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Abstract

Let n ≥ 1 be a number. Let Γn be the graph on Rn connecting points
of rational Euclidean distance. It is consistent with choiceless set the-
ory ZF+DC that Γn has countable chromatic number, yet the chromatic
number of Γn+1 is uncountable.

1 Introduction

Let n ≥ 1 be a number. Let Γn be the graph on Rn connecting points of
rational Euclidean distance. Komjáth [5] proved that in ZFC, all graphs Γn
have countable chromatic number; the cases n = 2 and n = 3 are easier and
have been known much earlier [3] [2]. Difficulty of the proofs greatly increases
with n. The main theorem of this paper shows why this is so.

Theorem 1.1. Let n ≥ 1 be a number. The statement “the chromatic number
of Γn is countable while that of Γn+1 is not” is consistent with ZF+DC relative
to an inaccessible cardinal.

The cases of n ≤ 3 have been resolved previously by somewhat ad hoc methods.
The case n = 1 is [6, Corollary 12.3.16], n = 2 is proved in [6, Corollary 12.3.18],
and the harder case n = 3 is proved in [10]. Unsurprisingly, Theorem 1.1 is a
special case of a much stronger result.

Theorem 1.2. Let n ≥ 1 be a number. Let Γ be a σ-algebraic hypergraph on
Rn containing no perfect clique. From an inaccessible cardinal there is a model
of ZF+DC in which the chromatic number of Γ is countable, while in every
non-meager subset of Rn+1 it is possible to find points of every small enough
distance.

∗2020 AMS subject classification 03E35, 14P99, 05C15.
†Keywords: Solovay model, geometric set theory, Noetherian topology.
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Here, a σ-algebraic graph on Rn is one for which there are countably many
polynomials φm(u, v) for m ∈ ω, each with real coefficients and 2n many free
variables such that any distinct points x, y ∈ Rn are connected if there is m
such that φm(x, y) = 0. For such graphs, in ZFC nonexistence of perfect
clique is equivalent to countable chromatic number [8]; the colorings are ob-
tained through heavy use of the Axiom of Choice. A part of the assumption of
Theorem 1.2 is clearly optimal in that graphs with perfect cliques cannot have
countable chromatic number. It follows from a conjunction of the coloring poset
construction in Theorem 4.1 and a preservation result in Theorem 3.2. Theorem
1.2 is proved at the end of the paper.

The area of chromatic numbers of algebraic and σ-algebraic graphs and hy-
pergraphs in choiceless context offers rich and novel interplay between forcing,
combinatorics, and real algebraic geometry. Among many attractive combina-
torial problems which are left untouched by the results of this paper, I will
state only the following attractive question concerning separation of chromatic
numbers in the same dimension.

Question 1.3. For n ≥ 1 and a countable set a of positive real numbers, let Γna
be the graph on Rn connecting points whose distance belongs to a. Characterize
the pairs 〈a, b〉 such that it is consistent with ZF+DC that the chromatic number
of Γna is countable while that of Γnb is not.

In forthcoming work, I will show that if the set a ∪ {0} ⊂ R is closed, then it
is consistent with ZF+DC that the chromatic number of Γna is countable for
every n while Γ2Q+ is uncountably chromatic; other cases are wide open.

The proof of Theorem 1.2 uses the approach of geometric set theory [6]. The
model is constructed as a generic extension of the classical choiceless Solovay
model [4, Theorem 26.14] by a rather canonical coloring poset (Definition 4.10).
The method uses an inaccessible cardinal to support the general framework.
Removing the inaccessible cardinal in the spirit of [9] requires plenty of impro-
visation, but in the given case is probably possible. Notation of the paper uses
the set theoretic standard of [4], and in matters of geometric set theory, [6]. DC
is the Axiom of Dependent Choices. All theorems and definitions take place in
ZFC set theory.

2 Mutually Noetherian extensions

This section introduces the main technical notion connecting dimension of Eu-
clidean spaces with generic extensions. To start, recall the following standard
definitions of algebraic geometry.

Definition 2.1. Let 〈X, T 〉 be a topological space.

1. T is Noetherian if there is no infinite sequence of T -closed sets strictly
decreasing with respect to inclusion.

2. A T -closed set is irreducible if it is not the union of finitely many properly
smaller T -closed subsets.
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3. The Krull dimension of T is the maximum length of chains of irreducible
closed sets linearly ordered by inclusion, minus one. If the maximum does
not exist, the Krull dimension is infinite.

A basic fact of Noetherian topologies, used repeatedly in this paper, is that
every T -closed set can be written as a union of finitely many irreducible sets.
If this failed for some T -closed set, then by the Noetherian assumption there
would be an inclusion-minimal T -closed set C witnessing the failure. Clearly,
C cannot be irreducible, so C is a finite union

⋃
i∈n Ci of properly smaller T -

closed sets. By the minimal choice of C, each of the sets Ci is a finite union of
irreducible sets. Then so is C, contradicting the choice of C.

Note that Definition 2.1 provides only for finite and not transfinite values
of Krull dimension, which is fine for the purposes of this paper. Noetherian
topologies are commonly identified by their closed sets. The most basic example
is the topology of algebraic subsets of Rn for a number n ≥ 1, which has Krull
dimension n by the Hilbert basis theorem. The following definitions connect
Noetherian topologies with descriptive set theory and forcing.

Definition 2.2. Let X be a Kσ Polish space. A topology T on X is analytic
if every T -closed set is closed in the Polish topology, and the collection of all
T -closed sets is an analytic subset of the standard Borel space F (X) of closed
subsets of X.

For an analytic topology on a Kσ space X, standard complexity and Shoenfield
absoluteness arguments show that the properties such as Noetherian status,
irreducible status of closed sets, and the Krull dimension are all absolute between
transitive models of ZFC containing all ordinals.

Definition 2.3. Let X be a Polish space and T be a Noetherian topology on
X. Let M be a transitive model of set theory containing the code for X, and let
A ⊂ X be a set. The symbol C(M,A) denotes the inclusion-smallest T -closed
set coded in M which contains A as a subset.

Note that the set C(M,A) is well-defined since the search for ever smaller T -
closed sets coded in M containing A as a subset cannot go on forever by the
Noetherian property of T . The dependence of the set C(M,A) on the topology
is suppressed as T is always clear from the context.

Definition 2.4. Let n ≥ 1 be a natural number. For generic extensions
V [G0], V [G1], say that V [G0] is n-Noetherian over V [G1] if for every Polish
Kσ-space X and every analytic Noetherian topology T of Krull dimension
smaller than n coded in the ground model, and every set A ⊂ X in V [G1],
C(V,A) = C(V [G0], A). If, in addition, V [G1] is n-Noetherian over V [G0], we
call these generic extensions mutually n-Noetherian.

Proposition 2.5. In Definition 2.4, it is only necessary to consider irreducible
T -closed sets A ⊂ X.
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Proof. Given an arbitrary set A ⊂ X in the model V [G1], working in V [G0, G1]
find the smallest T -closed set C ⊂ X containing A as a subset, and write it as
C =

⋃
i∈j Ci as a finite union of irreducible T -closed sets with smallest possible

j.
Observe is that the sets C as well as Cj for i ∈ j are coded in the model

V [G1]. To see this, writing Ā for the Polish closure of A, C is the smallest
T -closed set containing Ā as a subset, and V [G1] evaluates this set correctly by
a Shoenfield absoluteness argument. The model V [G1] finds a decomposition
of C into irreducible T -closed sets. By the uniqueness of this decomposition
applied in V [G0, G1], it is clear that C =

⋃
i Ci is exactly the decomposition

that the model V [G1] finds.
Finally, suppose that C(V,Ci) = C(V [G0], Ci) holds for each i ∈ j, with

the common value denoted by Di. Then
⋃
iDi is equal to both C(V,C) and

C(V [G0], C), and by the choice of the set C it is equal to both C(V,A) and
C(V [G0], A). Thus, the latter two sets are equal as desired.

It is important to see how the mutual Noetherian property of generic extensions
plays with mutual genericity. This is the contents of the following proposition.

Proposition 2.6. Let n ≥ 1 be a number. Let V [G0], V [G1] be generic exten-
sions such that V [G1] is n-Noetherian over V [G0]. Suppose that P0 ∈ V [G0] and
P1 ∈ V [G1] are posets and H0 ⊂ P0 and H1 ⊂ P1 are filters mutually generic
over V [G0, G1]. Then V [G1][H1] is n-Noetherian over V [G0][H0].

Proof. Work in the model V [G0, G1] and consider the poset P0×P1. Let X be a
Kσ Polish space and T an analytic Noetherian topology on it of Krull dimension
smaller than n, both in V . Let p0 ∈ P0 and p1 ∈ P1 be conditions and let τ0, τ1
be respective P0, P1-names in the models V [G0], V [G1] such that p0  τ0 is a
T -closed subset of X, τ1 ⊂ X is a set, and 〈p0, p1〉  τ0 = C(V [G0][H0], τ1); I
must produce a ground model coded closed set C ⊂ X such that p0  τ0 = C.

Working in V [G1], form the closed set A ⊂ X as A = X \
⋃
{O : O ⊂ X is

open and p1  O∩τ1 = 0}. By the initial assumptions on the models V [G0] and
V [G1], C(V [G0], A) = C(V,A) holds; write C for the common value. Observe
that p1  τ1 ⊂ C. It will be enough to show that p0  τ0 = C.

Since p1  τ1 ⊂ C, the only way how the equality can fail is that there is
a condition p′0 ≤ p0 forcing τ0 to be a proper subset of C. Working in V [G0],
let M0 be a countable elementary submodel of some large structure containing
τ0, C, and p′0. Let h0 ⊂ P0 ∩M0 be a filter generic over the model M0 and
let D = τ0/h0. This is a T -closed set properly smaller than C, so A ⊆ D
fails. Thus, there must be a basic open set O ⊂ X disjoint from D which
contains some element of the set A. By the definitions, this means that there
is a condition p′′0 ≤ p′0 in the filter h0 which forces τ0 ∩ O = 0, and a condition
p′1 ≤ p1 which forces τ1 ∩ O 6= 0. This contradicts the initial assumptions on
the conditions p0, p1.

Corollary 2.7. Mutually generic extensions are mutually Noetherian.
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The key technical point behind the present paper is that there are rather simple
procedures for producing mutually Noetherian extensions of precisely calibrated
dimension. The known examples are produced via a certain duplication tech-
nique and the following proposition.

Proposition 2.8. Let n ≥ 2 be a number and T be an analytic Noetherian
topology on a Kσ-Polish space X of Krull dimension less than n. Let 〈V [Gi] : i ∈
n〉 be a tuple of forcing extensions such that for any sets b0, b1 ⊂ n, V [Gi : i ∈
b0] ∩ V [Gi : i ∈ b1] = V [Gi : i ∈ b0 ∩ b1]. For every irreducible T -closed set
A ⊂ X there is i ∈ n such that C(V,A) = C(V [Gi], A).

The intersection condition on the tuples of generic extensions is satisfied for
example for a mutually generic tuple by the product forcing theorem. The set
A does not have to belong to any of the models mentioned.

Proof. Suppose that the models V [Gi] for i ∈ n are given. For each set b ⊆ n
write Mb = V [Gi : i ∈ b].

Claim 2.9. For every set a ⊂ n and every closed set C ⊂ X coded in Ma there
is an inclusion-smallest set b ⊂ a such that C is coded in Mb.

Proof. Let b0, b1 ⊂ a be inclusion-minimal sets such that C is coded in Mb0

and Mb1 ; I must show that b0 = b1. Suppose towards a contradiction that the
equality fails. The assumptions on the generic extensions then show that C is
coded in Mb0∩b1 , contradicting the minimal choice of both b0 and b1.

Now, let A ⊂ X be a nonempty irreducible T -closed set. Let Cb ⊂ X be the
smallest T -closed set coded in Mb such that A ⊂ Cb.

Claim 2.10. The sets Cb are irreducible. c ⊆ b implies Cb ⊆ Cc.

Proof. For the first sentence, assume towards a contradiction that Cb is not
irreducible. By a Shoenfield absoluteness argument, Cb is not irreducible in Mb

and one can express in Mb the set Cb as a union of T -closed proper subsets:
Cb =

⋃
j∈iDj . The irreducibility of the set A then shows that there is j ∈ i

such that A ⊆ Dj , contradicting the minimal choice of Cb. The second sentence
of the claim is immediate.

Now, suppose towards a contradiction that the conclusion of the proposition
fails, i.e. C0 6= C{i} for any i ∈ n.

Claim 2.11. For every nonempty set a ⊂ n there is a subset b ⊂ a of cardinality
|a| − 1 such that Ca is not coded in Mb.

Proof. Let c ⊂ a be the inclusion-smallest set such that Ca ∈ Mc. The set c is
nonempty: otherwise, it would be the case that C0 = Ca, while for every index
i ∈ a it must be the case that Ca ⊆ C{i} while C0 6⊆ C{i}. Now, choose any
set b ⊂ a of cardinality |a| − 1 such that c 6⊆ b; the set b works by the minimal
choice of c.
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Now, use the claim repeatedly to construct by downward recursion on i ≤ n sets
bi ⊂ n such that for all i ≤ n |bi| = i, the sets are linearly ordered with respect
to inclusion, and Cbi is not coded in Mbi−1

. The sets Cbi for i ≤ n then form
a sequence of nonempty irreducible sets strictly decreasing by inclusion. This
contradicts the assumption on the Krull dimension of the topology T .

A number of interesting examples can now be produced via manipulation of
Cohen forcings. If X is a Polish space then the Cohen forcing PX is the poset of
nonempty open subsets of X ordered by inclusion. It adds a point ẋ ∈ X, the
unique point in the intersection of all open sets in the generic filter. It is not
difficult to see [6, Proposition 3.1.1] that if f : X → Y is a continuous open map
between Polish spaces then PX  ḟ(ẋ) is a point PY -generic over the ground
model.

Example 2.12. Let n ≥ 1 be a number and ε > 0 be a positive real number.
Let Z = {〈z0, z1〉 ∈ Rn × Rn : d(z0, z1) = ε}, where d is the Euclidean distance
in Rn. Z is a closed subset of Rn × Rn equipped with the inherited Polish
topology. Let 〈z0, z1〉 be a PZ-generic pair over the ground model V . Then

1. both z0, z1 are Cohen-generic elements of Rn over V ;

2. the models V [z0] and V [z1] are mutually n-Noetherian.

Proof. The first item follows from the fact that the projection function from
Z to any of the two coordinates is open. The second item is the heart of
the matter. Suppose towards a contradiction that it fails. Then, by Proposi-
tion 2.5, in the ground model there must be a Kσ Polish space X, an analytic
Noetherian topology T on X of Krull dimension smaller than n, a PRn -name τ
for an irreducible T -closed subset of X, and a condition p ∈ PZ which forces
C(V, τ/ẋ1) 6= C(V [ẋ0], τ/ẋ1).

Shrinking the condition p if necessary, it is possible to find nonempty open
sets O0, O1 ⊂ Rn such that p = (O0 × O1) ∩ Z. It is a simple exercise in
Euclidean geometry [11, Claim 4.9] is to find nonempty open sets O0i ⊂ O0

for i ∈ n such that for every tuple 〈xi : i ∈ n〉 ∈
∏
i∈nO0i there is a unique

point xn in O1 which is at distance ε from every point xi for i ∈ n. Let
Y = {〈xi : i ∈ n + 1〉 : ∀i ∈ nxi ∈ O0i, xn ∈ O1 and d(xi, xn) = ε} This is a
Gδ-subset of Rn)n+1 at therefore Polish in the inherited topology. Consider the
poset PY of relatively open subsets of Y , and consider a tuple 〈xi : i ∈ n+1〉 ∈ Y
PY -generic over V .

Claim 2.13. The tuple 〈xi : i ∈ n〉 consists of mutually Cohen generic points
of Rn over V .

Proof. Y is a graph of a continuous function from
∏
iO0i to O1. The projection

of a graph of a continuous function to its domain is an open map.

Claim 2.14. For each i ∈ n, the pair 〈xi, xn〉 ∈ Xn is generic over V for the
poset PXn

.
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Proof. The projection function from Y to any pair of coordinates including n is
open from Y to Z.

Now, consider the set τ/xn ⊂ X. By Claim 2.13 and Proposition 2.8, there
is a number i ∈ n such that C(V, τ/xn) = C(V [xi], τ/xn). This, however,
contradicts the initial assumptions on the name τ in view of Claim 2.14.

3 A preservation theorem

This section provides a preservation theorem connecting the Noetherian prop-
erties of generic extensions with an independence result. Recall that a Suslin
forcing is a pair 〈P,≤〉 such that P is an analytic subset of some ambient Polish
space, ≤ is a transitive relation on P containing the diagonal, and ≤ and the
incompatibility relations are both analytic subsets of P 2.

Definition 3.1. Let P be a Suslin poset and n ≥ 1 be a number.

1. A pair 〈Q, σ〉 is n-Noetherian balanced if Q  σ ∈ P , and whenever
V [H0], V [H1] are mutually n-Noetherian extensions and in each there are
respective filters G0, G1 ⊂ Q generic over V and conditions p0 ≤ σ/G0

and p1 ≤ σ/G1, then p0, p1 are compatible in P .

2. The poset P is balanced of dimension characteristic n if below every con-
dition p ∈ P there is an n-Noetherian balanced pair 〈Q, σ〉 such that
Q  σ ≤ p̌.

Theorem 3.2. In every generic extension of the choiceless Solovay model which
is σ-closed and cofinally n + 1-Noetherian balanced, for every non-meager set
A ⊂ Rn there is a real number ε(A) > 0 such that for every positive real number
ε < ε(A) there are two points in A at distance ε from each other.

Proof. Let κ be an inaccessible cardinal. Let P be a σ-closed Suslin forcing
which is n+ 1-Noetherian balanced cofinally below κ. Let W be the choiceless
Solovay model derived from κ. Work in the model W . Let p ∈ P be a condi-
tion and τ a P -name for a non-meager (or non-null) subset of Rn. Towards a
contradiction, assume that p  τ is a counterexample to the conclusion of the
theorem. By the σ-closure of the poset P and Axiom of Dependent Choices
in W , strengthening the condition p if necessary, one can find a countable set
a ⊂ R+ which has zero as an accumulation point and p  τ contains no two
points whose distance belongs to a.

The name τ is definable from a ground model element and a real parameter
z ∈ 2ω. Let V [K] be an intermediate extension obtained by a poset of cardinality
smaller than κ such that z, p, a ∈ V [K] in which the poset P is n+1-Noetherian
balanced. Work in V [K]. Let 〈Q, σ〉 be an n+ 1-Noetherian balanced pair such
that Q  σ ≤ p.

Let R be the Cohen poset of nonempty open subsets of Rn, adding a generic
point ẋ. There must be conditions q ∈ Q, r ∈ R, and a poset S of cardinality
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smaller than κ, a condition s ∈ S and a R × Q × S-name η for a condition
stronger than σ such that

q Q r R s S Coll(ω,< κ)  η P ẋ ∈ τ.
Otherwise, in the model W , for any generic filter H ⊂ Q the condition σ/H ≤ p
would force in P that τ is disjoint from the co-meager set of elements of Rn
Cohen-generic over V [K][H], contradicting the initial assumptions on τ and p.
Let ε ∈ a be a real number smaller than the radius of some open ball which is
a subset of r, and let T be the poset for adding a generic pair of points in Rn
of distance ε as in Example 2.12.

Work in the model W . Let 〈x0, x1〉 ∈ Xn be a pair T -generic over V [K]
below r × r. Let H0, H1 ⊂ Q × S be filters mutually generic over the model
V [K][x0, x1] meeting the conditions q ∈ Q, s ∈ S. Consider the conditions
p0 = η/x0, H0 and p1 = η/x1, H1. Note that the points x0, x1 are R-generic
over V [K] and the models V [K][x0], V [K][x1] are n+1-mutually Noetherian by
Example 2.12. The models V [K][x0][H0] and V [K][x1][H1] are n + 1-mutually
Noetherian by Proposition 2.6. The initial assumption on the balanced pair
〈Q, σ〉 shows that the conditions p0, p1 are compatible. Their common lower
bound forces the points x0, x1 into τ , while their distance belongs to the set a.
This contradicts the choice of the set a.

4 A coloring poset

Finally, this section provides, for a given number n ≥ 1 a definition of a Suslin
forcing which, if used in the choiceless Solovay model, adds a countable coloring
of the graph Γn yet keeps the chromatic number of Γn+1 uncountable. In fact,
there is a forcing which colors a much larger class of graphs on Rn. This is
recorded in the following theorem.

Theorem 4.1. Let n ≥ 1 be a number. Let Γ be a σ-algebraic graph on Rn
containing no perfect clique. There is a Suslin σ-closed forcing P such that

1. P the union of the generic filter is a total Γ-coloring with countable
range;

2. P is k, 2-centered for every number k ∈ ω;

3. under the Continuum Hypothesis, P is n+ 1-Noetherian.

4.1 Preliminaries

The proof of Theorem 4.1 requires a fair amount of familiarity with real algebraic
geometry. The following remarks record some of the facts used. The theory of
real closed fields uses the ordering symbol, addition, multiplication, and 0, 1
constants, and includes the axioms of ordered fields as well as axioms stating
that every polynomial of odd degree has a root. A good reference for treatment
of real closed fields is [7, Section 3.3]
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Fact 4.2. The theory of real closed fields admits quantifier elimination.

Corollary 4.3. If F ⊂ R is a real closed subfield then F is an elementary
submodel of R.

All of the consequences of these facts needed below concern algebraic subsets of
Euclidean spaces.

Corollary 4.4. Every algebraic set in a Euclidean space is either finite or
uncountable.

Proof. Let n ≥ 1 be a number and A ⊂ Rn be an algebraic set. Consider the
projections Ai of A into each coordinate i ∈ n. If these sets are all finite, then
A is finite. Assume that some Ai is infinite. Since it is definable by a quantifier-
free formula in the language of real closed fields and it is infinite, it must contain
a nonempty open interval. Thus, Ai is uncountable and so is A.

If F ⊂ R is a real closed subfield and n ≥ 1 is a number, a set A ⊂ Rn is algebraic
over F if there is a polynomial φ(ū) of n many variables and coefficients in F
such that A = {x ∈ Rn : φ(x) = 0}. Several closure properties of the class of sets
algebraic over F will be needed. It is immediate that this class is closed under
unions, intersections, and sections indexed by elements of F . The following
closure properties are more delicate.

Corollary 4.5. If F ⊂ R is a real closed field, n,m ≥ 1, and A ⊆ Rm, B ⊆
Rn×Rm are sets algebraic over F , then the set C = {x ∈ Rn : ∀y ∈ A 〈x, y〉 ∈ B}
is a set algebraic over F .

Proof. For each y ∈ A let Cy = {x ∈ Rn : 〈x, y〉 ∈ B}; this is an algebraic set
and C =

⋂
y∈A Cy. By the Hilbert basis theorem, there is a finite set a ⊂ A

such that C =
⋂
y∈a Cy. Let k ∈ ω be the cardinality of the set a. The existence

of a set b ⊂ A of cardinality k such that ∀x ∈ Rm (∀y ∈ b 〈x, y〉 ∈ B)→ (∀y ∈
A 〈x, y〉 ∈ B) is a first-order statement in the language of real closed fields and
as such it is reflected to F . Let b ⊂ F be a witness that F finds, and observe
that C =

⋂
y∈b Cy is a set algebraic over F .

Corollary 4.6. Suppose that F ⊂ R is a real closed field and a set A ⊂ Rn is
algebraic over F . If A is reducible, then its irreducible composants are algebraic
over F .

Proof. The decomposition of A is well-known to be unique: among all ways of
expressing the set A as a union of finitely many algebraic sets none of which is
covered by the others, it is the one in which there is the largest number of sets
possible. If the number of composants is m ∈ ω and all of them are given by
polynomials of degree at most k, the existence of such a decomposition is a first
order statement in the language of real closed fields, which is then reflected by
the field F .

Corollary 4.7. A finite set A ⊂ Rn algebraic over F is a subset of Fn.
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Proof. Let k be the cardinality of A. Existence of a list of k points exhausting
the set A is a first-order statement of the language of real closed fields, and
therefore reflected by F .

Finally, there is a proposition about algebraic sets which is needed in one critical
spot of the proof of Theorem 4.1. While it seems to be either folkloric or
otherwise well-known, I did not find a good reference for it and I include the
proof.

Proposition 4.8. Let n ≥ 1 be a number. Let A ⊂ Rn be an irreducible
algebraic set, and A ⊆

⋃
iBi for some algebraic sets Bi for i ∈ ω. Then there

is an index i ∈ ω such that A ⊆ Bi.

Proof. This does not follow from a straightforward application of the Baire
category theorem to the closed setA, since irreducible algebraic sets in Euclidean
spaces may contain for example points isolated in the sense of the Euclidean
topology. It is necessary to apply the Baire category theorem to a certain
relatively open subset of A. Below, the dimension of an irreducible algebraic
set is its Krull dimension, and the dimension of an arbitrary algebraic set is the
maximal Krull dimension of its irreducible components.

Without loss, assume that A 6= 0. Consider the set Reg(A) ⊆ A consisting
of all non-singular points of A–these are the points where the dimension of the
Zariski tangent space to A is exactly equal to dim(A). It is well-known [1,
Proposition 3.3.14] that Sing(A) = A \ Reg(A) is an algebraic subset of A of
dimension strictly smaller than dim(A); in particular, Reg(A) 6= 0 and Reg(A)
is a relatively open subset of A.

Claim 4.9. Suppose that B is a proper algebraic subset of A. Then B is nowhere
dense in the set Reg(A) in the topology inherited from Rn.

Proof. Since every algebraic set is a finite union of its irreducible components,
it is enough to prove the claim for irreducible B. Since algebraic sets are closed,
the statement is equivalent to showing that Reg(A)\B is dense in Reg(A). The
argument proceeds by induction on m = dim(B), which is necessarily smaller
than dim(A). The base step m = 1 is subsumed in the induction step. For
the induction step, suppose that the statement is known for some number m,
dim(B) = m + 1, and O ⊂ Reg(A) is a nonempty relatively open set; I need
to produce a point in O \ B. Sing(B) is an algebraic set of dimension smaller
than that of dim(B), so by the induction hypothesis it is possible to shrink O if
necessary to contain no points in Sing(B). Now suppose towards a contradiction
that O ∩ B = O ∩ A. This is a relatively open set of non-singular points of
both A and B. Therefore, at any point in it, its C∞-tangent space coincides
with the Zariski tangent space for both A and B, and should therefore have
dimension equal to both dim(A) and dim(B). Since dim(B) < dim(A), this is
impossible.

To complete the proof of the proposition, suppose that Bi ⊂ A for i ∈ ω are
algebraic sets, proper subsets of A; I must find a point A \

⋃
iBi. Consider the
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set Reg(A) ⊆ A, which is a relatively open subset of the closed set A, therefore
Polish in the topology inherited from Rn. The claim shows that the sets Bi for
i ∈ ω are all nowhere dense in Reg(A). The Baire category theorem then yields
a point in Reg(A) \

⋃
iBi, completing the proof.

4.2 Proof of Theorem 4.1

To set up notation for the proof, fix the number n ≥ 1 and write X = Rn.
Let {φm : m ∈ ω} be a countable family of polynomials generating the graph Γ.
For brevity of notation, assume that each of the polynomials φm is symmetric,
i.e. φm(u, v) = φm(v, u). Assume also that the parameters of the polynomials
are all integers. For a set A ⊂ X and a number m ∈ ω, write φm(A) = {x ∈
X : ∀y ∈ A φm(x, y) = 0}. By the Hilbert basis theorem, there is a finite set
A′ ⊂ A such that φm(A) = φm(A′); thus, the set φm(A) is algebraic. The set of
colors Col consists of all pairs 〈O, b〉 where O is an open ball in X with rational
center and rational radius and b ⊂ ω is finite.

Definition 4.10. The coloring poset P consists of all partial Γ-colorings p
whose range is a subset of Col and

(A) for some countable real closed field supp(p) ⊂ R, dom(p) = supp(p)n;

(B) for every uncountable irreducible set A ⊂ X algebraic over supp(p) there
is a finite set b(p,A) ⊂ ω such that every color 〈O, b〉 ∈ Col with O∩A 6= 0,
b(p,A) ⊂ b, and ∀m ∈ b O ∩ φm(A) = 0 is attained infinitely many times
on A.

The ordering on P is defined by q ≤ p if p ⊆ q and for every set A ⊂ X algebraic
over supp(p), p′′A = q′′A holds.

At this point, it is not even clear why P must be nonempty. The rather involved
construction of even a single condition is a special case of Proposition 4.12
for a = 0. The properties of the poset P are verified in a long sequence of
propositions.

Proposition 4.11. ≤ is a σ-closed preordering.

Proof. The transitivity is immediate. For the σ-closure, if 〈pi : i ∈ ω〉 is a
descending chain of conditions,

⋃
i pi is the common lower bound.

The most important part of the proof is a precise and generous characterization
of compatibility of conditions in the poset P .

Proposition 4.12. Let a ⊂ P be a finite set of conditions. The following are
equivalent:

1. a has a common lower bound;

2. for every x ∈ X, a has a common lower bound containing x in its domain;
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3. q =
⋃
a is a function and a Γ-coloring, and for every p ∈ a and every set

A ⊂ X algebraic over supp(p), p′′A = q′′A.

Proof. Clearly, (2) implies (1), which implies (3) by the definition of the ordering
on the poset Pn. To show that (3) implies (2), assume that (3) holds and x ∈ X
is an arbitrary point. Let M be a countable elementary submodel of a large
structure containing the set a and the point x, and let F = M ∩ R. I will
construct a lower bound r of a such that supp(r) = F .

The construction of r is a demanding counting argument; it is necessary to
set some notation. Let d = Fn \

⋃
p∈a dom(p). For every point y ∈ d and every

condition p ∈ a write B(p, y) ⊂ X for the inclusion-smallest set algebraic over
supp(p) containing y as an element. Similarly, for every irreducible set A ⊂ X
algebraic over F and every condition p ∈ a write B(p,A) for the smallest set
which is algebraic over supp(p) containing A as a subset. Note that the set
B(p,A) actually exists, since there are no infinite sequences of algebraic sets
strictly decreasing under inclusion by the Hilbert basis theorem. In addition, the
set B(p,A) is irreducible: if not, its irreducible composants would be algebraic
over supp(p) by Corollary 4.6, one of these composants would have to cover A
by the irreducibility of A, and the minimal choice of B(p,A) would be violated.

The condition r is constructed by finite approximations of the following kind.
Call a pair 〈f, g〉 an approximation if

(i) f : d→ Col is a finite partial Γ-coloring and for each y ∈ dom(f) and every
p ∈ a, the color f(y) is attained infinitely many times in p on B(p, y);

(ii) g is a function whose domain consists of finitely many uncountable irre-
ducible subsets of X algebraic over F , and for each A ∈ dom(g), g(A) ⊂ ω
is a finite superset of

⋃
p∈a b(p,B(p,A));

(iii) if y ∈ dom(f) and A ∈ dom(g) are a point and a set such that for some
number m ∈ ω ∀z ∈ A φm(y, z) = 0 holds, then writing f(y) = 〈O, c〉,
some such number m belongs to c∪g(A) and either g(A) 6⊆ c or O contains
some point y′ such that ∀z ∈ A φm(y′, z) = 0;

(iv) if A0, A1 ∈ dom(g) are sets such that for some m ∈ ω, ∀y0 ∈ A0 ∀y1 ∈
A1 φm(y0, y1) = 0, then some such number m belongs to g(A0) ∪ g(A1).

Note that in (iv), the sets A0, A1 must be distinct since A0 ∩ A1 is a Γ-clique
and Γ is assumed to contain no perfect cliques. Approximations are ordered
by coordinatewise reverse extension. The simplest approximation is 〈0, 0〉. It
is necessary to show that approximations can be suitably extended; this is the
purpose of the following claims.

Claim 4.13. Let 〈f, g〉 be an approximation and y ∈ d be a point. Then there
is a color 〈O, c〉 ∈ Col such that 〈f ∪ {〈y, 〈O, c〉〉}, g〉 is an approximation.

Proof. Without loss, assume that y /∈ dom(f). Note that y is an accumulation
point of every set B(p, y) for p ∈ a as y /∈ supp(p)n. Find a finite set c ⊂ ω
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which includes
⋃
p∈a b(p,B(p, y)), and for every set A ∈ dom(g), if there is m

such that ∀z ∈ A φm(y, z) = 0 then some such m is in c. Now, for every m ∈ ω
and every p ∈ a, consider the set C(p,m) = B(p, y) ∩ φm(B(p, y)). The set
C(p,m) is algebraic over supp(p) by Corollary 4.5. It is a Γ-clique, therefore
it is not uncountable by the assumptions on Γ, therefore it must be finite by
Corollary 4.4, therefore it is a subset of dom(p) by Corollary 4.7, therefore it
does not contain the point y. Find a basic open neighborhood O of y which is
disjoint from the sets C(p,m) for m ∈ c and p ∈ a, and such that O is not used
in range of f .

To conclude the proof of the claim, observe that 〈f ∪ {〈y, 〈O, c〉〉}, g〉 indeed
is an approximation. It inherits items (i-iv) from 〈f, g〉 except for the following
two nontrivial cases: (i) for y and p ∈ a follows from Definition 4.10(B) applied
to p and B(p, y), and (iii) for y follows from the choice of the set c and the set
O.

Claim 4.14. Let 〈f, g〉 be an approximation and A ⊂ X an uncountable ir-
reducible set algebraic over F . Then there is a finite set b ⊂ ω such that
〈f, g ∪ {〈A, b〉}〉 is an approximation.

Proof. Without loss, assume that A /∈ dom(g). Just let b be any superset of all
the sets b(p,B(p,A)) which in addition satisfies the following properties:

• If A′ ∈ dom(g) is such that for some m ∈ ω, ∀y ∈ A′ ∀z ∈ A φm(y, z) = 0,
then some such number m belongs to b;

• if y ∈ dom(f) is such that for some number m ∈ ω ∀z ∈ A φm(y, z) = 0
holds, then writing f(y) = 〈O, c〉, some such number m belongs to c ∪ b
and b 6⊆ c.

The set b is then as required.

Claim 4.15. Let 〈f, g〉 be an approximation, let A ∈ dom(g), and let 〈O, c〉 be
a color such that g(A) ⊆ c, O ∩A 6= 0, and ∀m ∈ c O ∩ φm(A) = 0. Then there
is a point z ∈ A \ dom(f) such that 〈f ∪ {〈z, 〈O, c〉〉}, g〉 is an approximation.

Proof. Consider the countable collection of algebraic sets including the follow-
ing:

(a) singletons in dom(q) ∪ dom(f);

(b) sets algebraic in supp(p) for p ∈ a;

(c) for every number m ∈ ω and for every point y ∈ dom(f), the set {w ∈
X : φm(z, w) = 0};

(d) for every number m ∈ ω and every set A′ ∈ dom(g), the set φm(A′).
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Use Proposition 4.8 to find a point z ∈ A which belongs only to those algebraic
sets in this collection which are supersets of A. By elementarity of the model
M , such a point z can be found in A∩M . Now, work to show that the point z is
as required. Validity of items (ii) and (iv) in the definition of an approximation
remains untouched as they do not refer to any points in the domain of the first
coordinate.

For item (i), argue that f ∪ {〈z, 〈O, c〉〉} is a Γ-coloring. Suppose that y ∈
dom(f) is a point such that y Γ z holds, and write f(y) = 〈O′, c′〉. Let k ∈ ω be
such that φk(y, z) = 0 holds. By the choice of the point z, ∀w ∈ A φk(y, w) = 0
holds. By item (iii) of approximation 〈f, g〉, there must be a number m such
that ∀w ∈ A φm(y, w) = 0 holds, which also belongs to c′ ∪ g(A) ⊆ c′ ∪ c and
either g(A) 6⊆ c′ or there is a point y′ ∈ O′ such that ∀w ∈ A φm(y′, w) = 0
holds. In the former case, c 6= c′ and the colors of y, z are distinct. In the latter
case, either c 6= c′ and the colors are distinct, or c = c′ holds. In the latter case,
m ∈ c holds and O does not contain the point y′ ∈ φm(A), which means that
O 6= O′ and the colors are distinct again.

To verify that the color 〈O, c〉 is attained infinitely many times by p on
B(p, z) for p ∈ a, note that B(p, z) = B(p,A) holds by item (b) of the choice
of the point z. It follows that b(p,B(p, z)) ⊆ g(A) ⊆ c holds by item (ii)
applied to 〈f, g〉 and for every m ∈ b(p,B(p, z)), O ∩ φm(A) = 0. Since A ⊆
B(p,A), φm(B(p,A)) ⊆ φm(A) holds and O ∩ φm(B(p, z)) = 0. By item (B)
of Definition 4.10, 〈O, c〉 is attained infinitely many times by p on B(p, z) as
required.

For item (iii), suppose that A′ ∈ dom(g) is a set such that for some number
m ∈ ω ∀w ∈ A′ φm(z, w) = 0 holds. Item (d) of the choice of the point z then
shows that A ⊂ φm(A′). Some such number m must belong to g(A) ∪ g(A′)
by (iv) of the approximation 〈f, g〉, and it follows that it belongs to c ∪ g(A′).
Since O ∩A 6= 0, there is a point z′ ∈ O such that ∀w ∈ A′ φm(z′, w) = 0 holds
as required.

With the three extension claims in hand, a simple bookkeeping argument
produces a descending sequence 〈fi, gi : i ∈ ω〉 such that, writing f =

⋃
i fi

and g =
⋃
i gi, dom(f) = d, dom(g) contains all uncountable irreducible sets

algebraic in F , and for every set A ∈ dom(g) every color 〈O, c〉 such that
g(A) ⊆ c and O ∩A 6= 0 and O ∩ φm(A) = 0 for all m ∈ c, is attained infinitely
many times in f on A.

In the end of the recursion, let r = q ∪ f and argue that r ∈ P is a common
lower bound of the conditions in the set a. The argument is the conjunction of
the following three claims.

Claim 4.16. r is a condition in P .

Proof. To see Definition 4.10(A) , suppose that y0, y1 are Γ-connected points in
dom(r). If neither of them belongs to the set d, then they receive distinct colors
since q is a Γ-coloring. If both of them belong to the set d, then they receive
distinct colors since f is a Γ-coloring. Finally, if y0 ∈ dom(p) for some p ∈ a and
y1 ∈ d, then for some number m ∈ ω, φm(y0, y1) = 0. Then B(p, y1) is a subset
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of the set {y ∈ X : φm(y0, y) = 0} and by item (i) of the recursion hypothesis,
there is y′1 ∈ dom(p)∩B(p, y1) distinct from y0 such that r(y1) = p(y′1). Since p
is a Γ-coloring and y0 Γ y′1, this means that y0, y1 receive distinct colors in this
configuration as well.

To see Definition 4.10(B), suppose that A ⊂ X is an irreducible set algebraic
over F . It is clear from the bookkeeping demands that the set g(A) witnesses
Definition 4.10(B) for r,A.

Claim 4.17. For every condition p ∈ a, r ≤ p holds.

Proof. Let A ⊂ X be a set algebraic over supp(p); I must show that r′′A =
p′′A. This, however, follows immediately from item (i) of the definition of
approximation and the assumption (3).

The proof of the proposition is complete.

Corollary 4.18. The poset P is nonempty and Suslin.

Proof. It is clear that the P and the ordering on it are both Borel in a suitable
space. Proposition 4.12 shows that the incompatibility relation is Borel as well.
Nonemptiness follows from the proposition applied to an empty set of conditions.

Corollary 4.19. For every number m ∈ ω, the poset P is m, 2-centered.

This is to say that if a is a collection of cardinality m consisting of pairwise
compatible conditions, then it has a common lower bound. This is immediate
from Proposition 4.12.

Corollary 4.20. The poset P forces the union of its generic filter to be a total
Γ-coloring.

By a genericity argument, this is to say that for each point x ∈ X and each
condition p ∈ Pn, there is q ≤ p such that x ∈ dom(q). This is immediate from
Proposition 4.12 applied to the singleton {p}.

Corollary 4.21. Under the Continuum Hypothesis, the poset P is n + 1-
Noetherian balanced.

Unlike the usual theorems in [6], I do not bother to produce an exact classifica-
tion of balanced virtual conditions, which in this case is complicated and brings
nothing new to the proofs. I do not know if the CH assumption can be dropped.

Proof. Let p ∈ P be a condition. Let 〈xα : α ∈ ω1〉 be an enumeration of R. By
recursion on α ∈ ω1 build conditions qα ∈ P so that p = q0, qα+1 ≤ qα is a con-
dition such that xα ∈ supp(qα+1), and qα =

⋃
β∈α pβ for limit ordinals α. The

function c =
⋃
α qα is a total Γ-coloring which satisfies Definition 4.10(B). It is

clear that Coll(ω,R)  č ≤ p is a condition in the poset P . By Proposition 4.12,
it will be enough to show that the pair 〈Coll(ω,R), č〉 is n + 1-Noetherian bal-
anced.
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To do this, suppose that V [G0], V [G1] are mutually n + 1-Noetherian ex-
tensions. Suppose that p0, p1 ∈ Pn are conditions in the respective models
stronger than c; I must show that p0, p1 are compatible. This will be done using
Proposition 4.12.

To show that p0 ∪ p1 is a Γ-coloring, suppose that x0 ∈ dom(p0) and x1 ∈
dom(p1) are Γ-related points. Let m ∈ ω be a number such that φm(x0, x1) = 0.
If both points x0, x1 belong to one and the same condition, then they must
receive distinct colors as that condition is a Γ-coloring. The only remaining
configuration is that x0 ∈ V [G0] \ V and x1 ∈ V [G1] \ V . Note that B(c, x1) =
B(p0, x1) ⊂ {y ∈ X : φm(y, x0) = 0} holds by the Noetherian assumption on
the models V [G0] and V [G1]. Since p1 ≤ c holds, there must be a point x′1 ∈
dom(c)∩B(c, x1) distinct from x0 such that p1(x1) = c(x′1). Since x′1 ∈ dom(c)
and x0 /∈ dom(c), it must be the case that x0 6= x′1. Since p1 is a Γ-coloring, it
follows that p0(x0) 6= c(x′1) = p1(x1) holds as desired.

Finally, let A ⊂ X be a set algebraic over supp(p0) and x ∈ A ∩ dom(p1)
be a point; I must find a point x′ ∈ A ∩ dom(p0) which receives the same color
as x. Use the Noetherian assumption to see that B(p0, x) = B(c, x) ⊆ A. Use
the p1 ≤ c assumption to find a point x′ ∈ B(c, x) such that c(x′) = p1(x). The
point x′ works as desired.

Finally, the stage has been set to prove Theorem 1.2. Let n ≥ 1 be a number.
Let Γ be a graph on Rn without a perfect clique. Let κ be an inaccessible
cardinal and let W be the choiceless Solovay model derived from κ; W is a
model of ZF+DC [4, Theorem 26.14]. Let P be the coloring poset isolated in
Theorem 4.1. Let G ⊂ P be a filter generic over W . The model W [G] is a σ-
closed extension of W by Proposition 4.11 and as such it is a model of ZF+DC.
In addition,

⋃
G is a total coloring of the graph Γ with countably many colors

by Corollary 4.20. By Corollary 4.21 and Theorem 3.2, in the model W [G] every
nonmeager subset of Rn+1 contains point of arbitrary small enough distance.
By the Baire category theorem, it must be the case that the chromatic number
of Γn+1 is uncountable in W [G] as required. Thus, the model W [G] witnesses
the conclusion of Theorem 1.1; in case that Γ = Γn, it witnesses the conclusion
of Theorem 1.1.
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