequence t0 ∈ ω<ω. After that,
stage n of the game proceeds as follows: a sequence tn ∈ ω<ω is given and Adam
plays one by one some of its one step extensions (beginning a construction of
a creature of norm ≥ n). The stage n ends when (and if) Eve accepts one of
these extensions, after which Adam extends it further in an arbitrary way to a
sequence tn+1 ∈ ω<ω. Adam wins if either at some stage n Eve did not accept
any of his extensions of the sequence tn and the creature he constructed has
norm ≥ n, or else

⋃
n tn ∈ A.

And the following is the key fact:

Lemma 2.3. 1. Adam has a winning strategy in the game G0(A) if and only
if for some tree T ∈ Q0 it is the case that [T ] ⊂ A.

2. Eve has a winning strategy in the game G0(A) if and only if A ∈ I0.

3. I0 is a σ-ideal and Q0 is forcing equivalent to the algebra of Borel I0-
positive sets ordered by inclusion.
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Proof. The first item is almost trivial. Suppose that Adam has a winning strat-
egy in the game G0(A). Then the initial segment closure of the set of all
sequences that can possibly come up in a play following the strategy, is some
tree T , and it is not difficult to see that T ∈ Q0 and [T ] ⊂ A. On the other
hand, if for some tree T ∈ Q0 we have [T ] ⊂ A, then Adam can win the game
G(A) by playing only the nodes that occur on the tree T . The reader can easily
complete the standard argument.

For the second item, it is now clear from (1) and Borel determinacy that if
A ∈ I0 then Eve has a winning strategy in the game G0(A). For the converse,
suppose that Eve has a winning strategy σ in the game G0(A) and fix some
notation: given a partial run v of the game which ends with Eve accepting some
sequence tv at a stage nv, let Tv = {t ∈ ω<ω : no intermediate node tv ⊂ s ⊆ t
can be accepted by Eve in some run of the game G0 extending v and respecting
the strategy σ}. It is not difficult to see that except for the initial segments of
the sequence tv, the collection Tv is closed under initial segment, and no node
in it can branch into more than norm = nv +1 many immediate successors. We
will show that A ⊂

⋃
v[Tv] and that no tree T ∈ Q1 has [T ] ⊂

⋃
v[Tv], concluding

the proof of the second item. For the first statement, if r /∈
⋃
v[Tv] then it is

possible to construct runs 0 = v0 ⊂ v1 ⊂ . . . respecting the strategy σ in such
a way that tvm ⊂ r using the fact that at each stage m of the construction, the
real r ∈ ωω must steer out of the tree Tvm . Then

⋃
m vm is a run of the game G0

according to the winning strategy σ resulting in the real r, meaning that r /∈ A.
For the second statement, choose a tree T ∈ Q0. Enumerate all partial runs
respecting the strategy σ by vm : m ∈ ω and construct nodes 0 = t0 ⊂ t1 ⊂ so
that the node tm+1 branches into more than norm = nvm + 1 many immediate
successors and the node tm+2 falls out of the tree Tvm . Then

⋃
m tm is a branch

through the tree T which is not in the set
⋃
v[Tv].

There are now two dual ways to show that the collection I0 is a σ-ideal; one
uses a fusion argument with the poset Q0 and the other will combine countably
many Eve’s strategies into one. Both of the arguments are rather standard, and
one point in this paper is that they are really the same thing. Let us perform the
fusion argument. Suppose that An : n ∈ ω are Fσ sets, each of them without a
subset of the form [T ] where T ∈ Q0. Clearly

⋃
nAn is a Fσ set and it is enough

to prove that it does not contain all branches of some Q0 tree T . Suppose for
contradiction it does; then T  ṙgen ∈

⋃
n Ȧn and by thinning out the tree

T if necessary we may find a particular number n such that T  ṙgen ∈ Ȧn.
Certainly An is an analytic set and there is a tree U ⊂ (ω×ω)<ω which projects
into An in all generic extensions, in particular in the Q0 extension. So there is a
name τ for a function in ωω such that T  〈ṙgen , τ〉 is a branch through the tree
Ǔ . A standard fusion argument will now yield a condition S ⊂ T in the poset
Q0 such that for every number m the tree Sm = {s ∈ S : S � s does not decide
the value of τ(m̌)} is wellfounded. This means that for every branch x through
the tree S the expression τ/x makes sense, it is a function in ωω and 〈x, τ/x〉
is a branch through the tree U . This is to say that [S] ⊂ An, contradicting the
properties of the set A.
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It is now clear that the poset Q0 is isomorphic to the algebra of I0-positive
Borel sets ordered by inclusion: the function π(T ) = [T ] is an order isomorphism
between the poset Q0 and a dense subset of the algebra.

Thus the poset Q0 has a game attached to it, namely the game G0, and
the corresponding ideal has a basis consisting of Fσ sets. This has numerous
consequences for the forcing properties of the poset, see for example [8].

Whenever I is a σ-ideal with a basis consisting of Fσ sets, then the algebra
of I-positive Borel sets is a proper notion of forcing [8]. There are very many
such algebras and by far not all of them are forcing equivalent to a poset of the
form Q0, if only for the reason that closed sets are not dense in them. A simple
example is the ideal of meager sets: while the equivalence classes of clopen sets
are dense in the factor algebra of Borel sets modulo the meager sets, the closed
sets themselves are not dense in the original unfactored algebra of nonmeager
Borel sets ordered by inclusion. A somewhat more sophisticated example is
provided by the ideal σ-generated by closed measure zero sets. Clearly, no pos-
itive Borel measure zero set can have a closed positive subset, and the situation
carries over to the factor algebra as well.

3 The Q1 forcing

Now let us look at the forcing Q1 arising from some simple norm. It is natural
to consider the following object:

Definition 3.1. I1 is the collection of all sets A ⊂ ωω which have a coanalytic
superset B ⊂ ωω such that for no tree T ∈ Q1 it is the case that [T ] ⊂ B.

It is not difficult to express the collection I1 in terms of an infinite game:

Definition 3.2. Let A ⊂ ωω be a set. The infinite game G1(A) between players
Adam and Eve is played as follows. First Adam indicates a sequence t0 ∈ ω<ω.
Then, at stage n of the game a sequence tn will be known, Adam will play
a natural number mn and then one-by-one a set of one-step extensions of the
sequence tn (beginning a construction of a creature of norm > mn based on tn).
The stage n will be finished when (and if) Eve accepts one of these extensions
to become tn+1. Adam wins if either at some stage n Eve has not played for
infinitely many rounds and the creature Adam constructed at that stage has
norm > mn, or else the numbers {mn : n ∈ ω} diverge to infinity and the real⋃
n tn belongs to the set A.

We will use the occassion to fix some notation relevant to the game G1. The
real

⋃
n tn will be referred to as the outcome of the play. The numbers mn that

Adam plays will be called norms. If u ⊂ v are two runs of the game G1 then we
will say that the run v n-extends the run u if all the norms played on v \ u are
greater or equal to n. A good strategy for Eve is one that cannot be defeated
by reason of not accepting any node at some stage while Adam constructs a
creature of a suitable norm at that stage. Clearly, the set of all good strategies
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for Eve is a coanalytic set. A play of the game is correct if Eve accepts a node
at all the infinitely many stages, and the norms played diverge to infinity.

It is not difficult to verify

Lemma 3.3. 1. Adam has a winning strategy in the game G1(A) if and only
if there is a tree T ∈ Q1 such that [T ] ⊂ A.

2. (LC) Eve has a winning strategy in the game G1(A)} if and only if A ∈ I1.

Proof. The first item is next to trivial. If, on one hand, there is a tree T ∈ Q1

such that [T ] ⊂ A then Adam can win the game G1(A) by simply making sure
that tn ∈ T , playing mn = norm(tn, succT (tn)), and on the n-th stage simply
enumerating all the immediate successors of the node tn in the tree T . On the
other hand, Adam has a winning strategy σ in the game G1(A) then the tree T
of all nodes that can occur as some tn in some run of the game observing the
strategy σ, is an element of the poset Q1 such that [T ] ⊂ A, as the reader can
easily verify.

For the second item, first prove the right-to-left inclusion. Suppose σ is
Eve’s winning strategy in the game G1(A). Then the set A is included in the
coanalytic set B = ωω\the set of all outcomes of the correct plays which observe
the strategy σ. The strategy σ is still winning for Eve in the game G1(B), and
by the first item the set B does not have a subset of the form [T ] for a tree
T ∈ Q1. Thus A ∈ I1. For the other inclusion, suppose that A ∈ I1 is a set.
This means that A is a subset of a coanalytic set B without a Q1-tree in it. By
the analytic determinacy and the first item, Eve has a winning strategy in the
game G1(B), which is of course winning even in the game G1(A).

Comparing the situation with the parallel development in the previous sec-
tion, now it would be natural to prove that I1 is a σ-ideal; then, as in Lemma 2.3(3),
the poset Q1 will be forcing equivalent to the algebra of I1-positive Borel sets
ordered by inclusion and G1 will be the game attached to the forcing P1. How-
ever, here the situation is complicated by the fact that the collection I1 is not
necessarily a σ-ideal, a problem that is connected with the possibility that the
poset Q1 is not proper.

We will prove two implications: “Q1 has continuous reading of names” im-
plies that “I1 is a σ-ideal”, which in turn implies that “Q1 is proper”. Here, the
continuous reading of names is the most common tool to ensure the properness
of the forcing Q1. Thus we can be satisfied to conclude that for the forcings
of the form Q1 the existence of an attached integer game is tightly connected
with properness. Note that if I1 is a σ-ideal then the generic filter on Q1 can be
reconstructed from the generic real as the set of all conditions in Q1 containing
the real by Lemma 2.1 of [7]. This property can fail for certain variations of the
tree creature forcings.

It should be remarked that it is in general impossible to find a basis for
the ideal I1 consisting of Fσ sets. The reason is that for a suitable norm the
forcing Q1 can add a dominating real, and such a real cannot be added by an
algebra of Borel I-positive sets ordered by inclusion, where I is an ideal with
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basis consisting of Fσ sets. However, in many cases it is possible to find a basis
for the ideal I1 consisting of rather simple Borel sets, for example the ideal
associated with the Laver forcing has a basis consisting of Gδ sets.

Definition 3.4. The forcing Q1 has continuous reading of names if for every
collection {On : n ∈ ω} of open dense subsets of it and every tree T ∈ Q1

there is a subtree S ⊂ T in the poset Q1 such that for every number n the set
Sn = {t ∈ S : S � t /∈ On} is wellfounded.

While this notion has not been explicitely defined in print, it has very often
been used. Cf. Lemma 2.3.6(2) in [4]. It is not difficult to see that if the poset
Q1 has continuous reading of names then it preserves ℵ1 and every real in the
extension is an image of the generic real under a continuous function in the
ground model–hence the name.

Lemma 3.5. (LC) Suppose that the forcing Q1 has continuous reading of
names. Then I1 is a σ-ideal.

Proof. Suppose I1 is not a σ-ideal; then there must be I1-small sets An : n ∈ ω
such that

⋃
nAn /∈ I. Let Bn be coanalytic sets such that An ⊂ Bn and for no

tree T ∈ Q1 and no natural number n, [T ] ⊂ Bn. Now
⋃
nAn ⊂

⋃
nBn and⋃

nBn /∈ I1 is a coanalytic set. By the analytic determinacy and the previous
lemma, there is a tree T ∈ Q1 such that [T ] ⊂

⋃
nBn. Clearly, T  ṙgen ∈⋃

n Ḃn and strengthening the tree T if necessary we may assume that there

is a specific number n such that T  ṙgen ∈ Ḃn. Let U ⊂ (ω × ω1)<ω be
a tree whose projection in all ω1-preserving extensions is the set Bn. Thus
T  ṙgen ∈ p[Ǔ ] and there must be a Q1-name τ for a function from ω to ω1

such that T  〈ṙgen , τ〉 is a branch through the tree Ǔ . By the continuous
reading of names, there is a subtree S ⊂ T in the poset Q1 such that for every
natural number m the subtree Sm = {t ∈ S : S � t does not decide the value
of τ(m̌)} is wellfounded. This means that for every path x ∈ p[S] the formula
τ/x = {〈m,α〉 : for some initial segment t ⊂ x with S � t  τ(m̌) = α̌} defines a
total function from ω to ω1 and the pair 〈x, τ/x〉 constitutes a path through the
tree U. This is to say that [S] ⊂ Bn contradicting the choice of the set Bn.

Note that we have not used anything concerning the definability of the or-
dering Q1 in the above proof.

Lemma 3.6. (LC) If I1 is a σ-ideal then the forcing Q1 is proper.

Proof. Suppose that I1 is a σ-ideal. Then the poset Q1 is forcing equivalent to
the algebra of Borel I1-positive sets ordered by inclusion, and it is enough to
argue for the properness of the algebra. We will prove the following claim of
independent interest:

Claim 3.7. (LC) Let P be a poset adding a real ṙ which is forced to fall out of all
ground model coded I1-small sets. Let M be a countable elementary submodel of
a large enough structure. For every condition p ∈ P∩M the set {ṙ/g : g ⊂ P∩M
is an M -generic filter} is I1-positive.
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The lemma follows immediately from the claim applied to the special case of
the algebra of Borel I1 positive sets via Lemma 2.2. of [7]. To prove the claim,
fix the poset P and the name ṙ. Choose a measurable cardinal κ > |P | and fix
the usual tree U ⊂ (ω×κ)<ω projecting into the coanalytic set of all good Eve’s
strategies for the game G1. Consider another infinite game H with the following
rules: player I first indicates a condition p0 ∈ P and then produces one-by-one
open dense sets On : n ∈ ω of the poset P and nodes u0 ⊂ u1 ⊂ . . . in the
tree U . Thus

⋃
n un is a branch through the tree U and its first coordinates

constitute a good Eve’s strategy that we will denote by σ. Meanwhile, player
II is allowed to tread water–to wait for an arbitrary finite number of rounds
before his next move. He produces one-by-one conditions p0 ≥ p1 ≥ . . . and
partial runs 0 = v0 ⊂ v1 ⊂ v2 ⊂ . . . of the game G1. Player II wins if the filter
g generated by the conditions {pn : n ∈ ω} meets all the sets {On : n ∈ ω}, the
run

⋃
n vn is correct, it respects the strategy σ, and it results in the real ṙ/g.

Claim 3.8. (LC) Player II has a winning strategy in the game H.

Claim 3.7 follows. Fix Player II’s winning strategy τ , let M be a countable
elementary submodel of a large enough structure with τ ∈ M , let p ∈ P ∩M
and consider the set A = {ṙ/g : p ∈ g, g ⊂ P ∩ M is an M -generic filter}.
Suppose for contradiction that A ∈ I1; then there must be Eve’s good winning
strategy σ in the game G1(A). Let N be an elementary submodel such that
M ∩P(P ) = N ∩P(P ) and the ordertype of the set N ∩κ is ω1; there is such a
model due to the measurability of the cardinal κ. The tree U ∩N still projects
into the set of all Eve’s good strategies, in particular, there is a branch through
the tree U ∩ N which gives the strategy σ. Now simulate a run of the game
H in which player II follows his strategy τ and player I puts p = p0 and then
enumerates the incriminated branch of the tree U ∩ N and all the open dense
subsets of the poset P in the model M . Since Player II’s moves come from the
model N and τ ∈ N , player I’s responses come from the model N too (or M ,
which is the same thing due to the choice of the model N). Let g ⊂ P ∩M be
the filter and let v be the run of the game G1 generated by player II’s responses.
Clearly, ṙ/g ∈ A and v is a run of the game G1(A) which respects the strategy
σ which results in this real–that is, Adam has won. Thus the strategy σ was
not winning for Eve, contradiction.

The observation critical for the proof of Claim 3.8 is that the payoff set of
the game H is Borel in the space of all possible runs of the game, therefore the
game is determined by [3]. So it is enough to derive a contradiction from the
assumption that player I has a winning strategy τ . Player II will construct a
counterplay consisting of conditions pn and partial runs vn using the following
induction hypothesis:

1. the condition pn and the run vn are played at the same time, pn+1 ∈ On

2. the partial run vn obeys the part of the strategy σ that is known by the
time the run vn is played. The run vn ends with Eve accepting some
sequence tn and pn  ťn−1 ⊂ ṙ. The run vn+1 n-extends the run vn.
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3. The condition pn is vn, n-good, meaning that for every good Eve’s strategy
σ which can output the run vn there exists a condition q ≤ pn such that
q  there is a complete run of the game G1 which n-extends the run vn,
it is correct, it respects the strategy σ and results in the real ṙ.

The first two items say that if player II can perform the construction, the
result will be a run of the game H against the strategy τ in which he wins,
contradicting the assumption on the strategy τ . The third item is just an extra
induction hypothesis designed so as to make the inductive step possible.

In the beginning, the condition p0 is given, and let v0 = 0. The induction
hypothesis is satisfied. Note that the third item in this case is implied by the
assumption that the real ṙ is forced to fall out of all ground model coded I1-
small sets. Suppose pn, vn are known. To construct the condition pn+1 and the
run vn+1, first look at what happens if player II treads water from this point
on. Of course, in this way he loses, but the main point is that the strategy τ
will have to continue playing, creating Eve’s strategy σ and also, somewhere on
the way, the open dense set On ⊂ P . Since the condition pn ∈ P is vn, n-good,
there is a condition q ≤ pn with the properties described in the third item above.
Strengthening the condition q if necessary, we may assume that q ∈ On.

Claim 3.9. (LC) There is a partial run w of the game G1 which n-extends the
run vn, in which Eve uses the strategy σ, at the last move in it she accepts some
sequence tn+1 properly extending tn, and such that the condition q is w, n + 1-
good.

This will conclude the inductive step, since player II will be able to play
pn+1 = q, vn+1 = w as soon as the strategy τ reveals the open dense set On and
enough of the strategy σ to see that w is a run in which Eve uses that strategy,
and the inductive hypothesis will continue to hold.

Well, suppose that the claim fails. Then for each run w satisfying the as-
sumptions of the claim we can find a strategy σw for Eve in the game G1 showing
that the condition q is not w, n + 1-good. This means that q  ṙ ∈ Ẋ where
X = {s ∈ ωω : there is a complete correct run n-extending the run vn, respect-
ing the strategy σ, and resulting in the real s; however, for no partial run w
satisfying the assumptions of the claim there is a correct complete run n + 1-
extending the run w which follows the strategy σw and results in the real s}.
The definition of the set X is a mouthful, but it is really a boolean combination
of analytic sets. By our large cardinal assumptions, the game G1(X) is deter-
mined and either X ∈ I1 or [T ] ⊂ X for some tree T ∈ Q1. The first case is
impossible, since q  ṙ ∈ Ẋ and the real ṙ is forced to fall out of all ground
model coded I1-small sets. So we are stuck in the second case. There must be
a node tn+1 extending tn in the tree T such that all the norms above that node
are ≥ n+ 1. There must be a partial run w n-extending the run vn+1, in which
Eve follows the strategy σ and in her last move accepts exactly the sequence
tn+1. Now clearly Adam can n + 1-extend the run w into a correct complete
run against the strategy σw by playing only nodes of the tree T below t. The
result of that run should be a real which is not in the set X by its definition.
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At the same time, it will be a branch through the tree T and as such it does
belong to the set X. Contradiction.

4 The dichotomies

The natural conclusion of the previous sections are the following dichotomies.
Consult [7] for the definition of I-perfect sets and iterated Fubini power Iα for
σ-ideals I on the reals.

Lemma 4.1. (LC) Suppose that P is a proper forcing with an integer game
attached to it, as witnessed by Borel sets C,D ⊂ ωω, a Borel function f : C → R
and the σ-ideal I. For every universally Baire set A ⊂ ωω,

1. either A has a Borel I-positive subset

2. or A has a coanalytic I-small superset.

For every countable ordinal α and every universally Baire set A ⊂ (ωω)α,

1. either A has a Borel I-perfect subset

2. or A is Iα-small.

Proof. Suppose that A ⊂ ωω is universally Baire set. Suitable large cardinal
assumptions imply that the integer game with the payoff set D ∪ f−1A is de-
termined. If player I has a winning strategy σ, then the set f ′′σ′′ωω ⊂ A is
analytic, it is I-positive since σ remains a winning strategy for player I in the
associated game, therefore it has a Borel I-positive subset and we are in the first
case of the dichotomy. If on the other hand player II has a winning strategy
σ then the set R \ f ′′σ′′ωω ⊃ A is coanalytic and it is in the ideal I since the
strategy σ remains a winning strategy for player II in the associated game.

The second dichotomy is proved using the first dichotomy and the results of
[7].

Lemma 4.2. (LC) The above dichotomies hold for the forcing Q0. Suppose that
the forcing Q1 has continuous reading of names. Then the above dichotomies
hold for Q1 as well.

All similar dichotomies beg a question: what happens in the classical choice-
less Solovay model?

Lemma 4.3. (LC) Suppose that the forcing Q1 has continuous reading of
names and κ is an inaccessible cardinal. The above dichotomies hold in the
model V (R) ⊂ V [G] for all subsets of ωω and (ωω)α respectively, whenever
G ⊂ Coll(ω,< κ) is a generic filter. The same holds about the forcing Q0.
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Proof. We will treat the case of the Q1 forcing, the Q0 case being much simpler.
Start with the first dichotomy. Suppose that A ∈ V (R) is a subset of ωω.

By a standard argument we may assume that the set A is definable in V (R) as
A = {r ∈ ωω : φ(r, t)} from some parameter t in the ground model. Assume
that the set A is forced to be I1-positive. Then there must be in V a forcing
P of size < κ and a P -name ṙ such that P “the real ṙ falls out of all the I1-
small sets coded in the ground model and Coll(ω,< κ)  V (R) |= φ(ṙ, ť)”. By
essentially Claim 3.7 applied in the model V [G] to the model V instead of the
arbitrary countable M , the set B = {r/g : g ⊂ P is V -generic} is I1-positive.
It is also a Borel set, and by the choice of the name ṙ and the homogeneity
properties of the forcing Coll(ω,< κ), it is also the case that B ⊂ A.

For the second dichotomy assume that α ∈ κ is an ordinal and A ⊂ (ωω)α is a
set in V (R). Working in the model V (R), we will show that if the set A is not Iα1 -
small, then it contains an I1-perfect Borel subset. By a standard argument we
may assume that α ∈ ωV1 and the set A is definable as A = {~r ∈ (ωω)α : φ(~r, t)}
from some parameter t in the ground model. Consider the following strategy σ
for Adam in the transfinite game of length α defining the ideal Iα1 : the strategy
σ applied to a string ~s of Eve’s answers gives the set

⋃
{X : X ∈ I1 coded in

the model V [~s]. If the set A is not Iα1 -small, there must be a sequence ~r ∈ A
which is a legal counterplay against this strategy. This means that back in V
there is a poset P of size < κ and a P -name ~r for an α-sequence of reals such
that P “for every β ∈ α̌, ~r(β) /∈

⋃
{X : X ∈ I1 coded in the model V [~r � β]};

moreover Coll(ω,< κ)  φ(~r, ť)”.
Back to the model V (R). Call a sequence ~s ∈ (ωω)≤α P -generic if there is a

V -generic filter g ⊂ P such that ~s ⊂ ~r/g. For such a sequence ~s and a condition
p ∈ P we will say that p is ~s-good if there is a V -generic filter g ⊂ P containing
the condition p such that ~s = ~r/g. The following claim is reminiscent of the
classical preservation theorems for countable support iterations. Note that P is
a countable set in the model V (R).

Claim 4.4. For every ordinal β ≤ α, for every ordinal γ ∈ β, every Borel
I1-perfect set C ⊂ (ωω)γ consisting of P -generic sequences, and every Borel
function f : C → P such that for every sequence ~s ∈ B the condition f(~s) is ~s-
good, there is a Borel I1-perfect set B ⊂ (ωω)β consisting of P -generic sequences
such that C = B � γ and for every sequence ~s ∈ B the condition f(~s � γ) is
~s-good.

Once the claim has been proved, we will apply it with β = α and γ = 0
to get a Borel I1-perfect set B ⊂ (ωω)α consisting of P -generic sequences. By
a standard argument using the homogeneity of the poset Coll(ω,< κ) we can
conclude that B ⊂ A and the second dichotomy follows.

The claim is proved by induction on the ordinal β. First the successor
step. Suppose the induction hypothesis holds at β and we want to verify it at
β + 1 for some ordinal γ ≤ β, a Borel I1-perfect set C ⊂ (ωω)γ and a Borel
function f : C → P . Use the induction hypothesis to get a Borel I1-perfect
set D ⊂ (ωω)β consisting of P -generic sequences such that C = D � γ and for
every sequence ~s ∈ D the condition f(~s � γ) is ~s-good. Now consider the set
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B = {~s ∈ (ωω)β+1 : ~s � β ∈ D and ~s is a P -generic sequence such that the
condition f(~s � γ) is ~s-good}. The set B is as required; the only thing to verify
is that for every sequence ~s ∈ D the set {r ∈ ωω : ~sar ∈ B} is not in the ideal
I1. But this follows essentially from Claim 3.7 applied to the forcing P/~s below
the condition f(~s � γ), the name ~r(β) and the model V [~s] in place of the model
M . Note that the real ~r(β) is forced to fall out of all I1-small sets in the model
V [~r � β].

For the limit step, suppose that β is a limit of an increasing sequence of
ordinals 〈βn : n ∈ ω〉, γ ∈ β0 is an ordinal and C ⊂ (ωω)γ and f : C →
P are objects as in the assumption of the claim. Let 〈On : n ∈ ω〉 be an
enumeration of open dense subsets of the poset P in the ground model V , and
by use the inductive hypothesis on the ordinals βn repeatedly to construct a
sequence 〈Bn, fn : n ∈ ω〉 such that Bn ⊂ (ωω)βn are Borel I1-perfect sets and
fn : Bn → P are Borel functions such that Bn−1 = Bn � βn1

and for every
sequence ~s ∈ Bn the condition fn(~s) is ~s-good, it belongs to the open dense set
On and it is smaller than fn−1(~s � βn−1). Here it is understood that C = B−1
and f = f−1. The construction is very easy to perform: at each number n ∈ ω
first apply the induction hypothesis at βn to get a set Bn as asserted in the
Claim, and then for every sequence ~s ∈ Bn let fn(~r) be some condition in the
open dense set On smaller than fn−1(~s � βn−1) which is ~s-good, say the first
condition with this property in some fixed enumeration of the poset P . In the
end, let B = {~s ∈ (ωω)β : ∀n ∈ ω ~s � βn ∈ Bn}. It is clear that the set B is
Borel I1-perfect. Moreover, every sequence ~s ∈ B is P -generic and the condition
f(~s � γ) is ~s-good, as witnessed by the V -generic filter g ⊂ P obtained from the
descending sequence 〈fn(~s � βn) : n ∈ ω〉 of conditions in the poset P .
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