Exam 1.

The solutions are due Wednesday March 14th before class. Either bring them to class, or send them by e-mail to my address (preferably in pdf).

1. Consider the structure $\langle\mathbb{Q},+, \leq\rangle$ of rationals with the usual addition and ordering. Consider the sets $A_{0}=\{0\}, A_{1}=$ positive rationals, $A_{2}=$ negative rationals. Show that A_{0}, A_{1}, A_{2} and their boolean combinations are the only sets definable without parameters in the structure.
2. Find an example of a linear order $\langle L, \leq\rangle$ and a set $A \subset L$ such that A is definable without parameters in $\langle L, \leq\rangle$ and it is not a finite union of open intervals and singletons.
3. Consider the symmetric binary relation R on integers defined by $x \quad R$ if $|x-y|=1$. Describe an algorithm deciding whether a given sentence holds in the structure $\langle\mathbb{Z}, R\rangle$. Hint. Define the relation from the ordering of integers.
4. In the structure of problem 3, can one define the usual ordering of integers in the structure $\langle\mathbb{Z}, R\rangle$ (a) without parameters and (b) (harder) with parameters?
