Groups with infinite asymptotic dimension

Trevor Davila

SEALS 2020

February 29, 2020

Coarse geometry

What is coarse geometry?

Trevor Davila (SEALS 2020)

- ∢ ≣ →

3

Coarse geometry

What is coarse geometry?

Definition

Let X, Y be metric spaces. $f : X \to Y$ is a *coarse embedding* if there exist non-decreasing functions $\rho_-, \rho_+ : [0, \infty) \to [0, \infty)$ with

$$\lim_{t\to\infty}\rho_-(t)=\infty$$

3

()

Coarse geometry

What is coarse geometry?

Definition

Let X, Y be metric spaces. $f: X \to Y$ is a *coarse embedding* if there exist non-decreasing functions $\rho_-, \rho_+ : [0, \infty) \to [0, \infty)$ with

$$\lim_{t\to\infty}\rho_-(t)=\infty$$

and

$$\rho_-(d(a,b)) \leq d(f(a),f(b)) \leq \rho_+(d(a,b))$$

3

A D A D A D A

Coarse geometry of what?

Let $G = \langle S \rangle$ with S finite, symmetric. G has the word length metric:

$$d(g,h) = |g^{-1}h|_S$$

A 🖓

Coarse geometry of what?

Let $G = \langle S \rangle$ with S finite, symmetric. G has the word length metric:

$$d(g,h) = |g^{-1}h|_S$$

Note that this metric is proper (bounded sets are finite) and left-invariant:

d(kg, kh) = d(g, h)

Coarse geometry of what?

Let $G = \langle S \rangle$ with S finite, symmetric. G has the word length metric:

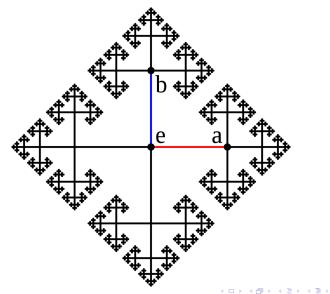
$$d(g,h) = |g^{-1}h|_S$$

Note that this metric is proper (bounded sets are finite) and left-invariant:

$$d(kg, kh) = d(g, h)$$

Any countable G carries a proper (bounded sets are finite), left-invariant metric.

Free group F_2 $F_2 = \langle a, a^{-1}, b, b^{-1} \rangle$



Trevor Davila (SEALS 2020)

- 34

0-dimensional families

A family \mathcal{U} of subsets of X is *R*-disjoint if for any distinct $U, V \in \mathcal{U}$, d(U, V) > R.

A 🖓

3

0-dimensional families

- A family \mathcal{U} of subsets of X is *R*-disjoint if for any distinct $U, V \in \mathcal{U}$, d(U, V) > R.
- \mathcal{U} is uniformly bounded if there exists M > 0 with diam(U) < M for all $U \in \mathcal{U}$.

5 / 23

0-dimensional families

- A family \mathcal{U} of subsets of X is *R*-disjoint if for any distinct $U, V \in \mathcal{U}$, d(U, V) > R.
- \mathcal{U} is uniformly bounded if there exists M > 0 with diam(U) < M for all $U \in \mathcal{U}$.
- If X is covered by an R-disjoint and uniformly bounded family, we consider X to be 0-dimensional at scale R.

5 / 23

Finite asymptotic dimension

Definition (M. Gromov (1993))

asdim $X \leq n$ if for any R > 0, X has a uniformly bounded cover $\mathcal{U} = \mathcal{U}_0 \cup \cdots \cup \mathcal{U}_n$ with each \mathcal{U}_i R-disjoint.

For each R > 0, X decomposes into n + 1 R-disjoint uniformly bounded families.

Examples

Definition

asdim $X \leq n$ if for any R > 0, X has a uniformly bounded cover $\mathcal{U} = \mathcal{U}_0 \cup \cdots \cup \mathcal{U}_n$ with each \mathcal{U}_i R-disjoint.

- asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n = n$
- If G is a finitely generated abelian group of rank n, then asdim G = asdim Zⁿ = n

Examples

Definition

asdim X < n if for any R > 0, X has a uniformly bounded cover $\mathcal{U} = \mathcal{U}_0 \cup \cdots \cup \mathcal{U}_n$ with each \mathcal{U}_i *R*-disjoint.

- asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n = n$
- If G is a finitely generated abelian group of rank n, then asdim $G = \operatorname{asdim} \mathbb{Z}^n = n$
- asdim $F_n = 1$
- Solvable groups
- Having finite asymptotic dimension is preserved by direct products and group extensions.
- Solvable groups whose factor groups are fin. gen. have finite asymptotic dimension

- 4 同 6 4 日 6 4 日 6

Examples

Theorem (J. Roe (2005))

If G is word hyperbolic, then asdim $G < \infty$.

Theorem (N. Wright (2010))

Finite dimensional CAT(0) cube complexes have finite asymptotic dimension.

Theorem (M. Bestvina, K. Bromberg, K. Fujiwara (2014)) If Σ is a compact orientable surface, then asdim $MCG(\Sigma) < \infty$.

A D A D A D A

The Coarse Baum-Connes Conjecture:

If X is a discrete metric space, we say X satisfies the Coarse Baum-Connes Conjecture if the assembly map

$$\mu: \mathit{KX}_*(X) \to \mathit{K}_*(\mathit{C}^*(X))$$

is an isomorphism.

Here $KX_*(X) = \lim_{d\to\infty} K_*(P_d(X))$, where $P_d(X)$ is the Rips complex of X for distance d, and K_* is the K-homology functor. $C^*(X)$ is a certain C^* -algebra which is a coarse invariant of X, and K_* is the K-theory functor.

The Coarse Baum-Connes Conjecture implies certain "topological rigidity" statements, notably the Novikov conjecture if $\pi_1(M)$ satisfies the CBCC.

- 4 週 ト - 4 三 ト - 4 三 ト

Theorem (G. Yu (1998))

The Coarse Baum-Connes Conjecture is true for every bounded geometry metric space with finite asymptotic dimension.

Theorem (G. Yu (1998))

The Coarse Baum-Connes Conjecture is true for every bounded geometry metric space with finite asymptotic dimension.

Theorem (G. Yu (2000))

The Coarse Baum-Connes Conjecture is true for every bounded geometry metric space which admits a coarse embedding into a Hilbert Space.

10 / 23

Theorem (G. Yu (1998))

The Coarse Baum-Connes Conjecture is true for every bounded geometry metric space with finite asymptotic dimension.

Theorem (G. Yu (2000))

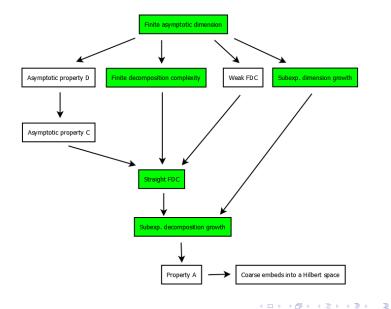
The Coarse Baum-Connes Conjecture is true for every bounded geometry metric space which admits a coarse embedding into a Hilbert Space.

Theorem (Guenter, Tessera, Yu (2012))

Let M, N be compact, aspherical manifolds such that $\pi_1(M), \pi_1(N)$ have finite decomposition complexity. If M, N are homotopy equivalent, then for some n, $M \times \mathbb{R}^n$ and $N \times \mathbb{R}^n$ are homeomorphic.

イロト 不得下 イヨト イヨト

Infinite asymptotic dimension



Decompositions of metric spaces

- X is (R, n)-decomposable over \mathcal{U} if $\exists R$ -disjoint families $\mathcal{U}_1, \ldots, \mathcal{U}_n$ with
 - $\bigcup_{i=1}^{n} \mathcal{U}_i$ a cover of X
 - Each $\mathcal{U}_i \subset \mathcal{U}$.

Write

 $X \xrightarrow{R,n} \mathcal{U}$

3

Decompositions of metric spaces

- X is (R, n)-decomposable over \mathcal{U} if $\exists R$ -disjoint families $\mathcal{U}_1, \ldots, \mathcal{U}_n$ with
 - $\bigcup_{i=1}^{n} \mathcal{U}_i$ a cover of X
 - Each $\mathcal{U}_i \subset \mathcal{U}$.

Write

$$X \xrightarrow{R,n} \mathcal{U}$$

If $\mathcal V$ is a family of metric spaces and each $X \in \mathcal V$ has $X \stackrel{R,n}{\longrightarrow} \mathcal U$, write

$$\mathcal{V} \xrightarrow{R,n} \mathcal{U}$$

Definition

Say asdim $X \leq n$ if for any $R \geq 0$ there is uniformly bounded \mathcal{U} with $X \stackrel{R,n+1}{\longrightarrow} \mathcal{U}$.

If the *n* needed for decompositions $X \xrightarrow{R,n} U$ tends to infinity with *R*, $asdim(X) = \infty$.

Definition

Say asdim $X \leq n$ if for any $R \geq 0$ there is uniformly bounded \mathcal{U} with $X \stackrel{R,n+1}{\longrightarrow} \mathcal{U}$.

If the *n* needed for decompositions $X \xrightarrow{R,n} U$ tends to infinity with *R*, $asdim(X) = \infty$.

Definition (A. Dranishnikov (2006))

Let $ad_X(R) : \mathbb{N} \to \mathbb{N}$ be defined so $ad_X(R) = n$ is the least n such that \exists uniformly bounded \mathcal{U} with $X \xrightarrow{R,n} \mathcal{U}$.

If the *n* needed for decompositions $X \xrightarrow{R,n} U$ tends to infinity with *R*, $asdim(X) = \infty$.

If the *n* needed for decompositions $X \xrightarrow{R,n} U$ tends to infinity with *R*, $asdim(X) = \infty$.

Definition (A. Dranishnikov (2006))

Let $ad_X(R) : \mathbb{N} \to \mathbb{N}$ be defined so $ad_X(R) = n$ is the least n such that \exists uniformly bounded \mathcal{U} with $X \xrightarrow{R,n} \mathcal{U}$.

If the *n* needed for decompositions $X \xrightarrow{R,n} U$ tends to infinity with *R*, $asdim(X) = \infty$.

Definition (A. Dranishnikov (2006))

Let $ad_X(R) : \mathbb{N} \to \mathbb{N}$ be defined so $ad_X(R) = n$ is the least n such that \exists uniformly bounded \mathcal{U} with $X \xrightarrow{R,n} \mathcal{U}$.

We say X has subexponential asymptotic dimension growth if $\lim_{R\to\infty} \sqrt[R]{ad_X(R)} = 1.$

Subexponential dimension growth is a quasi-isometry invariant of X.

• $\mathbb{Z} \wr \mathbb{Z}$ has linear dimension growth.

Subexponential dimension growth is a quasi-isometry invariant of X.

- $\mathbb{Z} \wr \mathbb{Z}$ has linear dimension growth.
- (...((ℤ ≀ ℤ) ≀ ℤ) ≀ … ≀ ℤ) ≀ ℤ has polynomial dimension growth of degree d − 1 (d ℤ's).

Subexponential dimension growth is a quasi-isometry invariant of X.

- $\mathbb{Z} \wr \mathbb{Z}$ has linear dimension growth.
- (...((ℤ ≀ ℤ) ≀ ℤ) ≀ … ≀ ℤ) ≀ ℤ has polynomial dimension growth of degree d − 1 (d ℤ's).
- Dimension growth of finitely generated G is bounded by the growth of Vol_G(R) = |B_G(R, e)|.
- Groups of subexponential volume growth have subexponential dimension growth (i.e. Grigorchuk's group). This is a subclass of amenable groups.
- Finite rank coarse median groups have subexponential dimension growth.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Problems with asymptotic dimension growth:

- Difficult to compute
- Subexponential dimension growth is likely not preserved by group extensions or direct unions
- It's just a quasi-isometry invariant, not a general coarse invariant.

Finite decomposition complexity

Decomposition game (Guenter, Tessera, Yu (2012))

Round 1: Player A picks an integer R_1 . Player B $(R_1, 2)$ -decomposes X over some family U_1 .

Round k: Player A picks an integer R_k . Player B (R_k , 2)-decomposes U_k .

X has *finite decomposition complexity* if Player B can always decompose to a uniformly bounded family in finitely many rounds.

Finite decomposition complexity

- FDC is preserved by taking subgroups, group extensions, direct unions, and free prodcuts.
- Finite asymptotic dimension implies FDC.
- All elementary amenable groups have FDC
- All countable subgroups of GL(n, R), where R is any commutative ring, have FDC.
- All countable subgroups of an almost connected Lie group have FDC.
- Does every countable amenable group have FDC? Open even for amenable groups of subexponential (but superpolynomial) volume growth.

Straight finite decomposition complexity

FDC can be weakened by requiring Player A to pick all the distances in advance.

Definition (A. Dranishnikov, M. Zarichnyi (2014))

X has straight finite decomposition complexity (sFDC) if for any sequence of positive integers $R_1 \leq R_2 \leq \ldots \exists$ families U_i , with U_n uniformly bounded for some n, and

$$X \xrightarrow{R_1,2} \mathcal{U}_1 \xrightarrow{R_2,2} \mathcal{U}_2 \xrightarrow{R_3,2} \cdots \xrightarrow{R_n,2} \mathcal{U}_n.$$

Decomposition complexity growth

Definition (D. (2019))

 $f : \mathbb{N} \to \mathbb{N}$ is a decomposition complexity growth function (dcg function) for X if for any sequence of positive integers $R_1 \leq R_2 \leq \ldots \exists$ families \mathcal{U}_i , with \mathcal{U}_n uniformly bounded for some n, and

$$X \xrightarrow{R_1, g(R_1)} \mathcal{U}_1 \xrightarrow{R_2, g(R_2)} \mathcal{U}_2 \xrightarrow{R_3, g(R_3)} \cdots \xrightarrow{R_n, g(R_n)} \mathcal{U}_n$$

Decomposition complexity growth

Definition (D. (2019))

 $f : \mathbb{N} \to \mathbb{N}$ is a decomposition complexity growth function (dcg function) for X if for any sequence of positive integers $R_1 \leq R_2 \leq \ldots \exists$ families \mathcal{U}_i , with \mathcal{U}_n uniformly bounded for some n, and

$$X \xrightarrow{R_1, \underline{g}(R_1)} \mathcal{U}_1 \xrightarrow{R_2, \underline{g}(R_2)} \mathcal{U}_2 \xrightarrow{R_3, \underline{g}(R_3)} \cdots \xrightarrow{R_n, \underline{g}(R_n)} \mathcal{U}_n$$

Definition

X has subexponential decomposition complexity growth if X has some subexponential function as a dcg function.

・ 同 ト ・ ヨ ト ・ ヨ ト

Subexponential decomposition complexity growth

Theorem

Let X be a metric space with bounded geometry. If X has subexponential decomposition growth, then X has property A.

Extension theorem

Theorem

If $1 \to K \to G \to H \to 1$ is a short exact sequence of countable groups such that K has sFDC and H has subexponential decomposition growth, then G has subexponential decomposition growth. Decomposition growth of amenable groups?

- $(F_2 \wr \mathbb{Z}) \times G$
- All fin. gen. groups of subexponential volume growth have subexponential decomposition growth.
- All countable elementary amenable groups have subexponential decomposition growth.
- (Open question) What about amenable groups that are non-elementary amenable and have exponential volume growth?

23 / 23