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1 Introduction

In this note, I will provide a solution to a question of Kechris regarding unpinned
Borel equivalence relations.

Definition 1.1. [1, Chapter 17] A Borel equivalence relation E on a Polish
space X is unpinned if there is a forcing P and a P -name ẋ for an element of
X such that P ×P forces the left and right evaluations of ẋ to be E equivalent,
and P forces ẋ to be E-inequivalent to any ground model point of the space X.
The equivalence is pinned if it is not unpinned.

Many equivalence relations are pinned, such as all Kσ equivalences, E3, c0 and
others. There is a natural example of an unpinned equivalence relation:

Definition 1.2. F2 is the Borel equivalence on (2ω)ω defined by xF2y if rng(x) =
rng(y).

The forcing witnessing the requisite property of F2 is the collapse of 2ω to
countable size, with ẋ a name for an enumeration of the set of ground model
points of 2ω.

It is not difficult to see that the class of pinned equivalence relations is closed
downwards with respect to Borel reducibility, and so it offers a tool for proving
irreducibility results: no unpinned relation can be reduced to pinned. As an
example, F2 is not reducible to E3. Kechris asked whether this tool is really
only checking whether F2 is reducible to a given Borel equivalence relation:

Question 1.3. [1, Question 17.6.1] Is F2 reducible to every unpinned Borel
equivalence relation?

In this brief note, I will show that the answer is negative.
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Theorem 1.4. There is an unpinned Borel equivalence relation strictly below
F2.

2 Proof

The proof of the theorem begins with a fact essentially due to Shelah [3].

Fact 2.1. There is an Fσ set B ⊂ 2ω×2ω which contains an uncountable clique
but no perfect clique.

Here, a clique is a set C ⊂ 2ω such that all pairs of elements of C are in the set
B. Shelah proves something much stronger and does not stop to state this ZFC
consequence of his results explicitly, so I will take a moment to prove it from
statements explicitly appearing in his paper.

Proof. In [3, Theorem 1.13], Shelah shows that a set with these properties can
be forced. I will be finished if I show that the two requisite properties of the Fσ

set are absolute between any transitive models of a large fraction of ZFC that
contain the (code for the) set B, including the countable models.

First of all, containing a perfect clique is equivalent to a Σ1
1 statement.

Suppose that T ⊂ 2<ω is a perfect binary tree such that [T ] is a clique of B.
Fix the closed sets Fn : n ∈ ω whose union gives B. Note that the collection
of Borel subsets of 2ω × 2ω which do not contain a perfect rectangle is a σ-
ideal. Use this fact, thinning out the tree T if necessary, to find numbers
m(t), n(t) for every splitnode t of T such that [T � ta0]× [T � ta1] ⊂ Fm(t) and
[T � ta1] × [T � ta0] ⊂ Fn(t). Existence of a tree with such numbers m(t), n(t)
associated to each splitnode t is clearly a Σ1

1 statement.
Second, existence of an uncountable clique is equivalent to an existence of a

model of a certain sentence in the language Lω1ω(Q), where Q is the quantifier
”there exist uncountably many”. However, Keisler [2] showed that the relevant
infinitary logic is complete, and so the existence of a model is equivalent to the
consistency of the sentence. The consistency means nonexistence of a proof of
contradiction, the proofs are hereditarily countable objects, and so ”existence
of a clique” is equivalent to a Π1

1 sentence, and therefore absolute between
transitive models of set theory.

Let Y be the Borel set of those sequences y ∈ (2ω)ω whose range is a clique
in B, and let E = F2 � Y . It is immediate that E ≤ F2. I will show that E is
unpinned and F2 does not reduce to E.

First of all, the equivalence E is unpinned. Let C ⊂ 2ω be an uncountable
clique of B, let P be a forcing enumerating the set C in ordertype ω, and let
ẏ be the P -name for the generic enumeration. It is immediate that ẏ witnesses
the requisite property of the equivalence E.

To show that F2 is not reducible to E, suppose that f is such a Borel
reduction and work towards a contradiction. Note that f remains a reduction
in every forcing extension by Shoenfield’s absoluteness. I will produce a generic
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extension V [G] such that in it, B contains no clique of size continuum. In the
model V [G], I will reach the contradiction in the following way. Consider the
forcing P collapsing the size of the continuum to ℵ0 and let ẋ be a name for the
generic enumeration of the ground model elements of 2ω.

Claim 2.2. P  rng(f(ẋ)) ∈ V .

Proof. It must be the case that P  rng(f(ẋ)) ⊂ V . If some condition forced a
new element into the set, one could pass to a forcing extension with mutually
generic filters H0,H1 ⊂ P containing that condition. Clearly, (ẋ/H0)F2(ẋ/H1),
but the ranges of f(ẋ/H0) and f(ẋ/H1) are not equal by a mutual genericity
argument. Thus f would not be a reduction in that extension.

It also must be the case that for every ground model element y ∈ Y , the
largest condition in P must decide the statement y̌ ∈ rng(f(ẋ)). If p, q ∈
P decided this statement in two different ways, then one could pass into a
forcing extension with V [G]-generic filters with p ∈ H0, q ∈ H1. But then,
(ẋ/H0)F2(ẋ/H1) while y ∈ rng(f(ẋ/H0))∆rng(f(ẋ/H1)) and f is not a reduc-
tion in this extension.

Consequently, P  rng(f(ẋ)) = {y : 1  y̌ ∈ rng(ẋ)} ∈ V .

Let C ⊂ 2ω be the set forced to be the ranges of ḟ(ẋ). Plainly, C is a clique
in B, and therefore its size is less than the continuum. Thus there are two
elementary submodels M0,M1 of a large enough structure which contain C as an
element and a subset such that M0,M1 do not contain the same reals. Pass into a
forcing extension in which there are filters H0 ⊂ M0∩P and H1∩M1∩P meeting
all the dense sets in the respective models. By the forcing theorem applied in the
models, M0[H0] |= rng(f(ẋ/H0)) = C and M1[H1] |= rng(f(ẋ/H1)) = C, and
by Borel absoluteness between the models M0[H0],M1[H1] and the extension,
it is the case that rng(f(ẋ/H0)) = C = rng(f(ẋ/H1)). However, the sequences
ẋ/H0, ẋ/H1 are F2 inequivalent, since the models M0,M1 did not contain the
same reals. Thus f is not a reduction in the geenric extension, a contradiction.

Now I must describe how to obtain the generic extension V [G] in which no
clique of the set B has size continuum. The argument can be found in several
places in the literature, including Shelah’s [3]. Work in V and let κ be a regular
cardinal larger than the continuum such that κω = κ. The model V [G] is the
extension of V with forcing Q adding κ many Cohen reals with finite support. To
verify the requisite feature, suppose for contradiction that the poset Q forces
that 〈żα : α ∈ κ〉 is a clique in the set B. For every ordinal α ∈ κ, let Mα

be a countable elementary submodel of a large structure containing α. Note
that the c.c.c. of Q implies that żα ∩ Mα = żα for every ordinal α. Use the
cardinal arithmetic assumption to find a cofinal set a ⊂ κ such that the models
Mα : α ∈ a form a ∆-system with root r. The simple form of the forcing Q
implies that Q∩r is a regular subposet of Q∩M̄ which is in turn regular in Q and
so there is a Q∩ r name u̇α for the remainder of the name zα. Thinning out the
set a further if necessary I may assume that the structures 〈Mα, żα, r, u̇α〉 : α ∈ a
are pairwise isomorphic, with the same transitive collapse M̄, z̄, r̄, ū. Now, for
every pair of ordinals α 6= β ∈ a, Q forces that the filters Ġ ∩ Mα \ r and
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Ġ∩Mβ \ r are mutually generic over V [Ġ∩ r], and the evaluations of the names
u̇α, u̇β according to these filters provide a pair of points in the set B. It follows
that in the model V [G ∩ r], it is the case that the product of two copies of the
poset Q ∩ M̄ \ r̄ force the two evaluations of the name ū to form a point in
the set B; moreover, the evaluations must be distinct by a mutual genericity
argument. The last key point is that the forcing Q ∩ M̄ \ r̄ is countable and
therefore in the forcing sense equivalent to Cohen forcing, and that adding a
single Cohen real adds in fact a pairwise mutually generic perfect set of them.
Thus, if G ⊂ Q is a V -generic filter, in the model V [G] there is a Cohen real
over V [G ∩ r], so there is a perfect set P of pairwise mutually V [G ∩ r] generic
filters over Q ∩ M̄ \ r̄, the set {ū/h : h ∈ P} is an analytic uncountable clique
of B, which then contains a perfect clique. But the set B contained no perfect
clique in V , so it should contain no perfect clique in V [G], contradiction!

As a final remark, Shelah’s work in fact provides for a strictly increasing
sequence of ω1 many unpinned equivalence relations below F2, with the proofs
of irreducibility essentially repeating the above argument. The key point is that
under MAℵω1

, for every countable ordinal α there is an Fσ set with cliques of
size alephα but no larger.
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