
1 Categoricity

Definition 1.1. A theory Γ is countably categorical if all of its countable models
are isomorphic to each other.

Example 1.2. Let Γ be the theory of linear dense ordering without endpoints.
Then Γ is countably categorical.

Here, Γ is the theory in the language with single binary relational symbol,
including the axioms that state ≤ is a linear ordering, plus ∀x∀y x < y →
∃z x < z < y (density), ∀x∃y y < x (no lower endpoint) and ∀x∃y y > x (no
upper endpoint). As usual, the statement x < y is a shorthand for x ≤ y∧x 6= y.

Proof. Suppose that 〈L,≤L〉 and 〈K,≤K〉 are dense linear orders without end-
points, both countable; we must show that they are isomorphic. List their
respective underlyng sets as L = {ln : n ∈ N}, K = {kn : n ∈ N}. By induction
on n build finite partial order-preserving injective functions fn : L→ K so that

• f0 = 0 ⊂ f1 ⊂ f2 ⊂ . . . ;

• kn ∈ dom(fn+1) and ln ∈ rng(fn+1).

If the induction succeeds, then
⋃

n fn is going to be the desired isomorphism of
L and K.

To perform the induction step, suppose that fn is given. We will first extend
fn to a finite order preserving function g such that ln ∈ dom(g). There are
several cases depending on the position of ln. If ln ∈ dom(fn) then let g = fn.
If ln sits strictly between two successive elements of dom(fn), say l < ln < l′,
then use the density of the ordering K to find k ∈ K strictly between fn(l) and
fn(l′), and define g to be the function fn extended by a single value, g(ln) = k.
If ln sits below the smallest element of dom(fn), say ln < l, then use the fact
that the ordering K has no endpoints to find a point k ∈ K which is below
fn(l), and define g to be the function fn extended by a single value, g(ln) = k.If
ln sits above the largest element of dom(fn), say l < ln, then use the fact that
the ordering K has no endpoints to find a point k ∈ K which is above fn(l),
and define g to be the function fn extended by a single value, g(ln) = k again.

Now, by a symmetric process, with the roles of L,K reversed, extend the
function g to a finite order preserving function h such that kn ∈ rng(h). The
induction step is concluded by letting fn+1 = h.

Example 1.3. Let Γ be the theory of linear order in which every element has
an immediate successor and immediate predecessor. Then Γ is not countably
categorical.

Here, Γ is the theory in the language with single binary relational symbol,
including the axioms that state ≤ is a linear ordering, plus ∀x∃y x < y∧∀z¬(x <
z < y) (immediate successor) and ∀x∃y y < x ∧ ∀z¬(y < z < z) (immediate
predecessor).
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Proof. Consider the following two countable models of Γ: the model M which
is isomorphic to a single copy of the integers with their usual ordering, and
the model N which is isomorphic to two copies of the integers with their usual
ordering, on top of each other. They are clearly not isomorphic, since in M ,
between any two elements m0,m1 there are only finitely many elements in be-
tween, while in N , if two elements n0, n1 are chosen from distinct copies of the
integers, there are inifnitely many points in between.

Example 1.4. The theory of abelian, divisible, torsion free groups is not count-
ably categorical.

Here Γ is the theory in the language ·, 1 which includes the axioms of group
theory, plus the axiom ∀x∀y x · y = y · x (abelian), for each natural number n
the axiom ∀x x 6= 1 → x · x · . . . n times. . . ·x 6= 1 (torsion-free) and the axiom
∀x∃y y · y · . . . n times. . . ·y = x (divisible).

Proof. Let Q be the rationals with their addition operation. Clearly, Qn for
distinct natural numbers n are models of the theory while they are pairwise
nonisomorphic due to the dimension distinction. There is also one more model
with infinite dimension.

The most important reason for considering the notion of countable categoric-
ity is the following theorem:

Theorem 1.5. If Γ is a countably categorical theory in a countable language,
then Γ is complete.

Proof. Suppose that a theory Γ is not complete. Thus, there is a sentence φ such
that Γ proves neither φ nor ¬φ. Then both theories Γ ∪ {φ} and Γ ∪ {¬φ} are
consistent, and by the completeness theorem they both have countable models,
say M,N respectively. Then M,N are both models of Γ, and they cannot be
isomorphic. This means that the theory Γ is not countably categorical.

Corollary 1.6. The theory of an infinite set with equality, and the theory of a
dense linear order without endpoints are both complete.

The theorem above is an implication, not an equivalence. There are many
complete theories which are not countably categorical. The proof of their com-
pleteness then has to be somewhat more involved. I provide only one example.

Theorem 1.7. The theory of linear order with immediate successor and imme-
diate predecessor is complete.

Proof. Let 〈L,≤L〉 and 〈K,≤K〉 be models of the theory. They may not be
isomorphic as we have seen above. Instead, consider the following feature. For
every natural number n, consider the relation ≡n between the tuples ~l and ~k
of their underlying sets defined as follows: ~l ≡n

~k if the tuples ~k and ~l have
the same length, they are ordered in the same way, and if l0, l1 are elements of
rng(~l) ??? and k0, k1 ∈ rng(~k) are the corresponding elements in K,
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Claim 1.8. If ~l ≡n+1
~k and i ∈ L is an arbitrary element, then there is j ∈ K

such that ~lai ≡n
~kaj.

Now, by induction on complexity of a formula φ prove the following statement.
If φ(~x) is a formula with of the language with ≤ n many quantifiers, ~l and ~k are

tuples of elements of L,K respectively of the same length as ~x, and ~l ≡n
~k, then

L |= φ(~l/~x) if and only if K |= (~k/~x). Once this is done, consider the case of a
sentence φ. A sentence has no free variables, so the induction says that L |= φ
just in case K |= φ. Thus, all the countable models of the theory Γ satisfy the
same sentences, and by the completeness theorem Γ is complete.

To perform the induction, note that for atomic formulas the statement is
satisfied–an atomic formula only asserts that one of the entries on the variable
list ~x is less or equal than another one, and the tuples ~l and ~k are assumed to
be ordered in the same way. Passing the induction steps for formulas which
are boolean combinations of simpler formulas is essentially trivial. The more
difficult step appears when φ(~x) is equal to ∃y ψ(~x, y), and the statement has
been verified for ψ. Let n be the number not smaller than the number of
quantifiers in φ; note that n ≥ 1. Suppose that ~l,~k are tuples of elements
of L and K which are ordered in the same way and ~l ≡n

~k; we must show
that L |= φ(~l/~x) if and only if K |= φ(~k/~x). For the left-to-right direction,

if L |= φ(~l/~k), then by the definition of the satisfaction relation, there must

be i ∈ L such that L |= ψ(~l/x, i/y). Use the Claim to find j ∈ K such that
~lai ≡n−1 ~k

aj. Now note that the number of quantifiers in ψ is not greater

than n− 1, and so by the induction hypothesis K |= ψ(~k/~x, j/y) and therefore

K |= φ(~k/~x). The argument for the right-toleft direction is symmetric.

2 Definability and quantifier elimination

Definition 2.1. Let M be a model and n a natural number. A set A ⊂ Mn

is definable in the model M if there is a formula φ(~x, ~y) in the language of the
model, all free variables of φ are listed, the string ~x has length n, the string
~y has length some k, and there is an k-tuple ~p of elements of M such that for
every n-tuple ~r of elements of M , ~r ∈M if and only if M |= φ(~r, ~p) holds. The
tuple ~p is referred to as the parameters of the definition. If the string ~y is empty
then the set A is said to be definable without parameters.

If M is a countably infinite model, then it has undefinable subsets, simply
because there are only countably many definitions available, and there are un-
countably many subsets of M . It is always interesting to know exactly which
subsets of M or Mn are definable, and to be able to find the logically simplest
definition of a given definable set.

Definition 2.2. A theory Γ has quantifier elimination if for every formula φ(~x)
there is a formula ψ(~x) with no quantifiers such that Γ ` φ ↔ ψ. A model M
has quantifier elimination if Th(M) has it.

3



Example 2.3. Consider the model 〈R, 0, 1,≤,+, ·〉 and the formula φ(a, b, c) =
∃x ax2 + bx + c = 0. There is a quantifier-free formula ψ(a, b, c) equivalent to
it: ψ(a, b, c) = b2− 4ac ≥ 0. The formula θ(a, b, c, d) saying that the two by two
matrix with entries a, b, c, d has an inverse also has quantifier-free equivalent:
ac− bd 6= 0.

Example 2.4. Consider the model 〈Z,≤〉 of integers with the usual ordering.
It does not have the elimination of quantifiers: the formula φ(x, y) = ∀z¬(x <
z < y) has no quantifier-free equivalent.

Proof. Suppose that ψ(x, y) is a formula which has no quantifiers. Let fZ→ Z
be the function f(n) = 2n. The map f preserves the ordering ≤ and therefore it
preserves the validity of all quantifier-free formulas. In particular, Z |= ψ(0, 1)
if and only if Z |= ψ(0, 2) since 0 = f(0) and 2 = f(1). At the same time,
Z |= φ(0, 1) and ¬φ(0, 2). This means that φ and ψ cannot be equivalent.
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