Date: February 9, 2021

Speaker: Jindrich Zapletal

Title: Krull dimension in set theory

Abstract: For each number n>0, let G_n be the graph on R^n connecting points of rational Euclidean distance. By results of Erdos and Komjath, in ZFC these graphs have countable chromatic number. I will show that it is consistent with ZF+DC that the chromatic number of G_3 is countable while that of G_4 is not. The technology exploits dimension features of the Noetherian topology of algebraic sets. It is applicable in a number of other consistency results.