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Abstract

We isolate a forcing which increases the value of §3 while preserving
w1 under the assumption that there is a precipitous ideal on w; and a
measurable cardinal.

1 Introduction

The problem of comparison between ordinals defined in descriptive set theory
such as §%,n € w and cardinals such as X,,,n € w has haunted set theorists for
decades. In this paper, we want to make a humble comment on the comparison
between 63 and wy.

Hugh Woodin showed [6] that if the nonstationary ideal on wy is saturated
and there is a measurable cardinal then 63 = N,. Thus the iterations for making
the nonstationary ideal saturated must add new reals, and they must increase
53, Tt is a little bit of a mystery how this happens, since the new reals must
be born at limit stages of the iteration and no one has been able to construct a
forcing increasing the ordinal 63 explicitly. The paper [7] shed some light on this
problem; it produced a single step Namba type forcing which can increase 63 in
the right circumstances. In this paper we clean up and optimize the construction
and prove:

Theorem 1.1. Suppose that there is a normal precipitous ideal on wi and a
measurable cardinal k. For every ordinal A € k there is an Ny preserving poset
forcing 63 > \.

An important disclaimer: this result cannot be immediately used to iterate
and obtain a model where 63 = Ny from optimal large cardinal hypotheses.
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The forcing obtained increases 63 once, to a value less than wy. If the reader
wishes to iterate the construction in order to obtain a model where 63 = ws, he
will encounter the difficult problem of forcing a precipitous ideal on w; by an
N;-preserving poset. Forcing d3 = Ry may be possible with some other type of
accumulation of partial orders obtained in this paper.

The notation in this paper is standard and follows [2]. After the paper was
written we learned that a related construction was discovered by Jensen [4]: a
Namba-type forcing in the model L[U] with one measurable cardinal introducing
a mouse which iterates to any length given beforehand.

2 Generic ultrapowers, iterations, and 4}

In order to prepare the ground for the forcing construction, we need to restate
several basic definitions and claims regarding the generic ultrapowers and their
iterations.

Definition 2.1. [3] Suppose that J is a o-ideal on wy. If G C P(wy) \ J is a
generic filter, then we consider the generic ultrapower j : V.— N modulo the
filter G, in which only the ground model functions are used. If the model N is
wellfounded, it is identified with its transitive collapse, and the ideal J is called
precipitous.

The following definitions and facts have been isolated in [6].

Definition 2.2. [6] Suppose that M is a countable transitive model, and
M E“J is a precipitous ideal”. An iteration of length § < w; of the model
M is a sequence M, : a < ( of models together with commuting system of
elementary embeddings; successor stages are obtained through a generic ultra-
power, and limit stages through a direct limit. A model is iterable if all of its
iterands are wellfounded.

Definition 2.3. [1] Suppose J is a precipitous ideal on w;. An elementary
submodel M of a large structure with j € M is selfgeneric if for every maximal
antichain A C P(wq) \ J in the model M there is a set B € AN M such that
M Nwy € B. In other words, the filter {B € M NP(wy)\J: M Nw; € B} is
an M-generic filter.

Note that if M is a selfgeneric submodel, N is the Skolem hull of M U
{MNw},and j: M — N is the elementary embedding between the transitive
collapses induced by id : M — N, then j is a generic ultrapower of the model
M by the genric filter identified in the above definition. The key observation is
that selfgeneric models are fairly frequent:

Proposition 2.4. Suppose that J is a precipitous ideal on wi and p > 28 is a
regular cardinal. The set of countable selfgeneric elementary submodels of H,
is stationary in [H,]M.



Proof. Suppose that f : H ;“’ — H,, is a function; we must find a selfgeneric
submodel of H,, closed under it. Let G C P(wi) \ J be a generic filter and
j 'V — N be the associated generic ultrapower embedding into a transitive
model. Note that j” HIY is a selfgeneric submodel of j(H,,) closed under the
function j(f); it is not in general an element of the model N. Consider the
tree T of all finite attempts to build a selfgeneric submodel of j(H,) closed
under the function j(f). Then T' € N and the previous sentence shows that
the tree T is illfounded in V[G]. Since the model N is transitive, it must
be the case that the tree T is illfounded in N too, and so M kthere is a
countable selfgeneric elementary submodel of j(H,,) closed under the function
J(f). An elementarity argument then yields a countable selfgeneric elementary
submodel of the structure H,, closed under the function f in the ground model
as desired. O

Our approach to increasing 1 is in spirit the same as that of Woodin. We
start with a ground model V' with a precipitous ideal J on w;, a measurable
cardinal x, and an ordinal A € k. Choose a regular cardinal p between A and k.
In the generic extension V[G], it will be the case that w} = wY[G] and & is still
measurable and moreover there is a countable elementary submodel M < H;/

such that

e M is selfgeneric
e MM is iterable

e ) is a subset of one of the iterands of M.

In fact, it will be the case that writing M,,, @ € w; for the models obtained
by transfinite inductive procedure My = M, M1 =Skolem hull of M, U{M,N
w1}, and M, = Uﬁea for limit ordinals «, and writing M, for the respective
transitive collapses, the models M, are all selfgeneric, the models My, o < wy
constitute an iteration of the model M, and A C |J, M,. By Lemma 4.7 of [6],
5% must be larger than the cumulative hierarchy rank of the model M, , which
by the third item is at least A\. Note that the model M cannot be an element
of the ground model.

It may seem that adding a model M such that all the models M,,a € w;
are selfgeneric is an overly ambitious project. The forcing will in fact add
a countable set {f, : n € w} C H /Y such that every countable elementary
submodel containing it as a subset is necessarily selfgeneric. It will also add
a countable set {gn, : n € w} C H) of functions from Wi to w such that
A = U, mg(gn). This will be achieved by a variation of the classical Namba
construction by an Nj-preserving forcing of size < k. In the generic extension,
use the measurability of k to find an elementary submodel N of a large structure
containing J, u, k as well as the functions f,, g,,n € w such that the ordertype
of NNk is wy, and consider the transitive collapse N of the model N NV. It is
iterable by Lemma 4.5 of [6]. This means that even the transitive collapse M
of the model M = N N HL/ is iterable, since it is a rank-initial segment of N



and every iteration of M extends to an iteration of N. Thus the model M is as
desired, and this will complete the proof.

3 A class of Namba-like forcings

Definition 3.1. Suppose that X is a set and I is a collection of subsets of X
closed under subsets, X ¢ I. The forcing Q; consists of all nonempty trees
T C X<% such that every node t € T has an extension s € T such that
{r e X :s"x €T} ¢ I. The ordering is that of inclusion.

It is not difficult to see that the forcing @Q; adds a countable sequence of
elements of the underlying set X. The only property of the generic sequence we
will use is that it is not a subset of any ground model set in the collection I. The
usual Namba forcing is subsumed in the above definition: just put X = Ny and
I =all subsets of wy of size N;. A small variation of the argument in [5] will show
that whenever [ is an < Ny-complete ideal then the forcing @QQ; preserves 8y and
if in addition CH holds then no new reals are added. We want to increase the
ordinal §3, so we must add new reals, and so we must consider weaker closure
properties of the collection I. The following definition is critical.

Definition 3.2. Suppose that J is an ideal on a set Y, X is a set, and [ is a
collection of subsets of X. We say that I is closed under J integration if for
every J-positive set B C Y and every set D C B x X whose vertical sections
are in I the set [, D dJ ={x € X :{ye€ B: (y,x) ¢ D} € J} C X is also in
the collection 1.

We will use this definition in the context of a precipitous ideal J on w;. In
this case, the closure under J integration allows of an attractive reformulation:

Proposition 3.3. Suppose that J is a precipitous ideal on wy and I is a col-
lection of subsets of some set X closed under inclusion. Then I is closed under
J-integration if and only if P(w1) \ J forces that writing j : V. — M for the
generic ultrapower, the closure of I under J integration is equivalent to the
statement that for every set A C X not in I, the set j” A is not covered by any
element of j(I).

Proof. For the left-to-right implication, assume that I is closed under J integra-
tion. Suppose that some condition forces that Ce J(I) is a set; strengthening
this condition of necessary we can find a set B € P(wp) \ J and a function
f: B — I such that B IF C = j(f)(@). Let D C B x X be defined by
(a,x) € D & z € f(a) and observe that [, D dJ € I. Thus, if A ¢ I is a set,
it contains an element x ¢ [, D d.J, then the set B’ ={a € B:xz ¢ f(a)} CB
is J-positive and as a P(w;) \ J condition it forces j(x) ¢ C and j(A) ¢ C.
The opposite implication is similar. O

The reader should note the similarity between the above definition and the
Fubini properties of ideals on Polish spaces as defined in [§].



The basic property of the class of forcings we have just introduced is the
following.

Proposition 3.4. Suppose that J is a precipitous ideal on wy, X is a set, and
I is a collection of subsets of the set X closed under J integration. Then the
forcing Qp preserves N.

Proof. Suppose that T |- f :w — wp is a function. A usual fusion argument
provides for a tree S C T' in the poset @ such that for every node t € S on the
n-th splitting level the condition S [ ¢ decides the value of the ordinal f (n) to
be some definite ordinal g(t) € wy. Here, S | ¢ is the tree of all nodes of the tree
S inclusion-compatible with ¢t. To prove the theorem, it is necessary to find a
tree U C S and an ordinal o € wy such that the range ¢”U is a subset of .

For every ordinal a@ € w; consider a game G, between Players I and II in
which the two players alternate for infinitely many rounds indexed by n € w,
Player I playing nodes t,, € T on the n-th splitting level of the tree T" and Player
IT answering with a set A,, € I. Player I is required to play so that tg C t; C ...
and the first element on the sequence t,41 \ ¢, is not in the set A,,. He wins if
the ordinals g(¢,),n € w are all smaller than .

It is clear that these games are closed for Player I and therefore determined.
Note that if Player I has a winning strategy o in the game G, for some ordinal
a € wi, then the collection of all nodes which can arise as the answers of
strategy o to some play by Player II forms a tree U in Q; and ¢"’U C . Thus
the following claim will complete the proof of the theorem.

Claim 3.5. There is an ordinal o € wy such that Player I has a winning strategy
in the game G.

Assume for contradiction that Player II has a winning strategy o, for every
ordinal o € wy. Let M < H, be a selfgeneric countable elementary submodel
of some large structure containing the sequence of these strategies as well as
X,I,J. Let § = M Nw;. We will find a legal counterplay against the strategy
o in which Player I uses only moves from the model M. It is clear that in such
a counterplay, the ordinals ¢(t,),n € w stay below 3. Therefore Player I will
win this play, and that will be the desired contradiction.

The construction of the counterplay proceeds by induction. Build nodes
tn,n € w of the tree S as well as subsets B,,n € w of wy so that

e By D By D ... are all J-positive sets in the model M such that ¢ € B,
for every number n

ety Cty C--- C t, are all in the model M and they form a legal finite
counterplay against all strategies o4, € B,, in particular, against the
strategy og.

Suppose that the node t,, € SN M and the set B, have been found. Consider
the set D = {{a,x) : @ € By, x € 04(tn)} C B x X. Its vertical sections are
sets in the collection I, and by the assumptions so are the integrals fc D dJ



for all J-positive sets C' C B,,. Since the node t,, € S has more than I many
immediate successors, it follows that the set A = {C C B, : C ¢ J and
dr e X VaeCtrax € SAx ¢ o4(tn)} is dense in P(wy) \ J below the set
B,,. This set is also in the model M and by the selfgenericity there is a point
x € X N M such that t;z € S and the set Sp11 = {a € B, 1 © & 04(tn)} is
in the set AN M and contains the ordinal 5. The node ¢,,41 D t, is then just
any node at n + 1-st splitting level extending ¢ z. Clearly, t,41 € M by the
elementarity of the model M. This concludes the inductive construction and
the proof. O

As the last remark in this section, the class of sets I closed under J-
integration is itself closed on various operations, and this leads to simple opera-
tions on the partial orders of the form Q;. We will use the following operation.
If X, X7 are disjoint sets and Iy C P(Xy) and I; C P(X;) are sets closed under
subsets and J integration, then also the set K C P(XoU X;) defined by A € K
if either AN Xy € Iy or AN X € I is closed under subsets and J-integration.
It is easy to see that the forcing Qi adds an w sequence of elements of Xy U X3
which cofinally often visits both sets and its intersection with Xy or X7 is not
a subset of any ground model set in Iy or I; respectively.

4 Wrapping up

Fix a normal precipitous ideal J on w;, a measurable cardinal x, and an ordinal
A < K. Theorem 1.1 is now proved through identification of several interest-
ing collections of sets closed under J-integration. This does not refer to the
precipitousness of the o-ideal J anymore.

Definition 4.1. X is the set of all functions from wy® to A. Iy C P(Xp) is
the closure of the set of its generators under subset and J-integration, where
the generators of I are the sets A, = {g € Xo : o ¢ rng(g)} for a € \.

The obvious intention behind the definition is that if {g, : n € w} C X,
is a set of functions which is not covered by any element of the set Iy then
U,, rg(g») = A. With the previous section in mind, we must prove that Xy ¢ Io.
Unraveling the definitions, it is clear that it is just necessary to prove that
whenever n is a natural number, S C w} is a J™-positive set, and D C S x X
is a set whose vertical sections are Ip-generators, then the integral |, gD dJ"
is not equal to Xy. Here J" is the usual n-fold Fubini power of the ideal J.
Let ¢g : wi" — X be a function such that for every n-tuple E € S, the vertical
section D7 is just the generator Ag( Gy Then clearly g ¢ |J jes D in particular

g¢ [¢DdJ" and [, D dJ" # Xo.

Definition 4.2. X is the set of all functions with domain w;“ x 2 and range a
subset of w; x P(wy). Here A is the set of all maximal antichains in the forcing
P(w1)\J. The set I is the closure of the set of its generators under subset and J-
integration, where the generators of I; are the sets of the form A, z = {f € X :



for every finite sequence 3 € o<, f(3,Z)(0) € a and f(f, Z)(1) is not a set in
Z containing «}, where o € wy and Z € 2 are arbitrary.

The obvious intention behind this definition is that whenever {f,, : n € w} is
a countable subset of X; which is not covered by any element of the set I; then
every countable elementary submodel M < H,, containing all these functions
must be self-generic: whenever Z € M is a maximal antichain in P(w;) \ J,
writing @« = M Nw;, there must be a number n such that f, ¢ A, z. Perusing
the definition of the set A, z and noting that M is closed under the function
fn, we conclude that it must be the case that for some finite sequence E € a<¥
the value f,(3,Z) € M must be a set in Z containing the ordinal a. Since
the maximal antichain Z was arbitrary, this shows that M is self-generic as
required.

We must prove that X; ¢ I;. This is a rather elementary matter, neverthe-
less it is somewhat more complicated than the 0 subscript case. Unraveling the
definitions, it is clear that it is just necessary to prove that whenever n is a nat-
ural number, S C wi is a J™-positive set, and D C S x X is a set whose vertical
sections are I-generators, then the integral f gD dJ" is not equal to X;. Here
J" is the usual n-fold Fubini power of the ideal J. Fix then n € w, a J"-positive
set S C wl, and the set D C S x Xl, we must find a function f € X; and a
J-positive set U C S such that V3 € U <ﬂ f) ¢ D. For every sequence fes
choose a countable ordinal a(f) and a maximal antichain Z(8) C P(w1) \ J
such that Dg = Aa( 3).2(3)" Use standard normality arguments to find numbers
m,k < n and a J"-positive set T" C S consisting of increasing sequences such
that

-,

e for a sequence B' € T, the value of a(8) depends only on 5 I m and
a(B) =z B(m —1)

e the value of Z (5) depends only on 5 [ k and the partial map 7 with domain
w¥, defined by Z(ﬁ) =7(f | k) whenever 5 € T, is countable-to-one.

There are now several cases.
e There is a J"-positive set U C T such that a(F) > G(m—1). Here, consider

the function f € X; such that f(3 | m,Z) = a(f) for every sequence
6 € U and every maximal antichain Z. Clearly, fe¢Us jev Dj as required:
for every sequence 5 € U, it is the case that a(ﬁ) = f(g i m,Z(E))(O)

and so the ordinal o(3) does not have the required closure property with
respect to f.

e The first case fails and k > m. Here, define the map f € X7 by f(0, Z)(0) =
sup{A(k —1): f €T and Z = Z(f)} + 1 for every maximal antichain Z.
The set U = {y € T : a(f) = f(m — 1)} and the map f are as re-
quired: again, for every sequence 8 € U the ordinal a(ﬁ) < 5(1@ -1) <
£(0,Z(5))(0) does not have the required closure properties.



e The first case fails and k < m. Define the function f € X; in the following
way. For every sequence 7 € wgnfl, if the set Wy = {a € wy : 35 €
T 7« C f and o = a(f)} is J-positive, let f(F,7(7 | k)) to be some
element of the maximal antichain 7(¥ | k) with J-positive intersection
with W5. The set U = {5 eT: a(ﬁ) = ﬁ(m) and g(m) € f(ﬁ i
(m — 1),77(5 I k)} is then J™ positive and f ¢ UBeU Dj as required: the

=, — -, -,

ordinal a(3) belongs to the set (8 | k, Z(B3)) € Z(5).

Thus X1 ¢ Il-

To conclude the proof of Theorem 1.1, just form a collection K C P(XoUX)

as in the end of the previous section and force with the poset Q. Since K is
closed under J-integration, the forcing preserves R. It also adds sets {f, : n €
w} C X; and {g, : n € w} C X, with the required properties, showing that in
the generic extension, 63 > \.
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