Exam 2.

Due Wednesday Nov. 1 before class.

1. Let \(f: \mathbb{R} \to \mathbb{R} \) be a strictly increasing function \((r < s \implies f(r) < f(s))\).
 Show that the set \(\{ r \in \mathbb{R}: f \text{ is not continuous at } r \} \) is countable. *Hint.*
 Produce an injection of the set into rationals.

2. Produce a function \(f: \mathbb{R} \to \mathbb{R} \) such that the set \(\{ r \in \mathbb{R}: f \text{ is not continuous at } r \} \) is uncountable.

3. Let \(\langle P, \leq \rangle \) be a partially ordered set. Define a transfinite recursive process
 by \(P_0 = P, P_{\alpha+1} = P_\alpha \setminus \{ p \in P_\alpha: p \text{ is minimal in } P_\alpha \} \), and
 \(P_\alpha = \bigcap_{\beta \in \alpha} P_\beta \)
 for a limit ordinal \(\alpha \). Show that there is an ordinal \(\alpha \) such that \(P_\alpha = P_{\alpha+1} \).

4. Show that the set \(P_\alpha = P_{\alpha+1} \) from (3) is the inclusion-largest subset of \(P \)
 which has no minimal elements.

5. Prove that every filter on \(\omega \) can be extended to an ultrafilter.