Exam 2.

Due Wednesday Nov. 22 if sent by e-mail, or Monday Nov. 20 in class if handed in on paper.

- 1. Let $\langle A, < \rangle$ and $\langle B, \prec \rangle$ be two countable dense linear orders without endpoints. Let $f: A \to B$ be a function with finite domain, preserving the ordering. Show that there is an isomorphism $g: A \to B$ which extends f(in other words, $f \subset g$, or $\forall a \in \text{dom}(f) \ f(a) = g(a)$).
- 2. Show that if F is an Archimedean field, then the cardinality of F is less or equal to the cardinality of the powerset of ω . *Hint*. Show that an element F is uniquely determined by the set of all F-rationals smaller than it.
- 3. A set $A \subset \mathbb{R}$ is *analytic* if it is a projection of some Borel set $B \subset \mathbb{R} \times \mathbb{R}$ into the first coordinate. Show that the set $\{A \subset \mathbb{R} : A \text{ is analytic}\}$ has the same cardinality as \mathbb{R} . Conclude that there are subsets of \mathbb{R} which are not analytic.
- 4. Let B_n for $n \in \omega$ be dense G_{δ} sets of reals. Use the Baire category theorem to show that $\bigcap_n B_n \neq 0$.