Exam 1.

No cooperation. The solutions are due Monday February 10 before class.

1. Prove without the use of the completeness theorem that in propositional logic, $\vdash \phi \rightarrow \neg \neg \phi$ and $\vdash \neg \neg \phi \rightarrow \phi$ are both true.

2. Consider the theory of dense linear order without endpoints. Enrich its language by two constant symbols c, d, and add to it the sentence c < d. Prove that the resulting theory is complete.

In the following problems, a graph is a pair $\langle V, E \rangle$ where V is a set (of vertices) and $E \subset [V]^2$ is a set (of edges). Graphs are models for a first order language \mathfrak{L} with a single binary relational symbol interpreted as xRy if x, y are connected with an edge. A cycle of length n is a sequence $x_0, x_1, \ldots, x_{n-1}$ of pairwise distinct vertices such that x_i, x_{i+1} are connected with an edge for all i < n-1 and also the vertices x_0, x_{n-1} are connected with an edge. A graph is then a model of the theory Γ consisting of the sentences $\forall x, y \ x \ R \ y \leftrightarrow y \ R \ x$ and $\forall x \ \neg x \ R \ x$.

3. For every natural number n, write a first order sentence in \mathfrak{L} equivalent to "there are no cycles of length n".

4. Show that there is no first order sentence in \mathfrak{L} equivalent to "there are no cycles".

5. Find some sentence ϕ such that the theory Γ, ϕ is complete (decides every sentence).