Pinned equivalence relations

Jindřich Zapletal *i
Czech Academy of Sciences
University of Florida

September 28, 2010

1 Introduction

In this note, I will provide a solution to a question of Kechris regarding unpinned Borel equivalence relations.

Definition 1.1. [1, Chapter 17] A Borel equivalence relation E on a Polish space X is unpinned if there is a forcing P and a P-name \dot{x} for an element of X such that $P \times P$ forces the left and right evaluations of \dot{x} to be E equivalent, and P forces \dot{x} to be E-inequivalent to any ground model point of the space X. The equivalence is pinned if it is not unpinned.

Many equivalence relations are pinned, such as all K_{σ} equivalences, E_{3}, c_{0} and others. There is a natural example of an unpinned equivalence relation:

Definition 1.2. F_{2} is the Borel equivalence on $\left(2^{\omega}\right)^{\omega}$ defined by $x F_{2} y$ if $\operatorname{rng}(x)=$ rng (y).

The forcing witnessing the requisite property of F_{2} is the collapse of 2^{ω} to countable size, with \dot{x} a name for an enumeration of the set of ground model points of 2^{ω}.

It is not difficult to see that the class of pinned equivalence relations is closed downwards with respect to Borel reducibility, and so it offers a tool for proving irreducibility results: no unpinned relation can be reduced to pinned. As an example, F_{2} is not reducible to E_{3}. Kechris asked whether this tool is really only checking whether F_{2} is reducible to a given Borel equivalence relation:

Question 1.3. [1, Question 17.6.1] Is F_{2} reducible to every unpinned Borel equivalence relation?

In this brief note, I will show that the answer is negative.

[^0]Theorem 1.4. There is an unpinned Borel equivalence relation strictly below F_{2}.

2 Proof

The proof of the theorem begins with a fact essentially due to Shelah [3].
Fact 2.1. There is an F_{σ} set $B \subset 2^{\omega} \times 2^{\omega}$ which contains an uncountable clique but no perfect clique.

Here, a clique is a set $C \subset 2^{\omega}$ such that all pairs of elements of C are in the set B. Shelah proves something much stronger and does not stop to state this ZFC consequence of his results explicitly, so I will take a moment to prove it from statements explicitly appearing in his paper.

Proof. In [3, Theorem 1.13], Shelah shows that a set with these properties can be forced. I will be finished if I show that the two requisite properties of the F_{σ} set are absolute between any transitive models of a large fraction of ZFC that contain the (code for the) set B, including the countable models.

First of all, containing a perfect clique is equivalent to a Σ_{1}^{1} statement. Suppose that $T \subset 2^{<\omega}$ is a perfect binary tree such that $[T]$ is a clique of B. Fix the closed sets $F_{n}: n \in \omega$ whose union gives B. Note that the collection of Borel subsets of $2^{\omega} \times 2^{\omega}$ which do not contain a perfect rectangle is a σ ideal. Use this fact, thinning out the tree T if necessary, to find numbers $m(t), n(t)$ for every splitnode t of T such that $[T \upharpoonright t \curvearrowright 0] \times\left[T \upharpoonright t^{\wedge} 1\right] \subset F_{m(t)}$ and $\left[T \upharpoonright t^{\wedge} 1\right] \times\left[T \upharpoonright t^{\wedge} 0\right] \subset F_{n(t)}$. Existence of a tree with such numbers $m(t), n(t)$ associated to each splitnode t is clearly a Σ_{1}^{1} statement.

Second, existence of an uncountable clique is equivalent to an existence of a model of a certain sentence in the language $L_{\omega_{1} \omega}(Q)$, where Q is the quantifier "there exist uncountably many". However, Keisler [2] showed that the relevant infinitary logic is complete, and so the existence of a model is equivalent to the consistency of the sentence. The consistency means nonexistence of a proof of contradiction, the proofs are hereditarily countable objects, and so "existence of a clique" is equivalent to a Π_{1}^{1} sentence, and therefore absolute between transitive models of set theory.

Let Y be the Borel set of those sequences $y \in\left(2^{\omega}\right)^{\omega}$ whose range is a clique in B, and let $E=F_{2} \upharpoonright Y$. It is immediate that $E \leq F_{2}$. I will show that E is unpinned and F_{2} does not reduce to E.

First of all, the equivalence E is unpinned. Let $C \subset 2^{\omega}$ be an uncountable clique of B, let P be a forcing enumerating the set C in ordertype ω, and let \dot{y} be the P-name for the generic enumeration. It is immediate that \dot{y} witnesses the requisite property of the equivalence E.

To show that F_{2} is not reducible to E, suppose that f is such a Borel reduction and work towards a contradiction. Note that f remains a reduction in every forcing extension by Shoenfield's absoluteness. I will produce a generic
extension $V[G]$ such that in it, B contains no clique of size continuum. In the model $V[G]$, I will reach the contradiction in the following way. Consider the forcing P collapsing the size of the continuum to \aleph_{0} and let \dot{x} be a name for the generic enumeration of the ground model elements of 2^{ω}.

Claim 2.2. $P \Vdash \operatorname{rng}(f(\dot{x})) \in V$.
Proof. It must be the case that $P \Vdash \operatorname{rng}(f(\dot{x})) \subset V$. If some condition forced a new element into the set, one could pass to a forcing extension with mutually generic filters $H_{0}, H_{1} \subset P$ containing that condition. Clearly, $\left(\dot{x} / H_{0}\right) F_{2}\left(\dot{x} / H_{1}\right)$, but the ranges of $f\left(\dot{x} / H_{0}\right)$ and $f\left(\dot{x} / H_{1}\right)$ are not equal by a mutual genericity argument. Thus f would not be a reduction in that extension.

It also must be the case that for every ground model element $y \in Y$, the largest condition in P must decide the statement $\check{y} \in \operatorname{rng}(f(\dot{x}))$. If $p, q \in$ P decided this statement in two different ways, then one could pass into a forcing extension with $V[G]$-generic filters with $p \in H_{0}, q \in H_{1}$. But then, $\left(\dot{x} / H_{0}\right) F_{2}\left(\dot{x} / H_{1}\right)$ while $y \in \operatorname{rng}\left(f\left(\dot{x} / H_{0}\right)\right) \Delta \operatorname{rng}\left(f\left(\dot{x} / H_{1}\right)\right)$ and f is not a reduction in this extension.

Consequently, $P \Vdash \operatorname{rng}(f(\dot{x}))=\{y: 1 \Vdash \check{y} \in \operatorname{rng}(\dot{x})\} \in V$.
Let $C \subset 2^{\omega}$ be the set forced to be the ranges of $\dot{f}(\dot{x})$. Plainly, C is a clique in B, and therefore its size is less than the continuum. Thus there are two elementary submodels M_{0}, M_{1} of a large enough structure which contain C as an element and a subset such that M_{0}, M_{1} do not contain the same reals. Pass into a forcing extension in which there are filters $H_{0} \subset M_{0} \cap P$ and $H_{1} \cap M_{1} \cap P$ meeting all the dense sets in the respective models. By the forcing theorem applied in the models, $M_{0}\left[H_{0}\right] \models \operatorname{rng}\left(f\left(\dot{x} / H_{0}\right)\right)=C$ and $M_{1}\left[H_{1}\right] \models \operatorname{rng}\left(f\left(\dot{x} / H_{1}\right)\right)=C$, and by Borel absoluteness between the models $M_{0}\left[H_{0}\right], M_{1}\left[H_{1}\right]$ and the extension, it is the case that $\operatorname{rng}\left(f\left(\dot{x} / H_{0}\right)\right)=C=\operatorname{rng}\left(f\left(\dot{x} / H_{1}\right)\right)$. However, the sequences $\dot{x} / H_{0}, \dot{x} / H_{1}$ are F_{2} inequivalent, since the models M_{0}, M_{1} did not contain the same reals. Thus f is not a reduction in the geenric extension, a contradiction.

Now I must describe how to obtain the generic extension $V[G]$ in which no clique of the set B has size continuum. The argument can be found in several places in the literature, including Shelah's [3]. Work in V and let κ be a regular cardinal larger than the continuum such that $\kappa^{\omega}=\kappa$. The model $V[G]$ is the extension of V with forcing Q adding κ many Cohen reals with finite support. To verify the requisite feature, suppose for contradiction that the poset Q forces that $\left\langle\dot{z}_{\alpha}: \alpha \in \kappa\right\rangle$ is a clique in the set B. For every ordinal $\alpha \in \kappa$, let M_{α} be a countable elementary submodel of a large structure containing α. Note that the c.c.c. of Q implies that $\dot{z}_{\alpha} \cap M_{\alpha}=\dot{z}_{\alpha}$ for every ordinal α. Use the cardinal arithmetic assumption to find a cofinal set $a \subset \kappa$ such that the models $M_{\alpha}: \alpha \in a$ form a Δ-system with root r. The simple form of the forcing Q implies that $Q \cap r$ is a regular subposet of $Q \cap \bar{M}$ which is in turn regular in Q and so there is a $Q \cap r$ name \dot{u}_{α} for the remainder of the name z_{α}. Thinning out the set a further if necessary I may assume that the structures $\left\langle M_{\alpha}, \dot{z}_{\alpha}, r, \dot{u}_{\alpha}\right\rangle: \alpha \in a$ are pairwise isomorphic, with the same transitive collapse $\bar{M}, \bar{z}, \bar{r}, \bar{u}$. Now, for every pair of ordinals $\alpha \neq \beta \in a, Q$ forces that the filters $\dot{G} \cap M_{\alpha} \backslash r$ and
$\dot{G} \cap M_{\beta} \backslash r$ are mutually generic over $V[\dot{G} \cap r]$, and the evaluations of the names $\dot{u}_{\alpha}, \dot{u}_{\beta}$ according to these filters provide a pair of points in the set B. It follows that in the model $V[G \cap r]$, it is the case that the product of two copies of the poset $Q \cap \bar{M} \backslash \bar{r}$ force the two evaluations of the name \bar{u} to form a point in the set B; moreover, the evaluations must be distinct by a mutual genericity argument. The last key point is that the forcing $Q \cap \bar{M} \backslash \bar{r}$ is countable and therefore in the forcing sense equivalent to Cohen forcing, and that adding a single Cohen real adds in fact a pairwise mutually generic perfect set of them. Thus, if $G \subset Q$ is a V-generic filter, in the model $V[G]$ there is a Cohen real over $V[G \cap r]$, so there is a perfect set P of pairwise mutually $V[G \cap r]$ generic filters over $Q \cap \bar{M} \backslash \bar{r}$, the set $\{\bar{u} / h: h \in P\}$ is an analytic uncountable clique of B, which then contains a perfect clique. But the set B contained no perfect clique in V, so it should contain no perfect clique in $V[G]$, contradiction!

As a final remark, Shelah's work in fact provides for a strictly increasing sequence of ω_{1} many unpinned equivalence relations below F_{2}, with the proofs of irreducibility essentially repeating the above argument. The key point is that under $M A_{\aleph_{\omega_{1}}}$, for every countable ordinal α there is an F_{σ} set with cliques of size aleph h_{α} but no larger.

References

[1] Vladimir Kanovei. Borel equivalence relations. University Lecture Series 44. American Mathematical Society, Providence, RI, 2008.
[2] Jerome Keisler. Logic with quantifier "there exist uncountably many". Annals of Mathematical Logic, 1:1-93, 1970.
[3] Saharon Shelah. Borel sets with large squares. Fundamenta Mathematicae, 159:1-50, 1999. math.LO/9802134.

[^0]: *Partially supported by NSF grant DMS 0801114 and Institutional Research Plan No. AV0Z10190503 and grant IAA100190902 of GA AV ČR.
 ${ }^{\dagger}$ Institute of Mathematics of the AS CR, Žitná 25, CZ - 11567 Praha 1, Czech Republic, zapletal@math.cas.cz

