Exam 3.

The solutions are due April 24th before class. Either bring them to class, or send them by e-mail to my address (preferably in pdf).

1. Let G be a compact subgroup of S_{∞} . Show that for each number $n \in \omega$, the set $\{g(n) : g \in G\}$ is finite.

2. Conclude that the product of all finite permutation groups is a universal compact subgroup of S_{∞} .

3. If G is a locally compact Polish group acting continuously on a Polish space X, show that the orbit equivalence relation is F_{σ} .

4. Let *E* be the equivalence relation on the space $X = (2^{\omega})^{\omega}$ connecting points x_0 and x_1 if for all $n \in \omega$, $x_0(n)$ and $x_1(n)$ are \mathbb{E}_0 -related. Show that \mathbb{E}_1 is not Borel reducible to *E*.