Pinned equivalence relations

Jindřich Zapletal ^{*†} Czech Academy of Sciences University of Florida

September 28, 2010

1 Introduction

In this note, I will provide a solution to a question of Kechris regarding unpinned Borel equivalence relations.

Definition 1.1. [1, Chapter 17] A Borel equivalence relation E on a Polish space X is *unpinned* if there is a forcing P and a P-name \dot{x} for an element of X such that $P \times P$ forces the left and right evaluations of \dot{x} to be E equivalent, and P forces \dot{x} to be E-inequivalent to any ground model point of the space X. The equivalence is *pinned* if it is not unpinned.

Many equivalence relations are pinned, such as all K_{σ} equivalences, E_3 , c_0 and others. There is a natural example of an unpinned equivalence relation:

Definition 1.2. F_2 is the Borel equivalence on $(2^{\omega})^{\omega}$ defined by xF_2y if rng(x) = rng(y).

The forcing witnessing the requisite property of F_2 is the collapse of 2^{ω} to countable size, with \dot{x} a name for an enumeration of the set of ground model points of 2^{ω} .

It is not difficult to see that the class of pinned equivalence relations is closed downwards with respect to Borel reducibility, and so it offers a tool for proving irreducibility results: no unpinned relation can be reduced to pinned. As an example, F_2 is not reducible to E_3 . Kechris asked whether this tool is really only checking whether F_2 is reducible to a given Borel equivalence relation:

Question 1.3. [1, Question 17.6.1] Is F_2 reducible to every unpinned Borel equivalence relation?

In this brief note, I will show that the answer is negative.

^{*}Partially supported by NSF grant DMS 0801114 and Institutional Research Plan No. AV0Z10190503 and grant IAA100190902 of GA AV ČR.

 $^{^\}dagger Institute of Mathematics of the AS CR, Žitná 25, CZ - 115 67$ Praha 1, Czech Republic, zapletal@math.cas.cz

Theorem 1.4. There is an unpinned Borel equivalence relation strictly below F_2 .

2 Proof

The proof of the theorem begins with a fact essentially due to Shelah [3].

Fact 2.1. There is an F_{σ} set $B \subset 2^{\omega} \times 2^{\omega}$ which contains an uncountable clique but no perfect clique.

Here, a *clique* is a set $C \subset 2^{\omega}$ such that all pairs of elements of C are in the set B. Shelah proves something much stronger and does not stop to state this ZFC consequence of his results explicitly, so I will take a moment to prove it from statements explicitly appearing in his paper.

Proof. In [3, Theorem 1.13], Shelah shows that a set with these properties can be *forced.* I will be finished if I show that the two requisite properties of the F_{σ} set are absolute between any transitive models of a large fraction of ZFC that contain the (code for the) set B, including the countable models.

First of all, containing a perfect clique is equivalent to a Σ_1^1 statement. Suppose that $T \subset 2^{<\omega}$ is a perfect binary tree such that [T] is a clique of B. Fix the closed sets $F_n : n \in \omega$ whose union gives B. Note that the collection of Borel subsets of $2^{\omega} \times 2^{\omega}$ which do not contain a perfect rectangle is a σ ideal. Use this fact, thinning out the tree T if necessary, to find numbers m(t), n(t) for every splitnode t of T such that $[T \upharpoonright t^{-}0] \times [T \upharpoonright t^{-}1] \subset F_{m(t)}$ and $[T \upharpoonright t^{-}1] \times [T \upharpoonright t^{-}0] \subset F_{n(t)}$. Existence of a tree with such numbers m(t), n(t)associated to each splitnode t is clearly a Σ_1^1 statement.

Second, existence of an uncountable clique is equivalent to an existence of a model of a certain sentence in the language $L_{\omega_1\omega}(Q)$, where Q is the quantifier "there exist uncountably many". However, Keisler [2] showed that the relevant infinitary logic is complete, and so the existence of a model is equivalent to the consistency of the sentence. The consistency means nonexistence of a proof of contradiction, the proofs are hereditarily countable objects, and so "existence of a clique" is equivalent to a Π_1^1 sentence, and therefore absolute between transitive models of set theory.

Let Y be the Borel set of those sequences $y \in (2^{\omega})^{\omega}$ whose range is a clique in B, and let $E = F_2 \upharpoonright Y$. It is immediate that $E \leq F_2$. I will show that E is unpinned and F_2 does not reduce to E.

First of all, the equivalence E is unpinned. Let $C \subset 2^{\omega}$ be an uncountable clique of B, let P be a forcing enumerating the set C in ordertype ω , and let \dot{y} be the P-name for the generic enumeration. It is immediate that \dot{y} witnesses the requisite property of the equivalence E.

To show that F_2 is not reducible to E, suppose that f is such a Borel reduction and work towards a contradiction. Note that f remains a reduction in every forcing extension by Shoenfield's absoluteness. I will produce a generic extension V[G] such that in it, B contains no clique of size continuum. In the model V[G], I will reach the contradiction in the following way. Consider the forcing P collapsing the size of the continuum to \aleph_0 and let \dot{x} be a name for the generic enumeration of the ground model elements of 2^{ω} .

Claim 2.2. $P \Vdash \operatorname{rng}(f(\dot{x})) \in V$.

Proof. It must be the case that $P \Vdash \operatorname{rng}(f(\dot{x})) \subset V$. If some condition forced a new element into the set, one could pass to a forcing extension with mutually generic filters $H_0, H_1 \subset P$ containing that condition. Clearly, $(\dot{x}/H_0)F_2(\dot{x}/H_1)$, but the ranges of $f(\dot{x}/H_0)$ and $f(\dot{x}/H_1)$ are not equal by a mutual genericity argument. Thus f would not be a reduction in that extension.

It also must be the case that for every ground model element $y \in Y$, the largest condition in P must decide the statement $\check{y} \in \operatorname{rng}(f(\check{x}))$. If $p,q \in P$ decided this statement in two different ways, then one could pass into a forcing extension with V[G]-generic filters with $p \in H_0, q \in H_1$. But then, $(\dot{x}/H_0)F_2(\dot{x}/H_1)$ while $y \in \operatorname{rng}(f(\dot{x}/H_0))\Delta\operatorname{rng}(f(\dot{x}/H_1))$ and f is not a reduction in this extension.

Consequently,
$$P \Vdash \operatorname{rng}(f(\dot{x})) = \{y : 1 \Vdash \check{y} \in \operatorname{rng}(\dot{x})\} \in V.$$

Let $C \subset 2^{\omega}$ be the set forced to be the ranges of $\dot{f}(\dot{x})$. Plainly, C is a clique in B, and therefore its size is less than the continuum. Thus there are two elementary submodels M_0, M_1 of a large enough structure which contain C as an element and a subset such that M_0, M_1 do not contain the same reals. Pass into a forcing extension in which there are filters $H_0 \subset M_0 \cap P$ and $H_1 \cap M_1 \cap P$ meeting all the dense sets in the respective models. By the forcing theorem applied in the models, $M_0[H_0] \models \operatorname{rng}(f(\dot{x}/H_0)) = C$ and $M_1[H_1] \models \operatorname{rng}(f(\dot{x}/H_1)) = C$, and by Borel absoluteness between the models $M_0[H_0], M_1[H_1]$ and the extension, it is the case that $\operatorname{rng}(f(\dot{x}/H_0)) = C = \operatorname{rng}(f(\dot{x}/H_1))$. However, the sequences $\dot{x}/H_0, \dot{x}/H_1$ are F_2 inequivalent, since the models M_0, M_1 did not contain the same reals. Thus f is not a reduction in the generic extension, a contradiction.

Now I must describe how to obtain the generic extension V[G] in which no clique of the set B has size continuum. The argument can be found in several places in the literature, including Shelah's [3]. Work in V and let κ be a regular cardinal larger than the continuum such that $\kappa^{\omega} = \kappa$. The model V[G] is the extension of V with forcing Q adding κ many Cohen reals with finite support. To verify the requisite feature, suppose for contradiction that the poset Q forces that $\langle \dot{z}_{\alpha} : \alpha \in \kappa \rangle$ is a clique in the set B. For every ordinal $\alpha \in \kappa$, let M_{α} be a countable elementary submodel of a large structure containing α . Note that the c.c.c. of Q implies that $\dot{z}_{\alpha} \cap M_{\alpha} = \dot{z}_{\alpha}$ for every ordinal α . Use the cardinal arithmetic assumption to find a cofinal set $a \subset \kappa$ such that the models $M_{\alpha}: \alpha \in a$ form a Δ -system with root r. The simple form of the forcing Q implies that $Q \cap r$ is a regular subposet of $Q \cap \overline{M}$ which is in turn regular in Q and so there is a $Q \cap r$ name \dot{u}_{α} for the remainder of the name z_{α} . Thinning out the set a further if necessary I may assume that the structures $\langle M_{\alpha}, \dot{z}_{\alpha}, r, \dot{u}_{\alpha} \rangle : \alpha \in a$ are pairwise isomorphic, with the same transitive collapse $\overline{M}, \overline{z}, \overline{r}, \overline{u}$. Now, for every pair of ordinals $\alpha \neq \beta \in a$, Q forces that the filters $G \cap M_{\alpha} \setminus r$ and

 $\dot{G} \cap M_{\beta} \setminus r$ are mutually generic over $V[\dot{G} \cap r]$, and the evaluations of the names $\dot{u}_{\alpha}, \dot{u}_{\beta}$ according to these filters provide a pair of points in the set B. It follows that in the model $V[G \cap r]$, it is the case that the product of two copies of the poset $Q \cap \overline{M} \setminus \overline{r}$ force the two evaluations of the name \overline{u} to form a point in the set B; moreover, the evaluations must be distinct by a mutual genericity argument. The last key point is that the forcing $Q \cap \overline{M} \setminus \overline{r}$ is countable and therefore in the forcing sense equivalent to Cohen forcing, and that adding a single Cohen real adds in fact a pairwise mutually generic perfect set of them. Thus, if $G \subset Q$ is a V-generic filter, in the model V[G] there is a Cohen real over $V[G \cap r]$, so there is a perfect set P of pairwise mutually $V[G \cap r]$ generic filters over $Q \cap \overline{M} \setminus \overline{r}$, the set $\{\overline{u}/h : h \in P\}$ is an analytic uncountable clique of B, which then contains a perfect clique. But the set B contained no perfect clique in V, so it should contain no perfect clique in V[G], contradiction!

As a final remark, Shelah's work in fact provides for a strictly increasing sequence of ω_1 many unpinned equivalence relations below F_2 , with the proofs of irreducibility essentially repeating the above argument. The key point is that under $MA_{\aleph\omega_1}$, for every countable ordinal α there is an F_{σ} set with cliques of size $aleph_{\alpha}$ but no larger.

References

- [1] Vladimir Kanovei. *Borel equivalence relations*. University Lecture Series 44. American Mathematical Society, Providence, RI, 2008.
- [2] Jerome Keisler. Logic with quantifier "there exist uncountably many". Annals of Mathematical Logic, 1:1–93, 1970.
- [3] Saharon Shelah. Borel sets with large squares. Fundamenta Mathematicae, 159:1–50, 1999. math.LO/9802134.