Assignment 4.

- 1. Prove that the set $B = \{a \subset \omega : \Sigma\{\frac{1}{n+1} : n \in a\} < \infty\}$ is a Borel subset of $\mathcal{P}(\omega)$.
- 2. Prove that the set $A = \{a \subset \omega : \text{ there is an infinite sequence } \langle n_i : i \in \omega \rangle \text{ of numbers in } a \text{ such that } n_i \text{ divides } n_{i+1} \text{ for every } i\}$ is an analytic subset of $\mathcal{P}(\omega)$.
- 3. Prove that if X_0, X_1 are Polish spaces and $B_0 \subset X_0, B_1 \subset X_1$ are their Borel subsets, then $B_0 \times B_1 \subset X_0 \times X_1$ is also Borel.
- 4. Prove that if X_0, X_1 are Polish spaces and $A_0 \subset X_0, A_1 \subset X_1$ are their analytic subsets, then $A_0 \times A_1 \subset X_0 \times X_1$ is also analytic.
- 5. Suppose that X is a Polish space and A_n for $n \in \omega$ are pairwise disjoint analytic subsets of X. Prove that there are pairwise disjoint Borel subsets $B_n \subset X$ for $n \in \omega$ such that $A_n \subseteq B_n$.