Exam 4.

The solutions are due Wednesday May 2nd. Either send them by e-mail to my address (preferably in pdf), or leave them under the door of my office LIT456.

1. Prove that the Kolmogorov complexity of a palindrome x is $\leq|x| / 2+C$ where C is a constant not depending on x.
2. Show that the provability predicate in Peano Arithmetic satisfies a version of the \square introduction rule: whenever θ is a sentence of the language of Peano Arithmetic, then if $\operatorname{Prov}(\theta)$ holds then so does $\operatorname{Prov}(\operatorname{Prov}(\theta))$.
3. Show that the provability predicate in Peano Arithmetic satisfies a version of the \square distribution rule: whenever ϕ, ψ are sentences in the language of Peano Arithmetic, then $\operatorname{Prov}(\phi \rightarrow \psi) \rightarrow(\operatorname{Prov}(\phi) \rightarrow \operatorname{Prov}(\psi))$ holds.
4. Find a model in which both modal sentences $\phi \rightarrow \square \neg \phi$ and $(\neg \phi) \rightarrow \square \phi$ are satisfied (in all worlds).
