
Four and more∗

Ilijas Farah †

York University
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Abstract

We isolate several large classes of definable proper forcings and show
how they include many partial orderings used in practice.

1 Introduction

The definable partial orderings used in practice share many common features.
However, attempts to classify such partial orderings or their features in a com-
binatorial way can turn out to be very complex and, more importantly, can
hide the real issues connecting the forcings to the motivating mathematical
problems. This paper is a humble contribution to the classification problem.
We isolate several classes of definable partial orderings. Each of them contains
many forcings, directly defined from certain natural problems in abstract analy-
sis. Moreover, many partial orders used in practice very naturally fall to one of
those classes. However, these classes do not have any claim to completeness; in
fact, we will show that there are natural partial orders which do not fall into any
of them. Still, we believe that the results of the paper warrant further attention
and investigation.

The notation of the paper follows the set theoretic standard of [13] and
[15]. The symbol P(U) denotes the powerset of the set U , while B(X) denotes
the collection of all Borel subsets of a Polish space X. If t is a finite binary
sequence or a sequence of natural numbers then [t] denotes the collection of all
infinite binary sequences or all infinite sequences of natural numbers starting
with t. There are many games in the paper, and we repeatedly use the following
terminology. To say that one of the players dynamically produces a Borel set A
on a fixed schedule is to say that this player really produces integer by integer a
Borel code for the set A, in a predetermined way to be precisely specified later.
By the Solovay model derived from an inaccessible cardinal κ we mean the
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intermediate model V ⊂ V (R) ⊂ V [G] where G ⊂ Coll(ω,< κ) is a V -generic
filter, as opposed to the model L(R) ⊂ V [G].

2 The methodology of the paper

The methodology of the paper differs quite a bit from the standard approach to
forcing. We believe the reader will quickly find out that it is quite efficient and
flexible as far as definable forcing goes. Still we think it is necessary to introduce
the basic concepts used. Note that the net effect of most lemmas and facts in
this section is the elimination of the forcing relation from certain statements.

2.1 σ-ideals and forcing

Every suitably definable proper forcing adding a single real is of the form PI for
a suitable σ-ideal I on a Polish space, where

Definition 2.1. If X is a Polish space and I is a σ-ideal on it then PI denotes
the partial ordering of Borel I-positive sets ordered by inclusion.

It will be frequently clear from context exactly which Polish space X we
are working on, and the dependence of the poset PI on the space will be often
neglected. The following lemmas record the most basic forcing properties of the
posets of the form PI . The reader should observe that they all are of the form
which eliminates the forcing relation from certain statements. The proofs can
be found in the first chapter of [35].

Fact 2.2. Suppose that X is a Polish space and I is a σ-ideal on it. Then

• the forcing PI adds a new element ṙgen ∈ Ẋ such that a Borel set B ⊂ X
is in the generic filter if and only if its realization in the generic extension
contains ṙgen as an element.

• the forcing PI is proper if and only if for every countable elementary sub-
model M of a large enough structure and every condition B ∈ PI ∩M the
set {r ∈ B : r is M -generic for the poset PI} is I-positive.

Fact 2.3. Suppose that I is a σ-ideal such that PI is proper. Then

• for every condition B ∈ PI and every name ġ for an element of a Polish
space Y there is a stronger condition C ⊂ B and a Borel function G :
C → Y such that C 
 ġ = Ġ(ṙgen). Moreover, if A ⊂ Y is a universally

Baire set and B 
 ġ ∈ Ȧ then C,G can be chosen so that G′′C ⊂ A.

• for every condition B ∈ PI and every name Ḋ for a Borel subset of a Polish
space Y there is a stronger condition C ⊂ B and a Borel set E ⊂ C × Y
such that C 
 Ḋ is the ṙgen -th vertical section of the set Ė.
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Note a simple uniformization corollary of the first item above: if B ∈ PI is
a condition, Y a Polish space and A ⊂ B × Y is a universally Baire set with
nonempty vertical sections then there is a condition C ⊂ B and a Borel function
G : C → Y such that for every point r ∈ C, 〈r,G(r)〉 ∈ A. To see this, first
use the universally Baire absoluteness to find a na me ġ for a real such that
B 
 〈ṙgen , dotg〉 ∈ Ȧ and then apply the first item above.

Fact 2.4. Suppose that I is a σ-ideal such that PI is proper. The following are
equivalent:

• PI is bounding

• every Borel I-positive set has a compact I-positive subset, and every Borel
function on a Borel I-positive set has a continuous restriction with an
I-positive domain.

Thus all bounding forcings of the form PI are in fact forcings with finitely
branching trees and have continuous reading of names. This means that they
should be easy to understand from the combinatorial point of view, and we will
pay special attention to the bounding cases.

Part of the point in this paper and the whole related theory is to find a cor-
respondence between the topological and descriptive set theoretic properties of
the ideal I and the forcing properties of the poset PI . The reader should under-
stand the basic difficulty in that there may be ideals I, J with wildly different
topological properties while the posets PI and PJ are essentially identical. This
is recorded in the following definition.

Definition 2.5. Let I be a σ-ideal on a Polish space X. A presentation of the
poset PI is a Borel bijection f : X → Y for some Polish space Y together with
the induced ideal J = {A ⊂ Y : f−1A ∈ I} and the poset PJ .

It is clear that if PI is a presentation of PJ then PJ is a presentation of PI ,
and moreover, they are isomorphic. The isomorphism map is A 7→ f ′′A; note
that Borel one-to-one images of Borel sets are Borel. However, the topological
properties of the two presentations can be different–for example one of the ideals
may have an Fσ basis while the other does not. Still, there are many topological
properties invariant for different presentations–consider the previous lemma.

Note that the above problem includes the possibility of changing the topology
on the underlying Polish space in such a way that the Borel structure and with
it the poset PI do not change. This possibility comes up several times in the
paper, and it is really not clear how natural it can be in the various particular
cases.

2.2 Determinacy arguments

Many arguments in the paper are stated in terms of infinite games. It seems to
be the most efficient approach. The determinacy of the games in question is in
general obtained by very complicated proofs from [23], requires large cardinals
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and an analysis of the definability of the games. A quick review of specific cases
shows that the winning strategies are usually simple and readily at hand. Nev-
ertheless, in order to state correct general theorems, we must use the following
notion:

Definition 2.6. A set A ⊂ ωω is universally Baire if there are trees T, S ⊂
(ω × Ord)<ω such that A = p[T ] and T, S project to complements in every
generic extension. An ideal I is universally Baire if for every universally Baire
set C ⊂ ωω ×X the set {r ∈ ωω :the r-th vertical section of the set C is in I}
is universally Baire again.

The following is a well-known unpublished extension of [19].

Fact 2.7. (Martin) (LC) Suppose that T is a tree of height ω, B ⊂ [T ] a Borel
set, f : B → ωω a continuous function and A ⊂ ωω a universally Baire set.
The following game is determined. In the game, players I and II play succesive
nodes of the tree T , obtaining a branch b ∈ [T ]. Player I wins if b ∈ B and
f(b) ∈ A.

The large cardinal hypothesis used here is “two Woodin cardinals larger
than the size of the tree T”. It vanishes altogether if the set A ⊂ ωω is Borel, a
frequent case. A simple application:

Definition 2.8. Let P be a partial ordering. The properness game PG(P ) is
played by players Morphy and Andersen. Andersen produces an initial condition
pini and then one-by-one open dense sets Dn ⊂ P : n ∈ ω. Morphy produces
one-by-one conditions qin ∈ Dn : n ∈ ω. Morphy wins if there is a condition
q ≤ pini such that for every condition r ≤ q and every number n there is i such
that qin is compatible with r.

The following is well known (see e.g., [13] Theorem 31.9).

Fact 2.9. Let P be a partial ordering. The following are equivalent:

• P is proper

• Morphy has a winning strategy in the properness game.

For completeness we include a brief sketch of the prrof.

Proof. If P is proper then Morphy will win by producing on the side an ∈-
increasing sequence 〈Mn : n ∈ ω〉 of countable elementary submodels of a large
enough structures such that pini ∈ M0 and Dn ∈ Mn and playing so that the
collection {qin : i ∈ ω} ⊂ Dn enumerates the countable set M ∩ Dn for every
number n, where M =

⋃
nMn. Any M -master condition q ≤ pini will then

witness Morphy’s win.
On the other hand, if Morphy has a winning strategy σ, for every countable

elementary submodel M of a large enough structure containing σ and every
condition pini ∈ M ∩ P it is possible to simulate a run of the properness game
in which Andersen enumerates all the open dense subsets of the poset P in the
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model M . Since every initial segment of that play is in the model, necessarily
{qin : i ∈ ω} ⊂ Dn ∩ M for every number n and every condition q ≤ pini
witnessing Morphy’s win will be a master condition for the model M .

The determinacy considerations then yield an interesting dichotomy.

Corollary 2.10. (LC) Suppose that P is a universally Baire partial ordering
on the reals. Exactly one of the following holds:

• P is proper

• some condition in P forces ([RV ]ℵ0)V to be a nonstationary subset of
[RV ]ℵ0 .

Proof. Since the partial order P is definable, Fact 2.7 implies that the properness
game is determined. There are two possible outcomes. Either Morphy has a
winning strategy. In this case the partial ordering is proper.

Or, Andersen has a winning strategy σ indicating the initial condition pini.
We claim that the condition pini works as desired in the second item above. To
see this, consider a function f : P<ω → P in the extension given by ḟ(~p) =
some condition in Ġ ∩ Ď, where Ġ is the generic filter and Ď is the open dense
set the strategy σ produces after Morphy played the sequence ~p. The claim
is that no ground model countable subset of P is closed under the function ḟ .
For suppose that q ≤ pini and q 
 x̌ is closed under ḟ for some ground model
countable set x ⊂ P . Then Morphy can win against the strategy σ by playing
so that Dn ∩ x = {pin :∈ ω}, contradiction.

In particular, if the Continuum Hypothesis holds then a definable poset is
proper if and only if it preserves ℵ1. There is an example of definable partial
ordering which, if δ12 = ω2, is not proper but still preserves ℵ1. However, its
definition is rather complex and we still think that for partial orders P of low
complexity definition, P is proper if and only if it preserves ℵ1, this outright in
ZFC(+LC), without CH.

2.3 Preservation properties and Fubini type theorems

Another feature peculiar to the paper is the use of Fubini type statements in
place of “forcing preservation” statements. This seems to be the most efficient
approach.

Definition 2.11. Let I, J be σ-ideals on some Polish spaces. The symbol
I ⊥ J denotes the statement: there are an I-positive Borel set BI and a Borel
J-positive set BJ and a Borel set C ⊂ BI×BJ such that the vertical sections of
the set C are J-small and the horizontal sections of its complement are I-small.

Thus I ⊥ J means that the Fubini theorem between the ideals I and J fails
in a particularly violent manner. It turns out that most forcing preservation
properties can be restated in terms of the relation ⊥.
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Lemma 2.12. Let I be a σ-ideal on a Polish space such that PI is proper. Let
J be a universally Baire σ-ideal on some other Polish space, generated by Borel
sets. The following are equivalent:

• PI 
 Ḃ ∩ V /∈ J̇ for every Borel J-positive set B.

• ¬I ⊥ J .

Proof. Suppose on one hand that there is a condition BI ∈ PI and a Borel
J-positive set BJ such that BI 
 ḂJ ∩V ⊂ Ḋ for some Borel J̇-small set Ḋ. By
Lemma 2.3, thinning out the set BI if necessary we may assume that there is a
Borel set C ⊂ BI × BJ with J-small vertical sections such that BI 
 Ḋ is the
ṙgen -th vertical section of the set Ċ. It is immediate to verify that the vertical
sections of the complement of the set C are I-small.

On the other hand, if C ⊂ BI × BJ is a Borel subset of some rectangle
with Borel positive sides witnessing I ⊥ J then it follows immediately from the
definitions that BI 
 the ṙgen -th vertical section of the set Ċ is J-small and

covers the ground model reals in the set ḂJ .

Lemma 2.13. Let I, J be respective σ-ideals on Polish spaces X,Y such that
the posets PI , PJ are proper. The following are equivalent:

• there are Borel sets BI ∈ PI and BJ ∈ PJ , a PI-name ṙ for a real and a
PJ -name ṡ and a Borel relation C such that BI 
 ∀x ∈ V ∩ R ṙĊx and
BJ 
 ∀x ∈ V ∩ R ¬xċṡ.

• I ⊥ J .

Proof. If I ⊥ J and BI , BJ , C witness it, then the first item is witnessed by
BI , BJ again, ṙ =the PI -generic, ṡ =the PJ -generic and the relation C ′ =
C ∪ {〈x, y〉 : x ∈ BI , y /∈ BJ}.

On the other hand, if the first item holds as witnessed byBI , BJ , dotr, dots, C,
first reduce the names ṙ and ṡ to Borel functions f, g on some sets B′I , B

′
J as in

Fact 2.3 and then use the relation C ′ = {〈x, y〉 : x ∈ B′I , y ∈ B′J , f(x)Cg(y)}
to show that I ⊥ J .

There are two particular cases worth special attention.

Lemma 2.14. Suppose that I is a σ-ideal on some Polish space such that PI
is proper. The following are equivalent:

• PI is bounding

• ¬I ⊥ J where J is the Laver ideal.

Here the Laver ideal J on ωω is generated by sets Ag = {f ∈ ωω : for
infinitely many n, f(n) ∈ g(f � n)} as g varies through all functions from ω<ω

to ω. It is well-known that every analytic subset of ωω either is in the ideal J
or contains all branches of some Laver tree.
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Proof. Suppose that the poset PI is bounding, BI ∈ PI and BJ ∈ PJ are Borel
sets and C ⊂ BI×BJ is a Borel set with J-small vertical sections. We must show
that its complement contains an I-positive horizontal section. Thinning out the
set BI if necessary we may assume that there is a Borel function G : BI → ωω

<ω

such that for every pair 〈r, f〉 ∈ C it is the case that for infinitely many numbers
n, f(n) ∈ G(r)(f � n). Since the poset PI is bounding, there is an I-positive
Borel set B ⊂ BI and a function h : ω<ω → ω such that for every point r ∈ B
and every finite integer sequence s, G(r)(s) ∈ h(s). Since the set BJ is J-
positive, there must be a function f ∈ BJ such that for all but finitely many
numbers n, h(f � n) ∈ f(n). It is clear that B × {f} is the required I-positive
horizontal section of the complement of the set C.

On the other hand, if the forcing PI adds an unbounded real below some
condition, Lemma 2.13 immediately shows that I ⊥ J : its first item will be
witnessed with the relation of eventual dominance.

A set a ⊂ ω in some forcing extension of the ground model V is splitting
if every infinite set b ⊂ ω in V has infinite intersection both with a and the
complement of a. A subset A of a Boolean algebra B is nowhere dense if for
every positive b ∈ B there is a positive c ≤ b such that no positive a ∈ A is
below c.

Lemma 2.15. Suppose that I is a σ-ideal on some Polish space such that PI
is proper in all σ-closed forcing extensions. The following are equivalent:

• PI is bounding and does not add a splitting real.

• ¬I ⊥ J where J is the ideal of subsets of P(ω) which are nowhere dense
in the algebra P(ω)/Fin.

The assumption on the poset PI may sound unnatural and in fact we do not
have an example of a definable ideal I such that the poset PI is proper and loses
its properness after a σ-closed forcing. Certainly all examples described in this
paper remain proper in all forcing extensions with the same reals as the ground
model.

A third equivalence can be added to Lemma 2.15. If K is a coideal on ω such
that M(K) has the Mathias property (see §9.1) and J(K) is a σ-ideal such that
M(K) is forcing equivalent to PJ(K), then I satisfies conditions of Lemma 2.15 if
and only if ¬I ⊥ J(K). The proof is virtually identical to the proof below. The
class of all K such that M(K) has the Mathias property has several equivalent
characterizations in terms of its forcing properties (see Theorem 9.10).

Proof. To understand the situation better, note that the Mathias forcing nat-
urally densely embeds into PJ [35]. The Mathias forcing adds a dominating
real and a real which is modulo finite included in or disjoint from every ground
model set. So there are Borel functions F : P(ω) → ωω and G : P(ω) → P(ω)
such that for every function f ∈ ωω the set {r ∈ P(ω) : F (r) does not modulo
finite dominate f} is J-small, and for every set a ⊂ ω the set {r ∈ P(ω) : G(r)
is neither modulo finite included in nor modulo finite disjoint from a} is I-small.
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The function G can be chosen to be the identity, but that is immaterial for our
purposes.

Suppose that the first item fails. Then Lemma 2.13 immediately shows that
I ⊥ J : its first item will be witnessed either with the eventual dominance
relation or the splitting relation.

On the other hand suppose that the first item holds, and suppose that C ⊂
BI ×BJ is a Borel subset of a rectangle with positive Borel sides. We will show
that either C or its complement contains a rectangle with positive Borel sides.
By the homogeneity of the ideal J we may and will assume that BJ = P(ω).
Move to a forcing extension V [u] where u is a Ramsey ultrafilter added by
countable approximations. Analyze the poset PI in this model. Note that the
properties “PI is bounding” and “PI does not add splitting reals” are absolute
between V and V [u] by Lemma 2.3. Since it does not add splitting reals,
a genericity argument for u shows that PI preserves u as an ultrafilter, and
since PI is moreover bounding, it preserves u as a Ramsey ultrafilter (see e.g.,
[26] VI.5.1(2)). Still in the model V [u], consider the standard c.c.c. poset Q
diagonalizing the ultrafilter u; it adds a Mathias real ṡ over V . Note that since
the poset PI preserves the Ramsey ultrafilter u, it commutes with Q in a very
strong sense: if s is V [u]-generic for the poset Q and r is V [u]-generic for the
poset PI then 〈r, s〉 is V [u]-generic for PI ×Q. This uses the Mathias property
of the forcing Q in the PI extension of the model V [u].

Find a condition 〈B0, q〉 ∈ PI � BI ×Q deciding the statement 〈ṙgen , ṡ〉 ∈ Ċ.
For definiteness assume it decides it in the affirmative. Let M be a countable
elementary submodel of a large enough structure containing all relevant objects.
Let B1 ⊂ B0 be the set of all M -generic reals for the poset PI . The set B1 is
Borel and I-positive by the assumption on the poset PI . Let B2 be the set of
all reals diagonalizing the filter u∩M and meeting the condition q. Clearly B2

consists only of Q-generic reals, and it is J-positive by the Mathias property of
the forcing Q. By the strong commutativity mentioned in the previous para-
graph, it must be the case that the rectangle B1 ×B2 with Borel positive sides
consists of pairs M -generic for the poset PI × Q, and by an application of the
forcing theorem and forcing absoluteness, it must be a subset of the Borel set
C.

Note that the above argument shows that the statement ¬I ⊥ J is equiva-
lent to the apparently stronger rectangular Ramsey statement MRR(I, J), “for
every partition of a Borel rectangle with positive sides into countably many
Borel pieces, one of the pieces contains a Borel rectangle with positive sides”.

Lemma 2.16. (LC) Suppose that I is a universally Baire σ-ideal such that the
forcing PI is proper. The following are equivalent:

1. ¬I ⊥ meager

2. for every Borel I-positive set B the Cohen forcing adds a real ṙ ∈ Ḃ which
falls out of all ground model coded Borel I-small sets.
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Proof. The implication (2)→(1) is easy. Suppose (2) holds and (1) fails as
witnessed by an I-positive Borel set B, a non-meager Borel set C ⊂ 2ω, and
a Borel set D ⊂ B × C such that its horizontal sections are meager and the
vertical sections of its complement are I-small. An easy homogeneity argument
shows that we may assume C = 2ω. There is a Cohen name ṙ for a real which is
forced into the set Ḃ and out of all Borel ground model coded I-small set. It is
immediate that the vertical section Ḋṙ is forced to be a meager set containing
all ground model reals. This contradicts the well-known fact that Cohen forcing
preserves category, in our terminology ¬meager ⊥ meager.

The implication (1)→(2) needs large cardinal assumptions and the definabil-
ity of the ideal I. It is proved in [33].

Corollary 2.17. (LC) Suppose that I is a suitably definable σ-ideal containing
all singletons such that every countable set is included in a Gδ set in the ideal,
and such that PI is proper. Then I ⊥ meager.

Proof. Let I be a suitably definable σ-ideal on some Polish space X satisfying
the assumptions. By the previous Lemma, it is enough to show that the Cohen
forcing does not add a real which falls out of all ground model coded Borel
I-small sets.

And indeed, suppose that f : 2ω → X is any Borel function. We will find a
Gδ set A in the ideal I such that f−1A is not meager. This will complete the
proof. To find the set A, let M be a countable elementary submodel of a large
enough structure and let C ⊂ X be a countable set such that its f -preimage
intersects every nonmeager set in the model M . Let A =

⋂
iOi be a Gδ set in

the ideal I containing the set C as a subset; the sets Oi are open. We claim
that this set A ⊂ X works.

Assume that [s] ⊂ 2ω is a condition in the Cohen forcing for some sequence
s ∈ 2<ω. By a standard density argument and the Baire theorem, it is enough
to show that for every number i ∈ ω there is a basic open set U ⊂ Oi such that
the set f−1U ∩ [s] is not meager. Suppose that for some number i ∈ ω this fails.
Then the set [s] \

⋃
{f−1U : U ⊂ X is a basic open set with f−1U ∩ [s] meager}

is comeager in [s], it is in the model M , and its f -image is disjoint from the set
Oi and therefore from the set C ⊂ Oi. This contradicts the choice of the set
C.

2.4 Choiceless dichotomies

For all ideals studied in this paper, it turns out that in choiceless contexts such
as the Solovay model or under AD+ they are closed under well-ordered unions
and they satisfy a dichotomy–every positive set has a Borel positive subset.
These two properties seem to be very closely related to the properness of the
factor forcing, even though there seem to be no outright provable implications.

Example 2.18. The E0 forcing. Let E0 be the Vitali equivalence relation on
the reals, and let I be the σ-ideal generated by Borel sets B which intersect
every equivalence class in at most one point. The forcing PI is proper, however
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the ideal I is not closed under well-ordered unions in the choiceless Solovay
model or in L(R)–[35].

Example 2.19. Let In be the ideal of sets of σ-finite 2−n-dimensional Hausdorff
measure, for every number n ∈ ω. These ideals form an inclusion decreasing
sequence, and all of them are closed under well-ordered unions in the choiceless
Solovay model by the results of Section 5. The ideal I =

⋂
n In is then also

closed under well-ordered unions, however the poset PI is not proper as the
argument from [35], Subsection 2.3.15 shows.

On the other hand, the closure under well-ordered unions and the dichotomy
are provably connected.

Definition 2.20. A pullback of an ideal I on a Polish space X is an ideal J on
a space Y such that there is a Borel function f : Y → X such that for every set
B ⊂ Y , B ∈ J ↔ f ′′B ∈ I.

Definition 2.21. A strong dichotomy for a σ-ideal I on a Polish space is the
following statement: for every pullback J of I, every J-positive set has an
analytic J-positive subset.

Lemma 2.22. In the Solovay model, for every σ-ideal I, the ideal I satisfies
the strong dichotomy if and only if it is closed under well-ordered unions.

Proof. The right-to-left implication is easy. In the Solovay model, every subset
of a Polish space is a well-ordered union of Borel sets. Now if I is a σ-ideal
closed under well-ordered unions and J is its pullback, then J is closed under
well-ordered unions as well and if B is a J-positive set, it can be written as
a well-ordered union of some of its Borel subsets, and one of these must be
J-positive.

For the left-to-right implication note that in the Solovay model, increasing
unions of subsets of a Polish space X stabilize in ℵ1 many steps, and so it is
enough to prove that closure of a σ-ideal I on X under ℵ1 unions follows from
the strong dichotomy. For contradiction assume that 〈Bα : α ∈ ω1〉 is an ℵ1-
collection of I-small sets with I-positive union. Let Z be the Polish space of all
trees on ω with a natural topology, let Y = X × Z and let A = {〈x, T 〉 ∈ Y :
x ∈ Bα, the tree T is well-founded and has rank α}. Consider the pullback J
of I on the space Y given by the projection function. The projection of the set
A is exactly the union

⋃
αBα, and so A /∈ J . Use the strong dichotomy to find

an analytic J-positive subset C ⊂ A. By the boundedness theorem, there is a
countable ordinal β such that whenever 〈x, T 〉 ∈ C then the rank of the tree T
is less than β. Then it must be the case that the projection of the set C to the
space X is included in the set

⋃
α∈β Bα ∈ I, contradicting the J-positivity of

the set C.

In the context of determinacy, one implication of the above equivalence sur-
vives.

Lemma 2.23. (ZF+AD+) If a σ-ideal on a Polish space satisfies the strong
dichotomy then it is closed under well-ordered unions.
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Proof. Just the same as the previous argument with an additional ingredient, a
theorem of Steel, [12] Theorem 1.1, asserting that under AD+, for every regular
cardinal κ ∈ θ there is a set Y ⊂ R and a prewellorder ≤ on Y such that analytic
subsets of Y meet just < κ many ≤-equivalence classes. This result was pointed
out to us by Stephen Jackson.

Assume AD+ and assume that I is a σ-ideal on a Polish space X satisfying
the strong dichotomy. By transfinite induction on κ ∈ θ argue that whenever
〈Aα : α ∈ κ〉 is a collection of sets in I then its union is in the ideal I as
well. The successor, countable and singular steps in the induction are trivial.
So suppose κ ∈ θ is a regular cardinal and the statement has been verified up
to κ. Fix a collection 〈Aα : α ∈ κ〉 of sets in the ideal I. If

⋃
αAα /∈ I, use

Steel’s result to find a suitable prewellorder ≤ on a set Y ⊂ R of length κ and
let B ⊂ X × R be the set of all pairs 〈x, r〉 such that x ∈ Aα where r is in
the α-th ≤-equivalence class. Consider the pullback J on the space X × R of
the ideal I using the projection. The set B is J-positive and by the strong
dichotomy it has an analytic positive subset C ⊂ B. The projection of C into
the R coordinate is an analytic subset of Y , and therefore it meets only < κ
many ≤-classes, bounded by some ordinal β ∈ κ. The projection of C into
the X coordinate is an I-positive set, and it is a subset of the set

⋃
α∈β Aα.

However, this contradicts the induction hypothesis, which implies that the set⋃
α∈β Aα is in the ideal I.

Note that the argument shows that if strong dichotomy holds then we can
find a Borel positive subset inside each positive set, not just an analytic one.
There does not seem to be a bound on the complexity of the Borel set though.

2.5 The classes of ideals

The classes of ideals isolated in this paper are called ideals generated by closed
sets, porosity ideals, σ-finite ideals, null ideals associated with dense submea-
sures and pavement submeasures, and P-cover ideals. These classes are mutually
related. Every ideal σ-generated by closed sets is a porosity ideal, and every
null ideal associated with pavement submeasure is a P-cover ideal. On the other
hand, we do not know if every P-cover ideal is or can be presented as a null
ideal. While there are porosity ideals which are not generated by closed sets,
we do not know if there is a porosity ideal which cannot so presented.

Curiously enough, if In : n ∈ ω are ideals in the classes considered, the
σ-ideal J generated by

⋃
n In also satisfies the two items above. While it seems

that certain forcings used in practice are obtained by such a hybridization of
ideals, we have no definite examples and for this reason we omit the proof. At
any rate, the proof is just a spirited repetition of the determinacy arguments
for the games G(I, P, ṙ). We could not find a general overarching theorem to
the tune of “if In : n ∈ ω are ideals such that PIn are proper forcings then so is
PJ” or “ if ideals In : n ∈ ω are closed under well-ordered unions then so is J”.
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3 Ideals generated by closed sets

Ideals σ-generated by closed sets, that is, the σ-ideals with a basis consisting
of Fσ sets occur very frequently indeed in the theory of definable forcing. The
class of ideals σ-generated by closed sets is included in the class of porosity ideals
from the next section, however it is an important enough subcase to deserve a
special treatment.

Example 3.1. The Sacks forcing. Let I be the σ-ideal of countable subsets
of 2ω. The perfect set theorem shows that the Sacks forcing naturally densely
embeds into the poset PI .

Example 3.2. The Cohen forcing. The ideal I is the σ-ideal of meager sets,
generated by closed nowhere dense sets.

Example 3.3. The Miller forcing. The σ-ideal I on ωω is σ-generated by
compact subsets of ωω.

Example 3.4. The cmin forcing. Let cmin be the partition of pairs of infinite
binary sequences into two classes, even and odd, depending on the parity of the
smallest number where the two sequences differ. Let I be the σ-ideal generated
by cmin-homogeneous sets. Note that since cmin is a clopen partition, the closures
of cmin-homogeneous sets are still homogeneous.

Example 3.5. The Spinas forcing. Let I be the σ-ideal on 2ω generated by the
closed sets Ca = {f ∈ 2ω : f � a is constant} for a ⊂ ω infinite. The poset PI is
bounding and it adds a splitting real.

Example 3.6. The non(null) forcing. Let {an : n ∈ ω} be a collection of
nonempty finite pairwise disjoint subsets of ω, |an| ≥ n. Let I be the ideal on
2ω σ-generated by sets Bf = {g ∈ 2ω : ∀n f � an 6= g � an} as f ranges over all
infinite binary sequences. It is not difficult to see that in the PI -extension the
ground model reals have Lebesgue measure zero.

Example 3.7. Let I be the σ-ideal generated by closed measure zero sets. The
partial order PI has not been analysed.

3.1 Properness

Theorem 3.8. If I is a σ-ideal generated by closed sets then the poset PI is
proper.

Proof. This is proved in [35]. For the sake of completeness and to stress parallels
with the later sections, we include the short proof. For definiteness assume that
the underlying Polish space is just the Baire space ωω. Suppose that M is a
countable elementary submodel of a large enough structure containing the ideal
I, and let B ∈M∩PI be a condition. We must prove that the set D = {r ∈ B : r
is M -generic} is I-positive. So suppose that Cn : n ∈ ω is a countable list of
closed sets in the ideal I; we must find a real r ∈ D \

⋃
n Cn. Enumerate the
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open dense subsets of PI in the model M by {En : n ∈ ω} and by induction
on n ∈ ω construct a descending sequence B = B0 ⊃ B1 ⊃ . . . of conditions
in M ∩ PI such that Bn+1 ∈ En and Bn+1 ∩ Cn = 0. Let g ⊂ PI ∩ M be
the resulting M -generic filter generated by the conditions Bn. By Lemma 2.3
applied in the model M , M [g] |=

⋂
g is a singleton {r} for some real r, and

by Borel absoluteness indeed
⋂
g = {r}. The real r clearly has the desired

properties.
To perform the induction, suppose the condition Bn ∈ PI ∩M is known.

Thinning out the setBn we may assume that for every basic open setO, Bn∩O /∈
I or Bn ∩O = 0. There must be a basic open set O such that Bn ∩O 6= 0 and
B ∩ O ∩ Cn = 0 since otherwise Bn ⊂ Cn by the closedness of the set Cn; and
this is impossible because Bn /∈ I while Cn ∈ I. Now note that the set Bn ∩O
is a condition in PI ∩M . Any condition Bn+1 ∈ En ∩M with Bn+1 ⊂ Bn ∩O
will work as desired.

The partial orders of this kind share several other properties.

Lemma 3.9. Suppose that I is a σ-ideal generated by closed sets. Then:

• Gδ sets are dense in PI–every I-positive Borel set has an I-positive Gδ
subset C such that every set in the ideal is meager in C.

• continuous reading of names–for every positive Borel set B and every Borel
function f : B → ωω there is a Borel I-positive set C such that f � C is
continuous.

• ¬I ⊥ meager

• PI can be embedded into a σ-closed*c.c.c. iteration.

Proof. The first item follows from a result of Solecki [28]. First find any Gδ I-
positive subset C ′ and then remove all basic open sets O such that C ′ ∩O ∈ I.
A quick check shows that the resulting set C has the required properties. Note
that the set B is a Polish space in the inherited topology, and I ⊂ meager(C).

For the second, without loss of generality we may assume then that the set B
is as in the previous paragraph. The set B with the inherited topology is then a
Polish space, and there is a dense Gδ subset C ⊂ B such that the function f � C
is continuous. Now since all I-small sets are meager in the set B, it follows that
C /∈ I is the required set.

The proof of the third item is similar. Suppose that B ∈ PI is an I-positive
Borel set, and C is a Borel nonmeager set, and D ⊂ B × C is a Borel set.
Thinning out the set B we may and will assume that it has the properties
described in the first paragraph. The classical Kuratowski-Ulam theorem for
the meager ideal says that either there is a vertical section of the set D which
is somewhere comeager in C, or there is a horizontal section of the complement
of D which is comeager in the set B. In both cases it follows that the triple
B,C,D is not a witness to ¬I ⊥ meager.

The fourth item is proved in [35].
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3.2 Dichotomies

The dichotomies for σ-ideals generated by closed sets have been known for some
time [28]. Nevertheless, we will restate them and reprove them since similar
arguments will be applied in the following sections.

Theorem 3.10. In the choiceless Solovay model, every σ-ideal generated by
closed sets is closed under well-ordered unions.

Proof. Let V ⊂ W ⊂ V [G] be a ground model, its Coll(ω,< κ) extension for
some inaccessible cardinal κ, and the intermediate choiceless Solovay model.
Let I be a σ-ideal on some Polish space X in the model W generated by closed
sets. By the usual homogeneity argument we may and will assume that I is
definable in W using ground model parameters.

We will show that for every set B ⊂ X definable from the parameters in
the ground model, either it is covered by I-small Borel sets coded in the ground
model or else it is I-positive. Then consider a wellordered collection 〈Bα : α ∈ λ〉
of sets definable from ground model parameters. There are two cases: either⋃
αBα is covered by the countably many I-small Borel sets coded in the ground

model, in which case it is I-small, or else there is a real r ∈
⋃
αBα which does

not belong to any I-small Borel set coded in the ground model. In the latter case
this real must belong to some set Bα which is definable from the ground model
parameters and therefore then I-positive. The theorem follows by a standard
homogeneity argument.

So fix a set B definable from ground model parameters such that B is not
covered by the ground model coded I-small sets. There must then be a real
r ∈ B which falls out of all ground model coded I-small sets. It must be the
case that there is in V a forcing P of size < κ with a P -name ṙ such that P 
 ṙ
falls out of all ground model coded I-small sets and Coll(ω,< κ) 
 ṙ ∈ Ḃ. By
a standard homogeneity argument it is enough to show that the set {r ∈ X :
∃g ⊂ P a V -generic filter such that r = ṙ/g} is I-positive, since it is a subset of
the set B.

To this end, let {Cn : n ∈ ω} be a countable list of closed sets in the ideal
I. We must produce a V -generic filter g ⊂ P such that ṙ/g /∈

⋃
n Cn. To this

end, by induction build a descending chain of conditions pn ∈ P so that

• pn+1 belongs to the n-th open dense subset of the poset P in the model
V , under some fixed enumeration in the model W

• the set Bn+1 = {r ∈ X : ∃g ⊂ P V -generic with pn+1 ∈ G and ṙ/g = r}
is disjoint from the set Cn.

To perform the inductive step, suppose that the condition pn has been ob-
tained. The closure B̄n of the set Bn has a code in the ground model, since
B̄n = X \

⋃
{O : O ⊂ X is a basic open set such that pn 
 ṙ /∈ Ȯ}. Note

pn 
 ṙ ∈ B̄n. By the assumptions on the name ṙ, this means that B̄n /∈ I, so
B̄n 6⊂ Cn and there must be a basic open set O such that O ∩ Cn = 0 while
O ∩ B̄n 6= 0. By the definitions, there must be a condition q ≤ pn forcing the
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real ṙ into Ȯ. Every condition pn+1 ≤ pn in the n-th open dense subset of the
forcing P will have the required properties.

Corollary 3.11. In the Solovay model, every subset of X either has a Borel
I-positive subset or a Borel I-small superset.

Proof. Observe that in the Solovay model, every subset of the underlying Polish
space X is a well-ordered union of Borel sets. Then apply the previous theorem.

Corollary 3.12. (LC) Every universally Baire set has either a Borel I-positive
subset or a Borel I-small superset.

Proof. Note the previous corollary and refer to the universally Baire absolute-
ness.

A result of Solecki [28] provides the sharpest complexity estimate: whenever
I is σ-ideal generated by closed sets, then every analytic I-positive subset of the
underlying Polish space X has a Gδ I-positive subset.

3.3 Further preservation properties

A particular case of the ideals generated by closed sets is so frequent that it
deserves further attention.

Definition 3.13. A σ-ideal I on a compact spaceX is generated by a σ-compact
collection of compact sets if there is a σ-compact subset of the space K(X) such
that every set in the ideal is covered by a countable union of elements of the
σ-compact set.

Among the examples mentioned in the beginning of this section, the σ-ideal
of countable sets, the cmin ideal, and the non(null) ideal are generated by a
σ-compact collection of compact sets. On the other hand, the ideals associated
with Spinas forcing and Miller forcing are not, and even cannot, be represented
that way, as Corollary 3.20 below shows.

Example 3.14. A typical not so well researched family of forcings representa-
tive of this section is connected with packing measures. Let 〈X, d〉 be a compact
metric space and h be a positive real number. For a set A ⊂ X and a positive
number δ a δ-packing of A is a finite set p of mutually disjoint balls in X with
centers in the set A and diameters < δ. A weight w(p) of that packing p is then
Σ{diamh(b) : b ∈ p}. The h-dimensional packing premeasure Ph0 (A) is defined
as infδ sup{w(p) : p a δ-packing of A}, and the h-dimensional packing measure
Ph(A) is inf{ΣnPh0 (Bn) :

⋃
nBn = A}. Let Ih be the ideal on X σ-generated

by sets of finite h-dimensional packing measure, which is identical to the ideal σ-
generated by sets of finite h-dimensional packing premeasure. It is not difficult
to see that packing premeasure is preserved by the closure operator and so the
ideal Ih is generated by closed sets. In fact, the collections Kn,m : n,m ∈ ω of
compact sets defined by Kn,m = {C ⊂ X compact: sup{w(p) : p a 2−m-packing
of C} ≤ n} are clearly compact and together they generate the ideal Ih.
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We will show that forcings associated with σ-ideals generated by a σ-compact
collection of compact sets have many preservation properties. To quantify this
precisely, the following definition will come handy.

Definition 3.15. A forcing P has the weak Cohen property if for every func-
tion f ∈ ωω in the ground model and every function g ∈ ωω in the extension
dominated pointwise by f there exists a function h ∈ ωω in the ground model
such that |h ∩ g| = ℵ0.

In other words, the weak Cohen property is the statement that the poset
does not add a bounded eventually different real. The reasoning behind the
terminology is this: the property of not adding an eventually different real
at all is certainly stronger, and since Cohen forcing has it, and it is the only
definable c.c.c. forcing which has it [33], [2], 2.4.7, the Cohen property would
be an apt name for it. Traditional examples include Mathias forcing and Silver
forcing, as well as all σ-centered forcings, see below. There is a natural game
theoretic counterpart to the weak Cohen property.

Definition 3.16. Supose that J is a σ-ideal on a Polish space. The weak Cohen
game WCG(J) is played between Steinitz and Andersen. Steinitz first indicates
an I-positive Borel set Bini ∈ PI . After that, the game has infinitely rounds, in
round n Steinitz plays a partition of the set Bini into finitely many pieces and
Andersen chooses one of them, call it Bn. Andersen wins if the result of the
game, the Borel set

⋂
m

⋃
m∈nBn, does not belong to the ideal J .

Example 3.17. If the poset PJ is σ-centered, then Andersen has a winning
strategy. Suppose that Steinitz plays some initial move Bini. The poset Q = PJ
below the condition Bini can be decomposed into countably many centered
pieces, Q =

⋃
iQi. It is not difficult to see that for every number i ∈ ω and

every partition P of the set Bini into finitely many Borel pieces one of the
pieces C ∈ P has the following property φi(C): for every finite set y ⊂ Qi
the set C ∩

⋂
y is J-positive. Since if φi(C) failed for every element C ∈ P

as witnessed by some finite set yC ⊂ Qi, the set y =
⋃
C∈P yC ⊂ Qi is finite,

by the centeredness
⋂
y /∈ J , and for some element C ∈ P of the partition,

C ∩
⋂
y /∈ J , contradicting the choice of the set yC ⊂ Qi. Now Andersen wins

the game WCG(J) in the following fashion. He splits ω =
⋃
i ai into countably

many infinite pieces and at round n ∈ ω he finds the number i ∈ ω such that
n ∈ ai, and plays Bn to be some piece of Steinitz’s partition with the property
φi(Bn). We claim that this way Andersen wins. And indeed, looking at the
result C of the play, it must even be the case that Bini \ C ∈ J : if this set was
positive, for some number m the set Cm = B \

⋃
m∈nBn must be J-positive as

well and as such it would belong to the set Qi for some i ∈ ω. Now choose some
number n ∈ ai bigger than m and observe that by the property φi(Bn) it must
be the case that Cm ∩ Bn /∈ J even though by the definition of the set Cm the
intersection should be empty. Contradiction!

Lemma 3.18. Suppose that J is a definable σ-ideal such that PJ is proper. The
following are equivalent:
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• The forcing PJ fails to have the weak Cohen property

• Steinitz has a winning strategy in the weak Cohen game WCG(J).

Proof. First suppose that Steinitz has a winning strategy σ in the game calling
for some initial set Bini. Then he actually has a winning positional strategy τ ,
a sequence Pn = {{Bj,n : j ∈ j(n)} : n ∈ ω} of partitions of the initial set Bini
such that he wins playing these partitions no matter what Andersen’s answers
are. To obtain the positional strategy note that at each round n there are only
finitely many partitions the strategy σ can produce as n-th move for Steinitz,
and choose Pn to be a finite partition refining them all. It is clear that τ must be
a winning strategy if σ is. Now the partitions {Pn : n ∈ ω} generate a natural
name ṡ for a real, ṡ(ň) = j if and only if ṙgen ∈ Bj,n. It is clear that the function
ṡ ∈ ωω is dominated by the function n 7→ j(n), and it is forced to be eventually
different from every ground model function. For if C ⊂ Bi forced |ṡ ∩ f̌ | = ℵ0
for some ground model function f , Andersen could play Bn = Bf(n),n against
the strategy τ , and writing B for the result of the game, the set C \B would be
in the ideal I. Thus Andersen would win against the strategy τ , contradiction.
In other words, the name ṡ witnesses the failure of the weak Cohen property of
the poset PI .

On the other hand, a failure of the weak Cohen property provides a winning
strategy for Steinitz. By Lemma 2.3, there must be a function f ∈ ωω, a
Borel I-positive set B ∈ PI and a Borel function G : B → ωω such that for
every element r ∈ B, f(r) is pointwise dominated by f , and moreover for every
function h ∈ ωω the set {r ∈ B : h ∩ G(r) is infinite} is in the ideal I. It is
clear that Steinitz will win by playing the B = Bini and partitionining the set
B according to the value G(r)(n).

Lemma 3.19. (LC) Suppose I is a σ-ideal generated by an Fσ collection of
compact sets and J is a definable σ-ideal such that PJ is proper. The following
are equivalent:

1. PJ has the weak Cohen property

2. ¬I ⊥ J .

Of course it is the implication (1)→(2) which is most interesting from the
forcing preservation point of view.

Proof. The implication (2)→(1) is easier. If PJ does not have the weak Cohen
property then there is a σ-ideal I generated by an Fσ collection of compact
sets such that I ⊥ J . Namely, suppose that B ∈ PJ is a condition forcing
that ġ ∈ ωω is a function pointwise dominated by some f̌ ∈ ωω, yet eventually
different from any ground model function. Thinning out the condition B if
necessary we may assume that there is a Borel function G : B → Πnf(n) such
that B 
 ġ = Ġ(ṙgen). Now let I be the σ-ideal on Πnf(n) which is σ-generated
by sets Cg,n = {h ∈ Πnfn : h is different from g at every input ≥ n}. This is
an Fσ collection of compact sets. It turns out that I ⊥ J as witnessed by the
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set C ⊂ Πnf(n) × B, where 〈h, r〉 ∈ C if |h ∩G(r)| = ℵ0. Clearly, the vertical
sections of the set C are J-small since B forces the real ġ to be eventually
different from any given ground model function h. And the horizontal sections
of the complement of the set C are I-small since PI forces the generic real to
have infinite intersection with any function G(r) for r in the ground model.

Now the (1)→(2) implication. For definiteness assume that the σ-ideal I is
on the Cantor space 2ω, and fix compact sets Kn : n ∈ ω of compact subsets of
2ω, the generators for the ideal I. We may and will assume that K0 ⊂ K1 ⊂ . . . ,
and for brevity we will identify the elements of the sets Kn with their respective
trees on 2<ω.

Suppose for contradiction that I ⊥ J , as witnessed by some sets BI ∈ PI
and BJ ∈ PJ and a Borel set C ⊂ BI × BJ such that its complement has I-
small horizontal sections. We must find a J-positive vertical section of the set
C. Thinning out the set BJ if necessary it is possible to find Borel functions
fn : BJ → Kn such that the horizontal section of the complement of the set C
attached to a real s ∈ BJ is covered by the I-small set

⋃
n fn(s)–Lemma 2.3.

Use the determinacy of the weak Cohen game WCG(J) to find Andersen’s
winning strategy σ in it. Let M be a countable elementary submodel of a large
enough substructure containing all the relevant objects. We will construct a
play τ of the weak Cohen game respecting the strategy σ with Steinitz’s moves
in the model M as well as an M -generic filter g ⊂ M ∩ PI . To this end by
induction build initial segments τ � n ∈M of the play τ as well as a descending
chain {Dn : n ∈ ω} of conditions in M ∩ PI so that

• Bini = BJ , D0 = BI

• Dn+1 is in the n-th open dense subset of PI in M in some fixed enumer-
ation

• for every real s ∈ Bn the sets
⋃
m∈n fm(s) and Dn+1 are disjoint, where

Bn is the set the strategy σ played at n-th round of the play τ .

In the end, let Bτ ⊂ Bini be the result of the play against the strategy σ,
and let r ∈ BI be the real such that {r} =

⋂
nDn. The choice of the functions

fn implies that for every real s ∈ Bτ it is the case that 〈r, s〉 ∈ C, and the proof
will be complete.

In order to perform the inductive construction, suppose that Dn as well as
τ � n ∈M have been obtained. For every number i ∈ ω consider the equivalence
relation Ein on the set Bini given by s Eint if and only if fm(s) � i = fm(t) � i
for every number m ≤ n. The equivalences induce partitions P in of the set Bini
into finitely many Borel equivalence classes. The next move on the play against
the strategy σ will be one of the partitions P in, it is just necessary to decide
which one:

Let Bin be the answer the strategy σ gives if the partition P in is played.
Let T im : m ≤ n be the uniform values of fm(s) � i : m ≤ n for every real
s ∈ Bin. So each T im is a binary tree of height i. Let U be a nonprincipal
ultrafilter on ω and define infinite binary trees Tm : m ≤ n by setting t ∈ Tm
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iff {i ∈ ω : t ∈ T im} ∈ U . Since the sets Km : m ≤ n are closed, it follows
immediately that Tm ∈ Km. Since the set Dn is I-positive and the closed
sets [Tm] : m ≤ n are in the ideal I, there must be a finite binary sequence
t /∈

⋃
m≤n Tm such that Dn.5 = Dn∩ [t] /∈ I. Let Dn+1 ⊂ Dn.5 be any condition

in M∩PI in the n-th open dense subset of PI in the model M . By the definitions,
there must be a number i larger than the length of the sequence t such that
t /∈ T im, for all m ≤ n. Then P in will be the next Steinitz’s move on the play
against the strategy σ. It is immediate that the second item above continues to
hold.

Corollary 3.20. If I is a σ-ideal generated by an σ-compact collection of com-
pact sets then PI is bounding and does not add splitting reals.

Proof. One way to prove this is to consider the ideal J on P(ω) of sets nowhere
dense in P(ω)/Fin. Mathias forcing naturally densely embeds into the factor
poset PJ and it has the weak Laver property. The conclusion then follows from
¬I ⊥ J and Lemma 2.15. Another way to argue is to use the Hechler forcing
for the bounding part, and a σ-centered forcing diagonalizing an ultrafilter for
the splitting part, using Example 3.17. Still another way is to use a fusion
argument for the bounding part, and the dense-set version of Halpern-Laüchli
theorem (see [17]) for the splitting part. The latter argument has the advantage
of surviving into finite side-by-side products.

Now suppose that I is an ideal on 2ω, σ-generated by a σ-compact collection⋃
n Fn, where each Fn is a compact set of compact subsets of 2ω, identified with

their generating trees. The previous corollary together with Lemma 2.4 shows
that compact sets are dense in the poset PI but is there a simple description?
The following corollary provides a combinatorially manageable subset of the
poset PI which facilitates fusion arguments. Call a nonempty tree T ⊂ 2<ω

I-good if for every node t ∈ T and every number n ∈ ω there is m such that for
no tree S ∈ Fn the set {s ∈ 2m ∩ T : t ⊂ s} is a subset of S.

Corollary 3.21. A Borel set B ⊂ 2ω is I-positive if and only if for some I-good
tree T ⊂ 2<ω, [T ] ⊂ B.

Proof. The right to left direction is easy. If T ⊂ 2<ω is an I-good tree and
Sm ∈

⋃
n Fn are trees for each m ∈ ω, it is not difficult to build by induction

nodes 0 = t0 ⊂ t1 ⊂ . . . of the tree T such that tm+1 /∈ Sm. In the end the
branch

⋃
m tm is an element of the set [T ] which shows that [T ] 6⊂

⋃
m[Sm].

For the other direction, first note that if T ⊂ 2<ω is a tree and t ∈ T is
a node and n ∈ ω is a number such that for every number m ∈ ω the set
{s ∈ 2m ∩ T : t ⊂ s} is a subset of some tree Sm ∈ Fn, then there is a tree
S ∈ Fn containing all the nodes of the tree T compatible with t since the set
Fn is compact. Now define a Cantor-Bedixson style operation on trees: given
T ⊂ 2<ω, the tree T ′ ⊂ T is the set of all nodes t ∈ T such that for all n there
is m such that no tree S ∈ Fm contains all the nodes s ∈ 2m ∩ T extending
t. It is clear that [T ] \ [T ′] ∈ I. Repeating the operation transfinitely on any
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tree T ⊂ 2<ω, taking intersections at limit stages, we see that after countable
number of stages the situation must stabilize either in the empty set, in which
case [T ] ∈ I, or in an I-good tree, in which case [T ] /∈ I. So if B /∈ I is a Borel
I-positive set, by the previous corollary it contains an I-positive compact subset
of the form [T ] /∈ I for some tree T , which by the previous sentence contains an
I-good subtree.

The previous corollary can be also proved by a determinacy argument.
To conclude the subsection, a couple of borderline examples. The Spinas

forcing is clearly not generated by a σ-compact collection of compact sets, be-
cause it adds a splitting real. Note that in this case the generating family of
closed sets is Gδ in the space K(2ω). Finally, the non(null) forcing makes the
ground model reals null, and so I ⊥ null for the ideal associated to it. Note
that the Solovay forcing is not σ-centered and does not have the weak Cohen
property.

4 Porosity ideals

Definition 4.1. Let X be a Polish space and U a countable collection of its
Borel subsets. An abstract porosity is an inclusion preserving map por : P(U)→
B(X), that is a ⊂ b→ por(a) ⊂ por(b). The porosity ideal I associated with the
porosity por is σ-generated by sets por(a) \

⋃
a, as a runs through all subsets

of U . Such sets (and their subsets) are called porous.

Note that by extending the topology on the space X it is possible to assume
that the sets in U are clopen, without changing the Borel structure or the poset
PI . However, this is not always a natural step to make–consider Example 4.5.

Example 4.2. The standard σ-ideal of σ-porous sets on the real line. The
metric porosity of a set A ⊂ R at a point x is defined as

lim sup
δ→0

λ(A, x, δ)

δ

where λ(A, x, δ) is the length of the longest open subinterval of (x − δ, x + δ)
disjoint from the set A. Traditionally, a set A is called porous if it has metric
porosity > 0 at all its points, and the σ-ideal of σ-porous sets is generated by
the porous sets. It can be obtained in our setting as follows. Let U be the
collection of all intervals with rational endpoints, and r ∈ por(a) if the metric
porosity of the set R \

⋃
a at r is greater than 0.

Example 4.3. The meager ideal. Let U be some basis for the topology of the
space X, and let por(a) be the closure of

⋃
a. It is not difficult to see that

porous sets are exactly those with a closed nowhere dense superset. Thus the
resulting porosity ideal is the meager ideal.

Example 4.4. The monotonicity forcing. Consider the lexicographical ordering
on the Cantor space 2ω, and let f : 2ω → 2ω be a Borel function. The ideal I
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σ-generated by the sets B ⊂ 2ω such that f � B is monotonic, is a porosity ideal.
In order to show this, let U = {us,t : s, t ∈ 2<ω} where us,t = {r ∈ 2ω : s ⊂ r
and t ⊂ f(r)}. The abstract porosity por is then defined by r ∈ por(a) iff r
is a point of monotonicity of the function f � ({r} ∪ (X \

⋃
a)). The forcing

PI is either trivial or in the forcing sense equivalent to the cmin forcing from
Example 3.4–[35], 2.3.7.

Example 4.5. Steprāns forcing. Let f : 2ω → 2ω be a Borel function. The
ideal I σ-generated by the sets B ⊂ 2ω such that f � B is continuous, is a
porosity ideal. The argument is parallel to the previous example. The abstract
porosity por is then defined by r ∈ por(a) iff r is a point of continuity of the
function f � ({r} ∪X \

⋃
a}. The forcing PI is either trivial or in the forcing

sense equivalent to the poset isolated in [31], see [35], 2.3.48.

Example 4.6. The differentiability forcing. Let f : R→ R be a Borel function.
The ideal I σ-generated by sets B ⊂ 2ω such that f � B is differentiable, is a
porosity ideal. The argument is parallel to the previous example.

In fact we have the following general

Lemma 4.7. Every σ-ideal generated by closed sets is a porosity ideal.

Proof. Fix the σ-ideal I on some Polish space X, and let U be some topology
basis for X. For a set a ⊂ U let por(a) = X if X \

⋃
a ∈ I and por(a) = 0

otherwise. It is trivial to check that this is an abstract porosity which generates
the ideal I.

We do not know if every porosity ideal can be presented as an ideal σ-
generated by closed sets. For example it is possible to change the underlying
topology of Example 4.5 to give the ideal a generating collection of closed sets.

A word about definability of porosities is in order. We do not know if for
every porosity ideal I ∈ L(R) there must be an abstract porosity in the model
L(R) which generates it. On the other hand, if the abstract porosity is suitably
definable then there is a neat connection to the definability of the resulting
porosity ideal.

Lemma 4.8. Suppose that por is coanalytic. Then the associated porosity ideal
is Π1

1 on Σ1
1.

Here to say that por is coanalytic is to say that the set {〈a, r〉 ∈ P(U)×X :
r ∈ por(a)} ⊂ P(U)×X is coanalytic. A brief survey of the preceding examples
will show that in all of them the abstract porosity is coanalytic in this sense. To
say that the ideal I is Π1

1 on Σ1
1 is to say that for every analytic set A ⊂ ωω×X

the set {x ∈ ωω :the vertical section Ax of the set A associated with the real x is
in the ideal I} ⊂ ωω is coanalytic. This condition on the ideal I has traditionally
been investigated in descriptive set theory–[15], 29.E. It significantly simplifies
the theory of the countable support iteration of the poset PI and the statements
of the absoluteness theorems in [35].
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Proof. To simplify the notation assume that the underlying space X is just the
Baire space ωω and that the collection U is lightface ∆1

1, and that the abstract
porosity is lightface Π1

1. For every real u we must prove that
⋃

(I ∩ Σ1
1(u)) ∈

Π1
1(u)–see [35], Lemma C.0.8. For simplicity put u = 0. First, a small claim.

Claim 4.9. If A ⊂ ωω × ωω is Σ1
1 then the set {x ∈ ωω : Ax is porous} is Π1

1.

This is a direct computation. The vertical section Ax is porous if and only
if Ax ⊂ por(a) where a = {u ∈ U : u ∩ Ax = 0} by the monotonicity of the
abstract porosity. This can be restated as ∀r ∈ Ax∀b ⊂ U a ⊂ b → r ∈ por(b)
by the monotonicity again, or ∀r ∈ Ax∀b ⊂ U r ∈ por(b) ∨ ∃v ∈ b Ax ∩ v = 0.
This is a uniformly Π1

1(x) statement as desired.
The effective version of the First Reflection Theorem [15], 35.10 now shows

that every Σ1
1 porous set has a ∆1

1 porous superset. A Π1
1 coding of ∆1

1 sets [18]
then can be used to show that the set C =

⋃
(Σ1

1∩porous sets) =
⋃

(∆1
1∩porous

sets) is Π1
1. It will be enough to show that C =

⋃
(I ∩ Σ1

1).
The right-to-left inclusion is clear. For the other, let A ∈ Σ1

1 be a set such
that A \C 6= 0 and argue that A /∈ I. Suppose that {an : n ∈ ω} is a countable
collection of subsets of U ; we must find an element r ∈ A \

⋃
n(por(an) \

⋃
an).

To this end, by induction construct recursive trees Tn as well as nodes tnm ∈ Tm
for m ≤ n so that

• T0 is some recursive tree projecting into the Σ1
1 set A \ C, t00 = 0

• the nodes tin ∈ Tn are defined for all i ≥ n and form a strictly decreasing
sequence in the tree

• the set An =
⋂
m≤n proj(Tm � tnm) is nonempty

• An+1 ∩ por(an) \
⋃
an = 0.

It is clear that in the end the branches through the trees Tn obtained from
the nodes tin project into the same real r ∈ A, and the last item of the induction
hypothesis will imply that r /∈

⋃
n(por(an) \

⋃
an) as desired. To find the tree

Tn+1 and the nodes tn+1
m for m ≤ n+1, consider the set b = {u ∈ U : An∩u = 0}

and the set por(b). A similar complexity computation as in the proof of the
claim shows that por(b) is a Π1

1 set. The set An\por(b) is then Σ1
1 and nonempty,

because if it were empty, the Σ1
1 set An would be porous, covered by the set

por(b)\
⋃
b which contradicts the fact that An∩C = 0 and the definition of the

set C. There are now two cases. Either por(an) ⊂ por(b). In this case let Tn+1

be some recursive tree projecting into the nonempty Σ1
1 set An \por(b) and find

suitable nodes tn+1
m : m ≤ n + 1 in the trees. Or, por(an) 6⊂ por(b), and this

means that an 6⊂ b by the monotonicity of the abstract porosity. Choose a set
u ∈ an \ b, a recursive tree Tn+1 projecting into the nonempty Σ1

1 set An ∩ u,
and find suitable nodes tn+1

m : m ≤ n + 1. This concludes the induction step
and the proof.
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4.1 Properness

Theorem 4.10. The forcing PI is proper for every porosity ideal I.

Proof. Let por, U be the abstract porosity used to define the ideal I. First, a
small abstract claim. Call a set B ⊂ X supporting if, writing a = {u ∈ U :
u ∩ B = 0}, it is the case that B ∩ u /∈ I for all u ∈ U \ a, and moreover
B ∩ por(a) = 0.

Claim 4.11. Every I-positive Borel set has a supporting Borel I-positive subset.

Proof. Let B ∈ PI and write a = {u ∈ U : u∩B ∈ I}. Let C = (B\
⋃
a)\por(a).

We claim the set C ⊂ B is positive and supporting. For the positivity, note that
the first set difference removed only the set B \

⋃
a which is in the ideal I by σ-

additivity. The second set difference then removed only a porous set, namely the
set por(a)\

⋃
a. For the supporting property, note that a = {u ∈ U : u∩C = 0}

and observe that C ∩ por(a) = 0 since the set por(a) was explicitly removed
from C.

Note that the claim proves much more really: every set can be turned into a
supporting one by removing an I-small set which is moreover suitably definable
from the original set.

Now let M be a countable elementary submodel of a large enough structure
and B ∈ PI ∩M is a condition. We must prove that the set {r ∈ B : r is M -
generic for PI} is I-positive. That means, given countably many subsets {an :
n ∈ ω} of U , we must produce an M -generic real r ∈ B \

⋃
n(por(an) \

⋃
an).

Let {Dn : n ∈ ω} enumerate all open dense subsets of PI in the model
M , and by induction build a decreasing sequence B = B0 ⊃ B1 ⊃ . . . of
conditions in PI ∩M such that each of them is supporting, Bn+1 ∈ Dn and
Bn+1 ∩ por(an) \

⋃
an = 0. This will certainly conclude the proof since then

the unique real in the intersection
⋂
nBn has the desired properties.

The inductive step is divided into two cases. Assume first the set Bn is
disjoint from por(an). In such a case any supporting condition Bn+1 ⊂ Bn in
the set D ∩Bn will do the job. Otherwise, there is some real s ∈ Bn ∩ por(an).
Here, writing b = {u ∈ U : u∩Bn = 0}, the supporting property of the condition
Bn implies that s /∈ por(b), and by the monotonicity of the porosity, an 6⊂ b.
Find a set u ∈ an \ b and note that the set C = Bn ∩u ∈M is I-positive by the
supporting property of the condition Bn, and moreover C ∩ poran \

⋃
an = 0

since u ∈ B. Then any supporting condition Bn+1 ⊂ C in the set Dn ∩M will
do the job.

There are very few forcing preservation properties we can prove for porosity
ideals in general.

Lemma 4.12. ¬I ⊥ meager holds for every porosity ideal I.

Note that the previous proof actually gives strong properness in the sense of
[35] 4.1.4. Strongly proper forcings do not make the ground model reals meager
by the argument from [33] 6.3.
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4.2 Dichotomies

Theorem 4.13. In the choiceless Solovay model, every porosity ideal I is closed
under well-ordered unions.

Proof. Let V ⊂ W ⊂ V [G] be a ground model, its Coll(ω,< κ) extension for
some inaccessible cardinal κ, and the intermediate choiceless Solovay model. Let
I ∈W be a porosity ideal on some Polish space X, generated by some abstract
porosity por, U ∈ W . By a standard homogeneity argument we may and will
assume that all of I,X,U , and por are definable from parameters in the ground
model.

Using the argument from the proof of Theorem 3.10 it is clear that it is
sufficient to prove that if P ∈ V is a poset of size < κ adding an element ṙ ∈ Ẋ
such that Coll(ω,< κ) 
 ṙ /∈

⋃
a∈V por(a) \

⋃
a, then the set {r ∈ X : ∃g ⊂ P

a V -generic filter such that r = ṙ/g} is I-positive.
To this end, let {an : n ∈ ω} be a countable collection of subsets of the set U .

We must produce a V -generic filter g ⊂ P such that ṙ/g /∈
⋃
n(por(an) \

⋃
an).

Well, enumerate the open dense subsets of the poset P in V by {Dn : n ∈ ω}
and build a sequence p0 ≥ p1 ≥ p2 ≥ . . . of conditions in P such that

• pn+1 ∈ Dn

• the set Bn+1 = {r ∈ X : ∃g ⊂ P V -generic with pn+1 ∈ G and ṙ/g = r}
is disjoint from the set por(an) \

⋃
an.

The inductive step is divided into two cases. Either the set Bn is disjoint
from por(an). Here any condition pn+1 ≤ pn in the set Dn will do because
certainly Bn+1 ⊂ Bn. Or the set Bn ∩ por(an) is nonempty, containing some
real r. In this case, look at the set b ⊂ U, b = {u ∈ U : pn 
 ṙ /∈ u̇} ∈ V .
By the assumption on the name ṙ, r /∈ por(b) \

⋃
b, and by the definition of

the set b, r /∈
⋃
b. Therefore r /∈ por(b). However, r ∈ por(a) and so, by the

monotonicity of porosity, a 6⊂ b. Let u ∈ a \ b. By the definition of the set b,
there is a condition q ≤ pn forcing the real ṙ into u̇. Any condition pn+1 ≤ q in
the open dense set Dn will work as required.

Corollary 4.14. In the Solovay model, every subset of X has either a Borel
I-positive subset or a Borel I-small superset.

Proof. In the Solovay model, every subset of X is a well-ordered union of Borel
sets. Apply the previous theorem.

Corollary 4.15. (LC) Suppose that por is universally Baire. Then every uni-
versally Baire set has either a Borel I-positive subset or a Borel I-small superset.

A similar game-theoretic argument as in [28] can be used to show that under
a suitable large cardinal assumption, the above corollary holds even for porosities
which are not universally Baire. As usual, the part concerning analytic sets can
be proved in ZFC alone.
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Theorem 4.16. If I is a porosity ideal, every I-positive analytic set has a Borel
I-positive subset.

Proof. For the simplicity of notation assume that the underlying space is the
Baire space ωω. Let A ⊂ ωω be an I-positive analytic set. Consider the partial
ordering Q of I-positive analytic sets ordered by inclusion. Similarly to the
treatment of the poset PI let ṙgen be the Q-name for the real given by ṙgen(n) =

m if and only if {r ∈ ωω : r(n) = m} ∈ Ġ where Ġ is the generic filter. The
following claim is a variation of the basic Lemma 2.1.1 in [35]. Note that in the
end the poset Q will turn out to contain PI as a dense subset, however as long
as this conclusion is not available, care must be exercised to perform the proof
correctly.

Claim 4.17. Every condition B ∈ Q forces ṙgen ∈ Ḃ, and the generic real is
outright forced to fall out of every I-small set.

Proof. For the first part, let T be a tree projecting into the set B. Suppose that
G ⊂ Q is a generic filter containing the condition B and work in the generic
extension. Let S ⊂ T be the set defined by t ∈ S if and only if the projection
of the tree T � t is in the generic filter. The σ-additivity of the ideal I implies
that S ⊂ T is a tree without terminal nodes, and each of its branches projects
into the real rgen . Therefore rgen ∈ B as desired.

For the second part, note that the ideal I is generated by Borel sets. If
B ∈ Q is a condition and C ∈ I is a set, increase the set C if necessary into a
Borel I-small set and consider the condition B \ C ∈ I. The first part of the
claim and an absoluteness argument implies B \ C 
 ṙgen /∈ Ċ as required.

Now let M be a countable elementary submodel of a large enough structure
containing all the vital information, in particular the set A. The set B = {r ∈
ωω : there is an M -generic filter g ⊂ M ∩ Q such that A ∈ g and r = ṙgen/g}
is an I-positive Borel subset of the set A, completing the proof of the theorem.
To see why it is Borel, let R be the complete subalgebra of the algebra RO(Q)
generated by the name ṙgen and let p ∈ R be the projection of the set A ∈ Q.
Then B = {r ∈ ωω : there is a unique M -generic filter g ⊂ M ∩ R such that
p ∈ g and r = ṙgen/g} and this is a Borel set by [15], 15.A. To see why the set
B is I-positive repeat the argument from the previous Theorem, and use the
Claim. To see that B ⊂ A, use the forcing theorem and the Claim to see that
for every real r ∈ B, M [r] |= r ∈ A, and by an analytic absoluteness argument
r ∈ A as desired.

A similar argument can be repeated in the following sections.

4.3 Other preservation properties

There is an interesting class of porosities for which the related partial ordering
is bounding.
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Fact 4.18. [24] If X is a compact separable metric space and I is the ideal of
σ-porous subsets of X as in Example 4.2, then every I-positive analytic set has
a compact I-positive subset. Moreover [32], every Borel function f : B → R
with an I-positive Borel domain has a continuous restriction with an I-positive
Borel domain.

Corollary 4.19. If I is as in Example 4.2, then PI is a bounding forcing.

Proof. By Fact 4.18 and Fact 2.4.

It is not clear how large a class of forcings is described in the previous
corollary and how and if it depends on the original metric space X. It does not
include all porosity ideals, since the meager ideal is a porosity ideal. The proof
in [24] is quite complicated and very much unlike anything in this paper. There
is a limited number of cases in which a parallel result can be obtained by an
application of an integer game.

Example 4.20. Consider the Cantor space 2ω, the set U = {[t] : t ∈ 2<ω},
and the porosity por given by x ∈ por(a) if there is a number m such that for
infinitely many n ∈ ω there is t ∈ 2<ω such that x � n ⊂ t, |t| ≤ nm, and [t] ∈ a.
Then compact sets are dense in PI , where I is the associated porosity ideal.

To see this, for a set B ⊂ 2ω consider a game G(B) played by Lasker and
Steinitz. Lasker produces dynamically on a fixed schedule a σ-porous set A and
Steinitz produces a binary sequence x. Steinitz wins if x ∈ B \A. To make this
precise, Lasker produces subsets ak : k ∈ ω of U and the set A is then extracted
as

⋃
k(por(ak) \

⋃
ak). At round n Lasker indicates all the pairs 〈t, k〉 such

that t ∈ 2n
2

, k ∈ n and [t] ∈ ak, and Steinitz answers with the n-th bit of the
sequence x. It is clear that given any set C ∈ I, Lasker can play in such a way
that C ⊂ A for his resulting set A ∈ I.

Claim 4.21. B ∈ I if and only if Lasker has a winning strategy in the game
G(B).

Clearly, if B ∈ I then Lasker can win by indicating the subsets {ak : k ∈ ω}
of the set U such that B ⊂

⋃
k(por(ak) \

⋃
ak), disregarding Steinitz’s moves

entirely. On the other hand, if Lasker has a winning strategy σ then for every
number k ∈ ω let Bk = {x ∈ B : if Steinitz produces x then the winning strategy
produces a set ak = ak(x) such that x ∈ por(ak) \

⋃
ak}. Since the strategy

σ is winning, it is the case that
⋃
k Bk = B, and the proof of the claim will be

complete if we show that each set Bk is porous. Let a = {[t] ∈ U : Bk ∩ [t] = 0}
and argue that Bk ⊂ por(a). Well, suppose x ∈ Bk. If m ∈ ω is the number
witnessing that x ∈ por(ak(x)) then m actually witnesses that x ∈ por(a): for
infinitely many n > k,m there is a binary sequence t ∈ 2<ω such that x � n ⊂ t,
|t| ≤ nm and [t] ∈ ak(x). But for every such number n and such a sequence t it
must be the case that [t] ∈ a, since [t] ∈ ak(y) for every infinite binary sequence
y extending x � n by the rules of the game, and so no infinite binary sequence
y extending t and x � n can be an element of the set Bk by the definition of the
set Bk!
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To conclude the argument for the Example, let B ∈ PI be a Borel I-positive
set. The game G(B) is determined, and by the above Claim it must be Steinitz
who has a winning strategy σ. Now consider the space X of all Lasker’s coun-
terplays and the set C = σ′′X. Then

• C ⊂ B since σ is a winning strategy

• C is compact since it is a continuous image of the compact space X

• C is I-positive since σ is still a winning strategy for Steinitz in the game
G(C).

This is exactly what we set out to prove.

Diego Rojas generalized this argument to give a short determinacy proof of
the following. Whenever 〈X, d〉 is a zero dimensional compact metric space and
I is the σ-ideal on X generated by the metric porosity, then every I-positive
analytic set has an I-positive compact subset.

Example 4.22. Let f : 2ω → 2ω be a Borel function and let I be the σ-ideal
generated by the sets X such that f � X is continuous. Then compact sets are
dense in PI . So this is the ideal from Example 4.5 and this result has been
proved in [35], 2.3.46. There is an extremely simple integer game which gives
this result in a manner similar to the previous Example. Let B ⊂ 2ω be a set,
and consider another game H(B) between Steinitz and Lasker. Lasker produces
binary sequences yn : n ∈ ω and Steinitz produces a binary sequence x. Steinitz
wins if x ∈ B and ∀n f(x) 6= yn. To specify the schedule for both players, at
round n Steinitz must indicate n-th bit on his sequence, while Lasker is allowed
to hesitate before placing more bits on his respective sequences. Lasker may
even fail to finish the production of some of his sequences yn, and then in the
end the value f(x) is compared only with those sequences yn he finished.

Claim 4.23. B ∈ I if and only if Lasker has a winning strategy in the game
H(B).

The argument then follows closely that for the previous Example. Note
though that in this case the forcing is not bounding since it fails the continuous
reading of names criterion of Lemma 2.4 by its very definition.

5 σ-finite ideals

Definition 5.1. Suppose X is a Polish space, U is a countable collection of
its Borel subsets, and diam : U → R+ is a diameter function such that the
diameters converge to zero. Suppose moreover that w : P(U)→ R+ ∪ {∞} is a
Borel weight function such that

• w is monotone: a ⊂ b ⊂ U implies w(a) ≤ w(b)
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• w is weakly subadditive: there is a function f ∈ ωω such that w(a), w(b) <
n implies w(a ∪ b) < f(n).

Then let µ : P(X) → R ∪ {∞} be defined by µ(B) = sup{inf{w(a) : a ⊂ U
consists of sets of diameter ≤ δ such that B ⊂

⋃
a} : δ > 0}. The function

µ will be called the Hausdorff submeasure defined from diam, w. The σ-finite
ideal associated with µ is the σ-ideal generated by sets B with µ(B) <∞.

Note that by extending the topology on the space X if necessary it is possible
to enter the situation in which the sets in the collection U are clopen, without
changing the partial order PI . In such a case the ideal is clearly generated by
Gδσ sets. The terminology chosen is a little misleading in that the function
µ may not be subadditive but just weakly subadditive if the original weight
function was.

Example 5.2. The usual h-dimensional Hausdorff measure µh on the unit
interval. It may not be clear how to obtain it in this context due to the demand
that the diameters of sets in U converge to zero. Consider the set U of all
intervals [ n

2−m ,
n+1
2−m ] for natural numbers m ∈ ω and n ∈ 2m, their diameters

equal to their length. For a ⊂ U put w(a) = Σu∈adiam(u)h. Since every
interval of length < 2−m−1 but ≥ 2−m can be covered by two intervals from
the set U of length 2−m, it follows that for the derived Hausdorff submeasure
µ, µh ≤ µ ≤ 2µh and the σ-finite ideal derived from µ is the same as the ideal
of σ-finite sets for the h-dimensional submeasure µh.

Example 5.3. Laver forcing. Look at the Baire space ωω, the collection U =
{[t] : t ∈ ω<ω} with the diameter function diam([t]) = 2−m if t is the m-th
element of ω<ω under some fixed enumeration, the weight function w(a) = 1 if
for every sequence t ∈ ω<ω the set {n ∈ ω : [tan] ∈ a} is finite, and w(a) = ∞
otherwise. It is not difficult to see that the null ideal arising form the resulting
Hausdorff submeasure is exactly the Laver ideal.

Example 5.4. Fat tree forcing (also called profusely branching tree forcing).
Let {Xn : n ∈ ω} be a collection of finite sets, and {θn : n ∈ ω} respective finite
submeasures on each such that θn(Xn)→∞ as n→∞. Call a finite sequence
t suitable if for every number n ∈ dom(t) it is the case that t(n) ∈ Xn. A fat
tree is a tree T of height ω consisting of suitable sequences such that for every
number m ∈ ω there is k ∈ ω such that for every n > k and every sequence
t ∈ T of length n the set {x ∈ Xn : tax ∈ T} has θn submeasure at least m.

Consider the forcing notion consisting of all fat trees ordered by inclusion.
The case when each θn is a counting measure is well-known to be proper and
bounding ([16]). In fact, this forcing naturally densely embeds into a poset PI for
a suitable σ-finite ideal I. Namely, let X = ΠnXn, let U be the collection of all
sets of the form [t], where t is a suitable sequence and [t] = {x ∈ ΠnXn : t ⊂ x}.
Let diam([t]) = 2−|t| and let w(a) = supt{θ|t|({x ∈ X|t| : [tax] ∈ a})}. Let I
be the associated σ-finite ideal. We will show in Subsection 5.4 that a Borel set
B ⊂ X is I-positive if and only if it contains a subset of the form [T ] for some
fat tree T .
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Example 5.5. Using the notation of Example 5.4, let ĝn : R+ → R+ be a
strictly increasing unbounded function and consider trees such that for every
number m ∈ ω there is k ∈ ω such that for every n > k and every sequence
t ∈ T of length n we have gn ◦ θn({x ∈ Xn : tax ∈ T}) ≥ m.

Such generalizations of Example 5.4 include PTf,g defined in [2], 7.3.B.

Example 5.6. Let J be an Fσ ideal on ω. By Mazur’s theorem [21] there is a
lower semicontinuous submeasure φ on ω such that J = {a ⊂ ω : φ(a) < ∞}.
Let X = P(ω), U = {An : n ∈ ω} where An = {x ⊂ ω : n ∈ x}, diam(An) =
2−n, and w(a) = φ(ā) whenever a ⊂ U and ā = {n ∈ ω : An ∈ a}. Let µ be the
derived Hausdorff measure on P(ω) and I the derived σ-finite ideal.

What is the forcing PI? It follows from the work in Section 5.3 that it is
proper and bounding. The generic subset of ω has finite intersection with all
ground model elements of the ideal J . If x ∈ J and φ(x) < δ then it is immediate
to verify that writing Bx = {y ⊂ ω : x ∩ y is infinite}, we have µ(Bx) < δ and
therefore Bx ∈ I. The ideal I is not generated by the sets Bx though. The
forcings PI are close if not identical to the partial orders isolated by Claude
Laflamme [16] in a combinatorial form.

5.1 Properness

Theorem 5.7. If I is a σ-finite ideal for some Hausdorff submeasure, then the
forcing PI is proper.

The proof is really a game theoretic argument.

Definition 5.8. Suppose that I is a σ-finite ideal, P is a partial order and
ṙ is a P -name for a real. The σ-finite game SFG(I, P, ṙ) is a game of length
ω between Alechin and Capablanca played in the following fashion. In the
beginning Alechin indicates an initial condition pini and then he produces one-
by-one open dense subsets {Dn : n ∈ ω} of the poset P , and dynamically on
a fixed schedule a Borel set A in the ideal I. Capablanca plays one by one
decreasing conditions pini ≥ p0 ≥ p1 ≥ . . . so that pn ∈ Dn and pn decides the
n-th digit of the real ṙ. He is allowed to hesitate for any number of rounds before
placing his next move. Capablanca wins if either the set A Alechin played failed
to be σ-finite or else, writing g for the filter Capablanca obtained, it is the case
that ṙ/g /∈ A.

To make this precise, Alechin produces subsets {alk : k, l ∈ ω} of the set U
so that all elements of alk have diameter ≤ 2−l, and w(alk) ≤ k. The Borel set
A above is then extracted as

⋃
k

⋂
l

⋃
alk. Note that this is indeed a set in the

ideal I as each set
⋂
l

⋃
alk has Hausdorff submeasure at most k. Enumerating

the set U as {ui : i ∈ ω}, we demand Alechin to indicate at round n which
among the sets ui : i ∈ n fall into which set alk : k, l ∈ n. Note that in this way
Alechin’s moves related to the set A can be coded as natural numbers. Note
also that given any set B ∈ I, Alechin can play so that his resulting set A ∈ I
is a superset of B.

Lemma 5.9. The following are equivalent:
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• P 
 ṙ is not contained in any ground model Borel I-small set

• Capablanca has a winning strategy in the game SFG(I, P, ṙ).

Theorem 5.7 immediately follows. Suppose that I is a σ-finite ideal. An
application of the lemma to the poset PI and its generic real shows that Capa-
blanca has a winning strategy σ in the game SFG(I, PI , ṙgen). Now suppose M
is a countable elementary submodel of a large enough structure containing the
ideal I and the strategy σ, and let B ∈M ∩ PI be a condition. We must show
that the set {r ∈ B : r is M -generic} is I-positive. Well, if A is a Borel I-small
set then consider the play of the game in which Capablanca follows the strategy
σ and Alechin indicates B = pini, enumerates the open dense sets in the model
M , and dynamically produces the set A. Clearly, all moves of the play will be
in the ground model, therefore the filter g ⊂ M ∩ PI Capablanca creates will
be M -generic, and the resulting real ṙgen/g ∈ B will be M -generic and outside
the I-small set A as desired.

One direction of the lemma is easy. If some condition p ∈ P forces the real
ṙ to belong to some ground model coded I-small Borel set B, then Alechin
has a simple winning strategy. He will indicate pini = p, dynamically produce
a suitable superset A ⊃ B,A ∈ I, and on the side he will find an inclusion
increasing sequence {Mn : n ∈ ω} of countable elementary submodels of some
large enough structure containing A,we, P, ṙ such that the n-th Capablanca’s
move pn belongs to the model Mn, and he will make sure to enumerate all open
dense subsets of the poset P that occur in the model N =

⋃
nMn. This is

certainly easily possible. In the end Capablanca’s filter g will be N -generic,
by the forcing theorem N [g] |= ṙ/g ∈ A, by Borel absoluteness ṙ/g ∈ A, and
Alechin won.

For the other direction of the lemma note that the game is Borel and there-
fore determined–Fact 2.7. Thus it will be enough to obtain a contradiction from
the assumption that P 
 ṙ is not contained in any ground model coded Borel
I-small set and yet Alechin has a winning strategy σ. A small claim will be
used repeatedly:

Claim 5.10. For every condition p ∈ P and every number k ∈ ω there is a
number l(p, k) > 0 such that for every set a ⊂ U of weight ≤ k consisting of
sets of diameter ≤ 2−l(p,k) there is a condition q ≤ p forcing ṙ /∈

⋃
a.

Proof. Suppose this fails for some p, k, and for every natural number l ∈ ω
find a set al ⊂ U of weight ≤ k consisting of sets of diameter ≤ 2−l such that
p 
 ṙ ∈

⋃
al. But then, p 
 ṙ ∈

⋂
l

⋃
al, and the latter set is certainly in the

ideal I, being of Hausdorff submeasure ≤ k. Contradiction!

First we must fix some objects instrumental in the construction of the coun-
terplay. Fix an enumeration U = {ui : i ∈ ω} from which Alechin’s schedule is
derived. Fix a function g ∈ ωω such that for every number n, for every collection
of ≤ n many subsets of U of weight ≤ n, their union has weight ≤ g(n). Such
a function exists by the weak subadditivity of the weight function w. Fix also
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a countable elementary submodel M of a large enough structure containing the
weight function and the strategy σ.

Capablanca will obtain a winning counterplay against the strategy σ by
induction. His moves will be denoted by pn, played at rounds in, and on the
side he will produce numbers ln. The intention is that the resulting filter g will
be M -generic, and the resulting real ṙ/g will fall out of all sets alkk . For the
convenience of notation let τn be the initial segment of the counterplay ending
after the round in. The induction hypothesis is the following:

• pn ∈ M and in fact pn ∈ Dn where Dn is the n-th open dense subset of
the poset P in the model M in some fixed enumeration.

• ln > l(pn, g(n)), diameters of all sets ui : i ≤ in are greater than 2−ln

and the diameters of all sets ui : i > in are less than 2−l(pn,g(n)). Also
in > max{n, lk : k ∈ n}.

• pn ∈ En where En is the n-th open dense subset of P Alechin produced
in the play τn

• for every number i ≤ in and every number k ∈ n if Alechin decided during
the play τn that ui ∈ alkk , then pn 
 ṙ /∈ u̇.

This will certainly conclude the proof. Let τ =
⋃
n τn and argue that Capa-

blanca won this run of the game SFG(I, P, ṙ). To see this note that whenever
u = ui ∈ alkk is a Borel set, then every condition Alechin played after round
i forces ṙ /∈ u by the third item of the induction hypothesis. Now since the
resulting filter g ⊂ P is M -generic, by the forcing theorem M [g] |= ṙ/g /∈ u,
and by Borel absoluteness ṙ/g /∈ u. This means that ṙ/g /∈

⋃
k a

lk
k ⊃ A, and

Capablanca won.
To get p0, l0, i0 just find a condition p0 ∈ D0 ∩ E0 ∩M below pini, let i0 be

some number such that all sets ui : i > in have diameter less than l(p0, g(0)), and
let l0 be a large enough number. The induction hypotheses are satisfied. Now
suppose that the play τn and the numbers lk : k ≤ n have been constructed. Let
ālkk : k ≤ n be the sets the strategy σ produces if Capablanca forever hesitates

to place his next move after the play τn. Now note that the set b =
⋃
k∈n ā

lk
k has

weight ≤ g(n) by the definition of the function g, and the only sets of diameter
≤ 2−l(pn,g(n)) in the set b are in the collection {ui : i ≤ in}. Note that the last
item of the induction hypothesis shows that pn 
 ṙ /∈

⋃
(b ∩ {ui : i ≤ in}). By

the second item of the induction hypothesis then, there is a condition q ≤ pn
int he model M such that q 
 ṙ /∈

⋃
b. Let pn+1 ≤ q be some condition in the

model M which belongs to the sets Dn and En and decides the n-th bit of the
real ṙ. The condition pn+1 will then be played at some round in+1 such that
the sets of diameter ≥ 2−l(pn+1,g(n+1)) are indexed by numbers i ≤ in, and let
ln+1 be a sufficiently large number. This concludes the inductive step and the
proof of Theorem 5.7.

The heavy use of the determinacy of the σ-finite game in the above proof
has the unpleasant side effect that it is impossible to extend the argument to
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cover the case of undefinable weight function w. We do not know if in such a
case the conclusion of Theorem 5.7 can in fact fail.

5.2 Dichotomies

Theorem 5.11. In the Solovay model, every σ-finite ideal is closed under well-
ordered unions.

Proof. As was the case before, it is just enough to prove that if κ is an inacces-
sible cardinal, I is a σ-finite ideal on some Polish space X derived from U, diam,
and a weight function w, and P is a forcing of size < κ adding a real ṙ which
falls out of all Borel ground model coded I-small sets, then in the choiceless
Solovay model derived from the cardinal κ the set C = {r ∈ X : ∃g ⊂ P g is
V -generic and r = ṙ/g} is I-positive. In order to prove this, fix Capablanca’s
winning strategy σ in the game SFG(I, P, ṙ) in the ground model and move
to the Solovay extension. There, the strategy σ is still winning in the ground
model version of the game SFG(I, P, ṙ) since the nonexistence of a defeating
counterplay is a wellfoundedness statement. Now for every I-small set B ⊂ X
in the Solovay extension consider the play of the game SFG(I, P, ṙ) against σ
in which Alechin enumerates all the open dense subsets of the poset P in the
ground model and dynamically produces some Borel set A ⊃ B in the ideal I.
Since the strategy σ is still winning, the resulting real must belong to the set
C \A, showing that the set C cannot be I-small.

Corollary 5.12. Let I be a σ-finite ideal on some Polish space X. In the
Solovay model, every subset of X has either a Borel I-positive subset or a Borel
I-small superset.

Corollary 5.13. (LC) Let I be a σ-finite ideal on some Polish space X. Every
universally Baire subset of X has either a Borel I-positive subset or a Borel
I-small superset. For analytic sets this is true in ZFC.

This can be viewed as a consequence of universally Baire absoluteness and
the previous corollary, however there is an alternative integer game argument.
For the simplicity of notation suppose that the underlying Polish space is just
the Cantor space 2ω. Let B ⊂ 2ω be a set and consider the following integer
counterpart iSFG(I,B) to the σ-finite game SFG(I, P, ṙ) above. Let Alechin
and Capablanca play for ω many steps. Alechin dynamically and on a fixed
schedule produces a σ-finite Borel set A, and Capablanca produces a binary
sequence r ∈ 2ω. Alechin’s schedule for producing the set A is the same as in
the game SFG(I, P, ṙ), and Capablanca is allowed to hesitate before announcing
the next bit on the sequence r. Capablanca wins if r ∈ B \A.

Lemma 5.14. Let B ⊂ 2ω. The following are equivalent.

• B ∈ I

• Alechin has a winning strategy in the game iSFG(I,B).
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It now follows that under AD, every subset of 2ω either has an analytic I-
positive subset, or a Borel I-small superset. To see this, suppose that B ⊂ 2ω

is I-positive. Then Alechin has no winning strategy in the game G(B), and by
the determinacy of the game, Capablanca has a winning strategy σ. Let C be
the set of all binary sequences the strategy σ can come up with. Clearly, C ⊂ B
since the strategy σ is winning, C is analytic since it is the image of a Borel
set under the continuous function σ, and C is I-positive because σ remains a
winning strategy for Capablanca in the game G(C). An additional argument is
then needed to show that every I-positive analytic set has an I-positive Borel
subset.

One direction of the lemma is trivial. If B ∈ I then Alechin can win by
producing a suitable superset A ⊃ B in the ideal I, ignoring Capablanca’s
moves entirely. In the other direction, suppose for contradiction that B /∈ I and
still Alechin has a winning strategy σ. First a bit of notation. If τ is a partial
play respecting the strategy and if k, l ∈ ω are natural numbers then clk(τ) is the
set of all uj for j >the length of τ which the strategy σ puts into the collection
alk if Capablanca hesitates forever to place his next move after τ . Similarly, for

finite sequences ~k,~l of natural numbers of the same length, c
~l
~k
(τ) is the set of all

uj for j >the length of τ such that the strategy σ puts them into the collection

a
~l(m)
~k(m)

for some number m if Capablanca hesitates forever to place his next move

after τ . Finally, for i ∈ ω and b ∈ 2 let τib denote the extension of the play τ
in which Capablanca makes just one more nontrivial move–at round i he places
the bit b on his sequence.

Note that all the sets
⋃
k

⋃
j

⋂
l>j

⋃
clk(τ) and

⋂
i

⋃
c
~l
~k
(τib) are of σ-finite

Hausdorff submeasure, for all finite plays τ observing the strategy σ, all bits
b ∈ 2 and all finite sequences ~k,~l. This follows in the second case from the weak
subadditivity of the weight function and the fact that the diameters converge to
0. Since B /∈ I, there must be a real r ∈ B falling out of all the abovementioned
sets. We will construct Capablanca’s winning counterplay against the strategy
σ in which he produces the real r. This will complete the proof of the Lemma.

By induction on n ∈ ω build natural numbers in and ln and look at the
partial play τn in which Alechin follows the strategy σ while Capablanca places
the m-th bit of the real r at the round im for m ≤ n and which ends right after
the round in. The induction hypotheses are

• r /∈ ui for any i ∈ ω less than length of τn which the strategy σ put into
the set alkk for some k ∈ n

• r /∈
⋃
k≤n

⋃
clkk (τn)

Of course the first item immediately implies that Capablanca won this run of
the game iSFG against the strategy σ, since the resulting real r is in B\

⋃
k

⋃
alkk

by the first item of the induction hypothesis. The second item is here just to
keep the induction going.

To construct the play τ0 and the numbers l0, i0, proceed as in the induction
step from τ−1 = 0. To perform the induction step, suppose the play τn as well
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as the numbers ik, lk : k ∈ n have been found. To find the number ln+1 note
that r /∈

⋃
k∈ω

⋃
j

⋂
l>j

⋃
clk(τn) and therefore there must be a number ln+1

large enough so that no set ui : i <the length of τn has diameter < 2−ln+1 and

moreover, r /∈ cln+1

n+1 (τn). To find the number in+1, let b be the n + 1-th bit on

the sequence r, let ~k = 〈0, 1, . . . n + 1〉, ~l = 〈l0, l1 . . . ln+1〉 and note that r /∈⋂
i

⋃
c
~l
~k
(τnib). It follows that there is a number i such that r /∈

⋃
k≤n+1 c

lk
k (τib).

Such number i = in+1 and the play τn+1 = τnin+1b work as desired.

5.3 Other preservation properties

The most important special case of σ-finite ideals is the one associated with
lower semicontinuous Hausdorff submeasures:

Definition 5.15. A weight function w is lower semicontinuous if w(a) =
sup{w(b) : b ⊂ a finite} for every set a ⊂ U . A Hausdorff submeasure is lower
semicontinuous if it is derived from a lower semicontinuous weight function.

The posets PI , where I is a σ-finite ideal derived from a lower semicontinuous
Hausdorff submeasure, share some forcing properties, in particular they are
bounding. This is exactly quantified and proved below.

Definition 5.16. A forcing P has the Laver property if for every ground model
function f ∈ ωω and every ground model nondecreasing function g ∈ ωω con-
verging to infinity, for every function h ∈ ωω dominated pointwise by f in the
extension, there is a ground model function e : ω → [ω]<ℵ0 such that the set
e(n) has size ≤ g(n) + 1 and contains the value h(n).

A basic definable example of a partial ordering with Laver property is the
Mathias forcing. It seems to be difficult to come up with substantially more
complex examples (see Theorem 9.10). There is a natural game theoretic coun-
terpart to the Laver property.

Definition 5.17. Fix a σ-ideal J on ωω. The Laver game LG(J) between
Botvinnik and Tal is played in the following fashion. First, Botvinnik indicates
an initial condition Bini ∈ PJ . After that, in each round n he chooses a number
g(n) ∈ ω and a finite partition the initial set Bini into Borel pieces. Tal then
responds by a Borel set Bn which is the union of at most g(n) + 1 many sets in
the partition. Tal wins if either the function g ∈ ωω is not nondecreasing and
diverging to infinity, or else the result of the play, the set

⋂
nBn, is J-positive.

Lemma 5.18. Suppose that J is a σ-ideal such that PJ is proper. The following
are equivalent:

• PJ fails the Laver property

• Botvinnik has a winning strategy in the game LG(J).
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Proof. Suppose first that Botvinnik has a winning strategy σ in the game. It is
then not difficult to see that Botvinnik has a positional winning strategy τ , that
is, a nondecreasing function g ∈ ωω and partitions Pn of the initial condition
such that he wins playing these objects regardless of Tal’s moves. To see this,
note that at every move there are only finitely many options for Tal and so
there are only finitely many possible answers the strategy σ can supply. Let
Pn be a partition refining all the finitely many partitions the strategy σ can
supply at round n. Finally, use a compactness argument to find an increasing
sequence {nm : m ∈ ω} of natural numbers such that the strategy σ asks for at
least m many pieces of the partition at each round after round nm, no matter
what Tal plays. Then define the function g by g(n) = m if nm ≤ n < nm+1.
It is not difficult to check that the positional winning strategy τ given by g
and {Pn : n ∈ ω} is winning since it is a better strategy than σ. But then, if
B = Bini is the initial condition dictated by the strategy, f ∈ ωω is a function
defined by f(n) = |Pn|, and ḣ is a name for a function in ωω defined by ḣ(n) = m
if ṙgen belongs to the m-th piece of the partition Pn in some fixed enumeration

Pn = {Ckn : k ∈ f(n)}, it is immediate that B, f, g, ḣ witness the failure of the
Laver property of the poset PJ . For if e : ω → [ω]<ℵ0 is a function such that
|e(n)| ≤ g(n), the Borel set C =

⋂
n

⋃
k∈e(n) C

k
n must be I-small, since it is a

result of the play respecting the strategy τ ; and so no condition below the set
B can force ∀n ∈ ω ḣ(n) ∈ ě(n).

On the other hand, if Botvinnik has no winning strategy in the game LG(J)
then the Laver property is rather easy to check. Suppose B ∈ PJ is a J-positive
Borel set, f ∈ ωω a function, g ∈ ωω a nondecreasing function diverging to
infinity, and ḣ a name for a function in ωω dominated by f . Strengthening the
condition B if necessary we may and will assume that there is a Borel function
c : B → Πnf(n) such that B 
 ḣ = k̇(ṙgen). Let Pn = {Ckn : k ∈ f(n)}
be a partition of the set B defined by Ckn = {r ∈ B : c(r)(n) = k}. Now
the set B = Bini together with the partitions {Pn : n ∈ ω} and the function
g does not constitute a positional winning strategy for Botvinnik, and there
must be a winning counterplay for Tal, with moves Bn =

⋃
k∈e(n) C

k
n for some

function e : ω → [ω]<ℵ0 such that |e(n)| ≤ g(n) + 1. The result of the game,
some I-positive Borel set C ⊂ B, then clearly forces ∀n ∈ ω ḣ(n) ∈ ě(n) as
desired.

Compare the following with Lemma 2.14.

Theorem 5.19. (LC) Suppose that I is a σ-finite ideal derived from some lower
semicontinuous Hausdorff submeasure and J is a universally Baire σ-ideal such
that PJ is proper. The following are equivalent:

1. PJ has the Laver property

2. ¬I ⊥ J .

Of course from the point of view of forcing preservation it is the implication
(1)→(2) that is most interesting.
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Proof. The (2)→(1) implication is easier. Suppose that J is a σ-ideal such
that PJ is proper and fails to have the Laver property, as witnessed by some
ground model functions f, g ∈ ωω and a name ḣ for a function in the extension
dominated by f . Then I ⊥ J for some σ-finite ideal I derived from a lower
semicontinuous Hausdorff submeasure. Namely, let Xn = [f(n)]g(n) and let θn
be the submeasure on Xn defined by θn(Y ) =the smallest possible size of a
set z ⊂ Xn such that Y contains no superset of z, and use Example 5.4 to
obtain a σ-finite ideal I on the space ΠnXn. It is not difficult to see that the
forcing PI adds a function ė ∈ ΠnXn such that every ground model function h
dominated by f satisfies h(n) ∈ ė(n) for all but finitely many n. To see that
I ⊥ J , find a J-positive Borel set BJ and a Borel function k : BJ → ωω such
that BJ 
 ḣ = k̇(ṙgen) and let C ⊂ ΠnXn × BJ be the Borel set C = {〈e, r〉 :
for all but finitely many n, k(r)(n) ∈ e(n)}. Now the vertical sections of the
set C are J-small since for every given e ∈ ΠnXn the condition BJ forces ḣ to
avoid the prediction by e infinitely many times. And the horizontal sections of
the complement of the set C are I-small since for every given real r the poset
PI forces the function ė to predict k(r) at all but finitely many values.

For the other implication, suppose BJ ∈ PJ and BI ∈ PI are positive Borel
sets and C ⊂ BJ × BI is a Borel set with I-small vertical sections. We must
produce a J-positive horizontal section of the complement of the set C.

Use Fact 2.3 to see that thinning out the set BJ if necessary we may assume
that there are Borel maps alk : BJ → P(U) : k, l ∈ ω such that for every element
r ∈ BJ , the set alk(r) has weight ≤ k and consists of sets of diameter ≤ 2−l,
and the vertical section Cr of the set C above r is covered by the σ-finite set⋃
k

⋂
l

⋃
alk(r). Fix also an enumeration U = {ui : i ∈ ω}, a function g ∈ ωω

such that unions of ≤ n many subsets of U of weight ≤ n have weight ≤ g(n),
fix Tal’s winning strategy σ in the Laver game LG(J), and let M be a countable
elementary submodel of a large enough structure containing the strategy σ as
well as other relevant objects.

By induction on n ∈ ω build plays τ0 ⊂ τ1 ⊂ τ2 ⊂ . . . of the game LG(I)
of the respective length i0, i1, i2, . . . , conditions BI = A0 ⊃ A1 ⊃ A2 ⊃ . . .
and numbers l0, l1, l2, . . . . The intention is that the resulting set Bτ of the play
τ =

⋃
n τn is J-positive, the intersection

⋂
nAn is a singleton containing some

unique x ∈ X and the set Bτ ×{x} is a subset of the complement of C, secured
by the fact that for every r ∈ Bτ , x /∈

⋃
k

⋃
alkk . The induction hypotheses are:

• ln > l(An, g(n)), and for every number i ≤ in it is the case that diam(ui) ≥
2−ln and for every number i > in it is the case that diam(ui) ≤ l(An, g(n)).

• For every number j, in ≤ j < in+1, Botvinnik places the following move
in τn+1 at round j. Consider the equivalence relation Ejn given by r Ejn s
if and only if for every number i, in ≤ i ≤ j, and for every number
k ≤ n, ui ∈ alkk (r) ↔ ui ∈ alkk (s). Botvinnik plays the partition of
BJ into the finitely many Borel Ejn equivalence classes, asking Tal to
choose n + 1 many of them. Tal answers according to the strategy σ
by a set Bj , a union of at most n + 1 many equivalence classes. Let
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bjn = {ui ∈ U : in ≤ i ≤ j,∃k ≤ n ∃r ∈ Bj ui ∈ alkk }. Note that
the collection bjn consists of sets of diameter at most l(An, g(n)) and has
weight at most g(n) since it is a union of n+ 1 many sets of weight ≤ n.

• Whenever i ∈ in and ∃k ≤ n ∃r ∈
⋂
j∈in Bj ui ∈ a

lk
k then An ∩ ui = 0.

This will certainly be enough. The first item implies that the intersection⋂
nAn will be a singleton by Fact 2.2. The resulting set Bτ of the play τ is

J-positive. The third item then implies that x ∈
⋂
n∈ω An and r ∈

⋂
j∈ω Bj

then 〈x, r〉 /∈ C as required, since x /∈
⋃
k

⋃
alkk . The second item is there only

to keep the induction going.
Now suppose the play τn, the set An and the numbers ln, in have been found.

Consider the infinite run of the Laver game extending τn according to the third
inductive item, and the collection bn =

⋃
j∈ω b

j
n. This collection consists of

sets of diameter ≥ l(An, g(n)) and by the lower semicontinuity of the Hausdorff
submeasure in question, it has weight at most g(n). Therefore the Borel set
An.5 = An \

⋃
bn is I-positive. Note that this set already satisfies the third item

of the induction hypothesis. Now find an arbitrary set An+1 ⊂ An.5 in the n-th
open dense set in the model M and consider the number l(An+1, g(n+ 1)). Let
in+1 be some number such that diam(ui) ≤ 2−l(An+1,g(n+1)) for every i > in,
and let ln+1 > l be some number such that diam(ui) ≥ ln+1 for every i ≤ in.
This completes the inductive step and the proof of the Theorem.

Corollary 5.20. If I is the σ-finite ideal derived from some lower semicon-
tinuous Hausdorff submeasure, then PI is bounding and does not add splitting
reals.

Proof. Use Theorem 5.19 with the ideal J of sets nowhere dense in the algebra
P(ω)/Fin and then Lemma 2.14.

Corollary 5.21. [27] Let 〈X, d〉 be a compact metric space and h a positive real
number. Every analytic subset of X of non-σ-finite h-dimensional Hausdorff
measure has a compact subset with the same property.

Proof. First we will find a Hausdorff submeasure µ on the space X in the sense
of this section such that µh ≤ µ ≤ 4h · µh where µh is the usual h-dimensional
Hausdorff measure derived from the metric d. Use the compactness of the
space X to find a finite set Yn ⊂ X such that every point of X lies within
distance 2−n from some element of Yn. The submeasure µ is derived from the
set U = {B(x, 2−n+1) : x ∈ Yn, n ∈ ω}, the usual metric diameter function,
and the weight function w(a) = Σ{diamh(u) : u ∈ a}. Observe that for every
positive δ there are finitely many sets in U with diameter greater than δ, and the
weight function is lower semicontinuous, so that the results of this subsection
are applicable.

It is clear that µh ≤ µ. On the other hand, if A ⊂ X is a set and b is some
collection of open balls of diameter < δ < 1 covering the set A, replace each ball
u ∈ b by a ball vu ∈ U such that u ⊂ v and diam(u) ≤ diam(vu) ≤ 4diam(u).
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This is easily possible by the choice of the set U , and the resulting set a = {vu :
u ∈ b} ⊂ U will still cover the set A, it will consist of sets of diameter < 4δ and
it will have weight w(a) ≤ 4h ·w(b). It immediately follows that µ(A) ≤ µh(A).

It now follows that the ideals I, J of sets of σ-finite measure coincide for µ
and µh. If A ⊂ X is an analytic set, A /∈ I, then there is a Borel set B ⊂ A
with B /∈ I by Corollary 5.13. Since the submeasure µ is lower continuous, the
poset PI is bounding and by the basic Lemma 2.4 there is a compact set C ⊂ B,
C /∈ I. This is the sought compact subset of A of non-σ-finite h-dimensional
Hausdorff measure.

There is an alternative integer game theoretic argument for the bounding
part of the lemma, which then can be used in a very concise determinacy proof
of the above classical result. For definiteness assume that the underlying space
is X = ωω. Given a set B ⊂ ωω and a function f : B → ωω, consider the
following game G(B, f) between Alechin and Euwe. Alechin produces subsets
alk : l ∈ ω of U , each alk of weight ≤ k consisting of sets of diameter ≤ 2−l; Euwe
produces sequences x, y ∈ ωω. Alechin’s schedule is identical to that of games
SFG and iSFG, Euwe is allowed to hesitate before placing next number on his
sequences x, y. Euwe wins if x ∈ B \

⋃
k

⋂
l

⋃
alk and y = f(x).

Lemma 5.22. Alechin has a winning strategy if and only if B ∈ I.

The proof follows the line of argument for Lemma 5.14. Now suppose that
B is an I-positive Borel set, and f : B → ωω is a Borel function. We will
find a compact I-positive set C ⊂ B such that f � C is continuous, which by
Lemma 2.4 is equivalent to the bounding property of the poset PI . The game
G(B, f) is Borel, therefore determined, and by the Claim it must be Euwe who
has a winning strategy σ. Look at the space Y of legal Alechin counterplays and
note that the lower continuity of the weight function implies that this space is
compact. Consider the set D of all pairs 〈x, y〉 ∈ ωω × ωω which the strategy σ
can come up with against some Alechin’s counterplay. The set D is a continuous
image of the compact space Y , and therefore it must be compact. It follows that
C ⊂ ωω, the projection of the set C into the first coordinate, must be compact
as well and f � C is continuous. Finally, the set C ⊂ B must be I-positive since
the strategy σ remains winning in the game G(C, f).

There is an important anti-preservation theorem regarding this class of forc-
ings as well as many others.

5.4 The fat tree forcings

It now remains to complete the argument for Example 5.4. Let {Xn : n ∈ ω}
be a sequence of finite sets, θn submeasures on them, and derive the diameters,
weights as well as the σ-finite ideal I as in that Example. We must prove

Lemma 5.23. A Borel subset of ΠnXn is I-positive if and only if it has a subset
of the form [T ] for some fat tree T .
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Proof. The right-to-left implication is easy and the reader who made it up to
here can certainly prove this on his own. For the opposite direction, suppose
that B is an I-positive set. Using Corollary 5.20 and Lemma 2.4, thinning out
the set B if necessary we may assume it is closed, B = [S] for some tree S.

Consider the game G between Petrosian and Spassky. At round n ∈ ω, a
node tn ∈ S of length n will be known; t0 = 0. Petrosian plays a number
mn ∈ ω and a nonempty set Yn ⊂ Xn consisting of immediate successors of the
node t ∈ S which has θn submeasure at least mn. Spassky chooses an element
xn ∈ Yn and puts tn+1 = tan 〈xn〉. Petrosian wins if the seqeunce of his numbers
mn : n ∈ ω is nondecreasing and converges to infinity.

The game G is Borel and therefore determined. If Petrosian has a winning
strategy then it is easy to use it to construct a fat subtree T ⊂ S. Thus the
proof will be complete once we derive a contradiction from the assumption that
it is Spassky who has a winning strategy σ.

By induction build partial plays 0 = τ0 ⊂ τ1 ⊂ . . . against the strategy σ
and a decreasing sequence [S] = [S0] ⊃ [S1] ⊃ . . . of I-positive closed sets such
that

• the numbers mn played in the play τk+1 after τk are all equal to k

• every branch in the closed set [Sk] can result from some infinite extension
of the play τk in which Spassky follows the strategy σ and Petrosian plays
numbers mn = k after the play τk.

Of course then in the end the play τ =
⋃
k τk follows the strategy σ and

Petrosian won in it, reaching a contradiction. Now the play 0 = τ0 and the tree
S = S0 satisfy the induction hypotheses. Assume that the play τk and the tree
Sk are known. Let l = l(Sk, k + 1). An inspection of the definitions reveals
that there must be a node t ∈ Sn of length l such that l = l(Sk � t, k + 1).
Let τk+1 be any extension of the play τk which results in the node t. There
must be such an extension by the second induction hypothesis. To construct
the tree Sk+1 ⊂ Sk � t, analyze the strategy σ to find a collection a ⊂ U of
weight ≤ k+ 1, consisting of sets of diameter ≤ 2−l, such that every element in
the closed set [Sk+1] = [Sk � t] \

⋃
a can result from an infinite extension of the

play τk+1 in which Spassky follows the strategy σ Petrosian plays mn = k + 1
after the play τk+1. To conclude the induction step, note that the closed set
[Sk+1] is I-positive by the choice of the number l.

There is an important anti-preservation result concerning forcing with σ-
finite ideals. Extending the topology while preserving the Borel structure it is
possible to make sure that all sets in the generating collection U are clopen,
and therefore every set of finite submeasure will be included in a Gδ set of the
smae finite submeasure. In the natural examples it invariably so happens that
countable sets have finite submeasure. Corollary 2.17 then shows that unlike in
the previous sections, the quotient forcing makes ground model sets meager. It
is not necessary to invoke large cardinal hypotheses for this conclusion.
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6 Submeasurable forcings

Definition 6.1. Let X be a set. A submeasure on X is a function µ : P(X)→
R+ ∪ {∞} such that

1. it is monotone: µ(0) = 0, A ⊂ B ⊂ X implies µ(A) ≤ µ(B)

2. it is countably subadditive: µ(
⋃
n∈ω An) ≤ Σnµ(An).

The submeasure µ is normalized if µ(X) = 1.

Clearly, if µ is a submeasure on a Polish space X then the collection Iµ =
{A ⊂ X : µ(A) = 0} is a σ-ideal and we would like to investigate the quotient
forcing PIµ . There is not much to say in general, since every σ-ideal I is equal to
Iµ for the submeasure µ defined by µ(A) = 0 if A ∈ I and µ(A) = 1 otherwise.
Rather, the idea is to start with some natural submeasures µ and show how their
measure-theoretic properties influence the forcing properties of the quotient PIµ .

Definition 6.2. A submeasure µ on 2ω is dense if

1. it is outer regular: for every Borel set A ⊂ 2ω, µ(A) = inf{µ(B) : A ⊂ B
open }

2. it satisfies a version of Lebesgue density theorem. Given a set A ⊂ 2ω and

a point x ∈ 2ω, define d̄(A, x) = lim supn
µ(A)∩µ([x�n])

µ([x�n]) and d̄A = {x ∈ 2ω :

d̄(A, x) = 1}. We require that for every Borel set A ⊂ 2ω, µ(A) = µ(d̄A).

3. it is suitably definable: the set Y ⊂ Q×P(2<ω) is Borel, where 〈q, a〉 ∈ Y
if µ(

⋃
t∈a[t]) ≤ q.

Similar definition can be used on spaces of the form ΠnXn where Xn are finite
sets.

It is clear that a null ideal associated with a dense submeasure is generated
by Gδ sets.

Example 6.3. The Solovay forcing carries Lebesgue measure on it which is
dense.

Example 6.4. A quite general way of constructing dense submeasures is im-
plicit in Steprāns’s work [30]. A good norm on a set X is a norm n : RX → R+

such that |f | ≤ |g| implies n(f) ≤ n(g), and n(1) = 1. If n,m are good norms on
sets X,Y respectively, their iteration is the good norm n ∗m on X × Y defined
by (n ∗m)(f) = n(x 7→ m(y 7→ f(x, y))). Now if Xi : i ∈ ω are finite sets with
respective good norms ni : i ∈ ω on them, consider the sequence of the good
norms mj = n0 ∗n1 ∗ · · · ∗nj−1 on the sets Πi∈jXi. This sequence of norms has
a natural limit, a good norm p on X = ΠiXi described in the following way:

• Suppose f ∈ RX is a step function, i.e. there is a partition X =
⋃
k∈l Yk of

the space X into finitely many clopen sets and real numbers rk : k ∈ l such
that f(x) = rk ↔ x ∈ Yk. Then find a number i large enough such that
f(x) depends only on x � i, write f(x) = f∗(x � i), and let p(f) = mi(f

∗).
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• If g ∈ RX is a nonnegative lower semicontinuous function, let p(g) =
sup{p(f) : |f | ≤ g and f is a step function}.

• For all other functions h ∈ RX , let p(h) = inf{p(g) : g ≥ |h| is a lower
semicontinuous function}.

Let µ be the submeasure on P(X) defined by µ(B) = p(χB). The work of
Steprāns in [30] can be used to show that µ is a dense submeasure. Fremlin
in unpublished work [9] showed that many of these submeasures are in fact
capacities, and therefore the tree posets obtained by Steprāns are dense in PIµ .

Definition 6.5. A submeasure µ on a Polish space X is a pavement submeasure
if it is obtained by an application of the following process. There is a countable
collection U of Borel subsets of X, with a weight function w : U → R+. The
weight function is naturally extended to w : P(U) → R+ ∪ {∞} by w(a) =
Σu∈aw(u). The submeasure µ is then obtained as µ(A) = inf{w(a) : A ⊂

⋃
a}.

Extending the topology of the space X and preserving its Borel structure it
is possible to bring about a situation in which the sets in the collection U are
clopen. In such a case the associated null ideal is again generated by Gδ sets.
It is quite clear that there are very many null ideals for pavement submeasures.
The problem is that we do not understand their factor forcings except for a
couple of select cases:

Example 6.6. Solovay forcing. This obtains whenX = [0, 1], U is the collection
of rational intervals, and a weight of an interval is just its length.

Example 6.7. Laver forcing. Let {δt : t ∈ ω<ω} be an arbitrary sequence of
positive real numbers with finite sum. For every sequence t ∈ ω<ω and every
number n assign weight δt to the set At,n = {g ∈ ωω : t ⊂ f ∧ f(|t|) ∈ n} ⊂ ωω.
It is not difficult to see that the null ideal I for the resulting submeasure is
generated by the sets Ah = {f ∈ ωω : for infinitely many i ∈ ω, f(i) ∈ h(f � i)}
as h varies through all functions from ω<ω to ω. In other words, the null ideal
is precisely the Laver ideal.

Example 6.8. Popov forcing ([25]). Let X =
∏
n∈ωXn for finite sets Xn whose

sizes approach∞. Consider X with the product topology. For f ∈ X and finite
s ⊆ ω let af,s = {x ∈ X|x(i) 6= f(i) for all i ∈ s}, and let w(af,s) = 1/(|s|+ 1).
Then φ is a what is sometimes called a pathological submeasure: it does not
dominate a finitely additive positive functional.

Laver and Popov forcings are different. By Lemma 2.14, Laver ideal sat-
isfies ¬J ⊥ null. On the other hand, if I is the null ideal of a pathological
submeasure, then I ⊥ null. By [4, Theorem 6, second part], there is a Borel
set C ⊆ [0, 1] × X such that every vertical section of C has complement in I
while every horizontal section of C is Lebesgue null. The result of [4] was proved
under the additional assumption that the submeasure is Maharam, but it is not
difficult to see that the proof works without this assumption.
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7 Properness

Theorem 7.1. Suppose I is a null ideal derived from some dense submeasure
µ on 2ω. The forcing PI is proper.

Proof. This is again a game theoretic argument. Let P be a forcing and P 

ṙ ∈ 2ω. Consider a game DG(P, I, ṙ) between Kramnik and Kasparov. In it
Kasparov first indicates an initial condition pini, then in each round n an open
dense set Dn ⊂ P , and on a fixed schedule to be specified later he creates a Gδ
set B ∈ I. Kramnik plays a descending sequence pini ≥ p0 ≥ p1 ≥ . . . so that
pn ∈ Dn and the condition pn decides the value of ṙ(ň). Kramnik is allowed to
tread water, that is, wait for any finite number of steps before placing another
nontrivial move. Let g be the filter on the poset P generated by the conditions
{pn : n ∈ ω}. Kramnik wins if the real ṙ/g falls out of the set B.

It only remains to specify Kasparov’s schedule used to construct the set B.
In fact, for every number i he constructs an open set Bi of submeasure < 2−i

and the set B is recovered as B =
⋂
iBi. Moreover, for all numbers i, j he must

identify all those sequences s ∈ 2<ω such that µ(Bi∩[s]) ≥ (1−2−j)µ([s]). To do
this, in the beginning of the game fix some bijection f : ω → ω×ω× 2<ω× 2<ω

and demand that in any round n Kasparov announce whether [t] ∈ Bi and
µ(Bi ∩ [s]) ≥ (1 − 2−j)µ([s]), where f(n) = 〈i, j, s, t〉. Note that in this way
Kasparov’s moves used to construct the set B are integers, and he can produce
a Gδ superset of any set in the ideal I.

Lemma 7.2. The following are equivalent:

1. P forces the real ṙ to fall out of all Borel ground model coded I-small sets

2. Kramnik has a winning strategy in the game DG(P, I, ṙ).

Once this lemma is proved, the theorem follows by the same argument as in
Theorem 5.7. It is clear that if (1) fails then Kasparov has a winning strategy
and therefore (2) must fail: Kasparov will just choose a condition pini ∈ P
which forces the real ṙ into some I-small Borel set C. By the outer regularity
of the submeasure µ the set C is a subset of a Gδ set B which Kasparov can
produce and win no matter what Kramnik does.

The implication (1)→(2) is the heart of the matter. Since the gameDG(P, I, ṙ)
is Borel, it is determined. So it is enough to assume (1) and derive a contra-
diction from the assumption that Kasparov has a winning strategy σ. A small
claim will be used repeatedly:

Claim 7.3. For every condition p and every number j ∈ ω there is a sequence
s ∈ 2<ω such that for every Borel set A ⊂ [s] of submeasure µ(A) < (1 −
2−j)µ([s]) there is a condition q ≤ p forcing ṙ ∈ [s] \ Ȧ.

Proof. Suppose this fails for some p, j, and for every sequence s ∈ 2<ω find a
Borel set As ⊂ [s] such that µ(As) < (1 − 2−j)µ([s]) and p 
 ṙ /∈ [s] \ Ȧs.
Let B = {r ∈ 2ω : ∀n ∈ ω r ∈ Ar�n}. It is immediate that B is a Borel set,

p 
 ṙ ∈ Ḃ, and since for every sequence s ∈ 2<ω the set B ∩ [s] ⊂ As has
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measure < (1 − 2−j)µ([s]), by the density condition µ(B) = µ(d̄B) = 0. This
contradicts the assumption that P 
 ṙ falls out of all Borel ground model coded
I-small sets.

Let pini be the condition the strategy σ plays as the initial move. Observe
that there must be a number j ∈ ω such that for every Borel set A of submea-
sure < 2−j there is a condition q ≤ pini forcing ṙ /∈ Ȧ. If this failed and for
every number j there was a Borel set Aj ⊂ 2ω of submeasure < 2−j such that

pini 
 ṙ ∈ Ȧj , then pini 
 ṙ ∈
⋂
j Aj and the latter set has zero submeasure,

contradicting the assumptions on the name ṙ. Let j be such a number, and fix
some number i > j. Kramnik will construct a counterplay against the strategy
σ such that his resulting number ṙ/g will fall out of the set Bi the strategy σ
will produce. This will provide the desired contradiction.

By induction on n ∈ ω construct conditions pn, numbers mn ∈ ω, jn ∈ ω,
and sequences sn ∈ 2<ω so that

• pini ≥ p0 ≥ p1 ≥ . . .

• writing τn for the partial play of the game ending at round mn in which
Kasparov follows his strategy σ and Kramnik plays pk at round mk for
all k ≤ n, it is the case that the play τn follows the rules of the game, in
particular pn ∈ Dn

• s0 ⊂ s1 ⊂ . . . , sn is a sequence which witnesses the Claim for pn and jn,
pn+1 forces šn ⊂ ṙ

• the strategy σ indicated during the play τn that µ(Bi ∩ [sn]) < (1 −
2−jn)µ([sn]).

Of course, in the end it is the case that ṙ/g =
⋃
n sn, and by the last item

for no number n it is the case that [sn] ⊂ Bi. Therefore ṙ/g /∈ Bi and Kramnik
has won.

To obtain p0,m0, j0 and s0 consider the open set C ⊂ 2ω which the strategy
σ produces as Bi if Kramnik makes no nontrivial move. There is a condition
q ≤ pini for cing the real ṙ out of the set d̄C, and strengthening the condition q
we can find a number j0 such that q 
 ∀k ∈ ω µ(C ∩ [ṙ � k]) < (1− 2−j0)µ([ṙ �
k]). Find a condition p0 ≤ p which decides the value ṙ(0) and belongs to
the open dense set D0 the strategy σ produced, let s0 ∈ 2<ω be a sequence
which witnesses the statement of the Claim for p0 and j0, and let m0 be an
integer large enough so that the strategy σ announced before round m0 that
µ(C ∩ [s0]) < (1− 2−j0)µ([s0]). The induction hypothesis is satisfied.

Suppose now that pn,mn, jn and sn have been constructed. Let C ⊂ 2ω

be the open set which the strategy σ produces as Bi in the infinite play which
starts with τn and proceeds without further nontrivial Kramnik’s move. By the
induction hypothesis, µ(d̄C ∩ [sn]) = µ(C ∩ [sn]) < (1 − 2−jn)µ([sn]). By the
induction hypothesis there is a condition q ≤ pn forcing the real ṙ into the set
[sn] \ d̄C, and strengthening this condition if necessary we can find a number
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jn+1 ∈ ω so that q 
 ∀k ∈ ω µ(C ∩ [ṙ � k]) < (1 − 2−jn)µ([ṙ � k]). Find a
condition pn+1 ≤ q in the open dense set Dn ⊂ P . Find a sequence sn+1 ∈ 2<ω

witnessing the Claim for the condition pn+1 and the number jn+1; note that
sn ⊂ sn+1. Finally, find a number mn such that the strategy σ indicated µ(C ∩
[sn+1]) < (1− 2−j0)µ([sn+1]) before the round mn. The induction hypothesis is
clearly satisfied.

Theorem 7.4. Let I be a null ideal derived from some pavement submeasure.
Then PI is a proper forcing.

Proof. The proof again uses a determined infinite game. For notational sim-
plicity assume that the underlying space is 2ω, and fix the weight function
w : U → R+ generating the submeasure. Suppose that I is a null ideal, P is a
partial order and ṙ is a P -name for a real. The null game NG(I, P, ṙ) is a game
of length ω between Fischer and Spassky played in the following fashion. In the
beginning Fischer indicates an initial condition pini and then he produces one-
by-one open dense subsets {Dn : n ∈ ω} of the poset P , and dynamically on a
fixed schedule a Borel set A in the ideal I. Spassky plays one by one decreasing
conditions pini ≥ p0 ≥ p1 ≥ . . . so that pn ∈ Dn and pn decides the n-th digit
of the real ṙ. He is allowed to hesitate for any number of rounds before placing
his next move. Spassky wins if, writing g for the filter he obtained, it is the case
that ṙ/g /∈ A.

To make this precise, Fischer plays subsets {ak : k ∈ ω} of the collection U
with w(ak) ≤ 2−k, and the Borel set A in the previous paragraph is extracted as⋂
k

⋃
ak. To obtain the sets ak, at round n Fischer indicates finite sets ank ⊂ U

for all k ∈ n in such a way that Σnw(ank ) ≤ 2−k and Σn>ma
n
k ≤ 2−m.

The sets ak are then obtained as
⋃
n a

n
k . It is clear that Σnw(ak) ≤ 2−k and

that given any set B ∈ I Fischer can play so that B ⊂ A for his resulting set A.

Lemma 7.5. The following are equivalent:

1. P 
 ṙ is not contained in any ground model Borel I-small set

2. Spassky has a winning strategy in the game NG(I, P, ṙ).

Granted this lemma, the whole treatment transfers from the previous section,
including the dichotomy results. One direction of the lemma is easy. If there
is a condition p ∈ P such that p 
 ṙ ∈ Ḃ for some ground model coded Borel
I-small set B, then Fischer can easily win by indicating pini = p, dynamically
producing a suitable I-small superset A of the set B, and mentioning all the
open dense sets necessary to make sure that the result of the game falls into the
set B ⊂ A.

For the other direction of the lemma note that the game is Borel and there-
fore determined. Thus it will be enough to obtain a contradiction from the
assumption that P 
 ṙ is not contained in any ground model coded Borel I-
small set and yet Fischer has a winning strategy σ. A small claim will be used
repeatedly:
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Claim 7.6. For every condition p ∈ P there is a number l(p) > 0 such that for
every set a ⊂ U with w(a) < 2−l(p) there is a condition q ≤ p forcing ṙ /∈

⋃
a.

Proof. Suppose this fails and for every number l ∈ ω find a set al ⊂ U with
w(al) < 2−l such that p 
 ṙ ∈

⋃
al. But then p 
 ṙ ∈

⋂
l

⋃
al and the latter set

is in the null ideal, contradicting the properties of the name ṙ.

Spassky will find a winning counterplay against the strategy σ in the follow-
ing fashion. Fix k = l(pini) and a countable elementary submodel M of a large
enough structure containing the strategy σ and the ideal I. The intention is to
build a counterplay with moves in the model M such that the resulting filter
g ⊂ P is M -generic and the resulting real ṙ/g will not belong to the set

⋃
ak.

This will prove the theorem.
The counterplay will be built by induction, Spassky’s moves denoted by pn,

played at rounds in. The initial segment of the play ending after the round
in−1 will be denoted by τn, and for notational convenience let p−1 = pini and
τ0 = 〈pini〉. The following induction hypotheses will be satisfied:

• l(pn) ≤ in

• the condition pn ∈M is in the sets Dn and En, it decides the n-th bit of
the real ṙ and for every number m, k < m ≤ in it forces ṙ /∈

⋃
amk . Here

the symbols En and amk refer to Fischer’s moves in the play τn+1, and Dn

is the n-th open dense subset of the poset P in the model M in some fixed
enumeration.

This will certainly be sufficient. Let τ =
⋃
n τn and argue that Spassky has

won. And indeed, look at the set ak =
⋃
n a

n
k . For every Borel set u ∈ ank ,

every condition Spassky played at or after round n forces ṙ /∈ u̇, by the forcing
theorem and the fact that the resulting filter g is M -generic it follows that
M [g] |= ṙ/g /∈ u and by Borel absoluteness ṙ/g /∈ u. Note that this argument
uses just the second item of the induction hypothesis, the first item just helps
keep the induction going.

To perform the induction, suppose the play τn has been constructed. Let āk
be the set the strategy σ produces if Spassky forever hesitates to place another
move after the play τn. The rules of Fischer’s schedule for the construction
of the set āk imply that w(āk \

⋃
m≤in a

m
k ) ≤ 2−in . The first item of the

induction hypothesis implies that there is a condition q ≤ pn−1 such that q 

ṙ /∈

⋃
(āk \

⋃
m≤in a

m
k ). Note that since pn−1 
 ṙ /∈

⋃⋃
m≤in a

m
k by the second

item of the induction hypothesis, it is in fact the case that q 
 ṙ /∈
⋃
āk. Find

a condition pn ≤ q in the open dense sets Dn and En which decides the n-th
bit of the real ṙ, and play it at round in such that l(pn) ≤ in. This concludes
the construction of the play τn+1 and the proof of the theorem.

7.1 Dichotomies

Theorem 7.7. In the Solovay model, every null ideal associated with a pave-
ment submeasure or a dense submeasure is closed under well-ordered unions.
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Proof. Like in the proof of Theorem 3.10, it suffices to show that if P is a small
forcing notion and ṙ is a P -name for a real that falls out of all ground model
sets in I, then the set {r ∈ X : ∃g ⊂ P a V -generic filter such that r = ṙ/g} is
I-positive. The argument follows literally the proof of Theorem 5.11.

Corollary 7.8. In the Solovay model, every subset of X has either a Borel
I-positive subset or a Borel I-small superset.

Corollary 7.9. (LC) Every universally Baire subset of X has either a Borel
I-positive subset or a Borel I-small superset. For analytic sets this is true in
ZFC.

This can be viewed as a mere application of L(R) absoluteness and the
previous corollary. However, there is a direct integer game argument both in the
case of a pavement submeasure or a dense submeasure. We will describe the case
of a pavement submeasure. Suppose for definiteness that the underlying space
X is just the Cantor space 2ω, and for every set B ⊂ 2ω consider the integer
variation iNG(I,B) of the game NG. Here, Fischer produces dynamically on
a fixed schedule an I-small set A and Spassky produces a binary sequence x.
Fischer’s schedule is the same as in the case of the game NG while Spassky is
allowed to hesitate for an arbitrary finite number of rounds before placing the
next bit on the sequence x. Spassky wins if x ∈ B \A.

Claim 7.10. Fischer has a winning strategy in the game iNG(I,B) if and only
if B ∈ I.

The claim shows that under AD, every set B /∈ I has an analytic subset
C /∈ I. To see this, note that by the determinacy of the game iNG(I,B) it
must be the case that Spassky has a winning strategy σ in it. Let Y be the
space of all possible Adam’s counterplays with the natural topology, and let
C = σ′′Y . It is clear that C ⊂ B since the strategy σ is winning, and C /∈ I
because the strategy σ remains winning in the game iNG(I, C). Moreover, the
set C is analytic since it is an image of the Polish space Y under the continuous
function σ. A separate argument is then necessary to show that every I-positive
analytic set has an I-positive Borel set.

To prove the claim, note that the right-to-left direction is easy. If the set
B is I-small then there are subsets {ak : k ∈ ω} of U such that w(ak) ≤ 2−k

and B ⊂
⋂
k

⋃
ak. Fischer can then produce these sets under his schedule,

disregarding Spassky’s moves entirely. The other direction is more difficult.
Suppose that σ is Fischer’s winning strategy.

First a bit of notation. For every finite partial play τ observing the strategy
σ and every number k ∈ ω let āk(τ) be the set of those u ∈ U which the strategy
σ throws into the set ak after the last move of τ if Spassky forever hesitates to
make another nontrivial move after τ . Also, for a number i ∈ ω greater than
the length of τ , and a bit b ∈ 2 let τib be the play of length i extending τ in
which Fischer follows his strategy and Spassky makes only one nontrivial move
after τ , namely places the bit b on the sequence x on the last, i− 1-th round of
the play.
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Now consider the sets C =
⋂
k

⋃
āk(0) and Dkτb =

⋂
i

⋃
āk(τib), for every

finite play τ observing the strategy σ, number k ∈ ω and a bit b ∈ 2. It is
immediate that all of these sets are null, and it will be enough to show that
B ⊂ C∪

⋃
kτbDkτb. Well, suppose that x ∈ B \C∪

⋃
kτbDkτb is some sequence.

We will complete the proof of the Claim by showing that Spassky can defeat the
strategy σ by producing the sequence x in a suitable manner. Find a number k
such that x /∈

⋃
āk(0). The counterplay will be constructed so that x /∈

⋃
ak,

where ak is the k-th set the strategy σ will produce. By induction build plays
0 = τ0 ⊂ τ1 ⊂ . . . so that

• Spassky produced the first n bits of the sequence x during the play τn
with some hesitation, while Fischer observed his strategy σ

• x does not belong to any set u such that the strategy σ put u into the set
ak during the play τn

• x /∈ āk(τn)

This is easily possible. The trivial play 0 = τ0 satisfies the induction hy-
potheses. If the play τn has been constructed, note that x /∈ Dkτb where b is the
n-th bit on the sequence x, and therefore there exists an i such that the play
τn+1 = τib satisfies the induction hypotheses again. Clearly, the play τ =

⋃
n τn

defeats the winning strategy σ since Spassky produced the sequence x while
by the second item of the induction hypothesis the set

⋃
ak produced by the

strategy σ does not contain x.

7.2 Other preservation properties

The submeasurable forcings are bounding in one very natural case. Recall:

Definition 7.11. Suppose that X is a Polish space. A function µ : P(X) →
R+ ∪ {∞} is a Choquet capacity [15, 30.B], [10, 432J] if

1. it is monotonic: A ⊂ B ⊂ X implies µ(A) ≤ µ(B)

2. it is outer regular:µ(K) = inf{µ(A) : A ⊇ K, A open} for every compact
K

3. it is continuous on increasing unions: whenever An : n ∈ ω is a nondecreas-
ing sequence of subsets of X with union A, we have supn µ(An) = µ(A)

4. capacities of compact sets are finite. We will in fact always deal with
situations in which µ(X) is finite.

The most important feature of capacities is the Choquet theorem.

Fact 7.12. (Inner regularity) If µ is a Choquet capacity on a Polish space X
and A ⊂ X is an analytic set then µ(A) = sup{µ(C) : C ⊂ A is compact}.
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Theorem 7.13. If the submeasure µ is a Choquet capacity and the forcing PIµ
is proper, then it is bounding.

Proof. It is exactly enough to show that compact sets are dense in PI and the
continuous reading of names holds. Well, if B ∈ PI is a positive Borel set
then the Choquet capacitability theorem shows that it has a compact positive
subset. For the continuous reading of names let B ∈ PI be a positive Borel
set and f : B → ωω be a Borel function. Let µ∗ : P(X × ωω) → R be
the function defined by µ∗(A) = µ(proj(A)). It is easy to verify that µ∗ is
a capacity–[15], 30.B.2. The graph of the function f is µ∗-positive, and by
Choquet capacitability theorem again it has a compact µ∗-positive subset C.
Let D be the projection of the set C. Clearly, D ⊂ B is a compact µ-positive
set and the function f � D is continuous, since it has a compact graph!

It can be verified that none of the bounding forcings in the previous sections
can be presented as PI for some capacitable σ-ideal I. The reason is that in all
of the examples the collection of closed sets in the ideal is Π1

1-hard, and this
feature even persists to all possible presentations. However, it is not difficult
to show that the collection of closed sets of 0 capacity is Gδ, and this for every
capacity whatsoever– [15], Exercise 30.15.

As in the previous section it is the case that the forcings associated with
dense submeasures or pavement submeasures make the set of the ground model
reals meager because they can be presented as quotient forcings of σ-ideals
generated by Gδ sets.

8 P-cover ideals

Definition 8.1. Suppose that K is an analytic P-ideal on ω. Recall that an
ideal K on ω is a P-ideal if for every sequence An (n ∈ ω) of sets in K there is
A ∈ K such that An \ A is finite for all n. The associated P-cover ideal I on
P(ω) is generated by sets Ax = {y ⊂ ω : x \ y is infinite} as x varies through all
elements of K.

I-positive sets are sometimes called approximations to K. The family of
compact hereditary sets in I plays an important role in the proof of the structure
theorem for analytic P-ideals ([29]). Note that since K is a P-ideal, the sets Ax
with all their subsets form a σ-ideal and so they form a basis for the ideal I
consisting of Gδ sets. It is quite obvious that the ideal I does not contain all
singletons, for example {ω} /∈ I. However, the ideal I does contain all singletons
when restricted to some interesting Borel sets B, such as B = K.

Example 8.2. Laver forcing. Let K be the collection of sets x ⊂ ω × ω with
finite vertical sections. It is not difficult to see that PI � K is isomorphic to
the poset PJ where J is a σ-ideal of nondominating subsets of ωω. It has been
known for some time that PJ is in the forcing sense equivalent to the Laver
forcing (see [3]).
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Example 8.3. The optimal amoeba forcing for measure. Let K be the col-
lection of sets x ⊂ 2<ω such that the set Bx = {r ∈ 2ω : for infinitely many
numbers n ∈ ω, r � n ∈ x} ⊂ 2ω is Lebesgue null. It is well-known and not
difficult to verify that K is an analytic P-ideal (see [29]). The poset PI � K
adds a Lebesgue null set containing all ground model coded Lebesgue null sets.
It is not the same as the standard amoeba forcing for measure, in particular
it is not c.c.c. Note that the same procedure would work for the hypothetical
Maharam submeasures in place of the Lebesgue measure.

Example 8.4. Every quotient forcing associated with a pavement submeasure
is isomorphic to PI � B for a suitable P-cover ideal I and Borel I-positive set
B. To see this, let U,w be the weight generating the null ideal J , and let X
be the underlying space. Let K = {a ⊂ U : w(a) is finite}; so this is a typical
Fσ P-ideal on the set P(U). Let I be the associated P-cover ideal on PP(U).
Consider the function π : X → P(U) defined by π(r) = {u ∈ U : r /∈ u} and
the set B = rng(π) ⊂ P(U). We claim that B is an I-positive Borel set and
the bijection π : X → B moves the ideal J to the ideal I below B. If A ⊂ X is
a set in the ideal J , for every n ∈ ω find a set an ⊂ U such that w(an) ≤ 2−n

and A ⊂
⋃
an, and set b =

⋃
n an ⊂ U . Clearly, b ∈ K and the image π′′A

is included in the I-small set {c ⊂ U : b \ c is infinite}. On the other hand, if
A ⊂ PPU is a set in the ideal I, find a set b ⊂ U of finite weight such that
A ⊂ {c ⊂ U : b \ c is infinite} and note that the preimage π−1A is J-small since
it is covered by the union of every cofinite subset of b.

8.1 Properness

Theorem 8.5. If I is a P-cover ideal then the forcing PI is proper.

Proof. Fix the analytic P-ideal K on ω which generates the ideal I. Use the
classical result of Solecki [29] to find a finite lower semicontinuous submeasure
µ : P(ω)→ R+ such that K = Exh(µ). That is to say, µ(y) = sup{µ(x) : x ⊂ y
finite} for every set y ⊂ ω, and K = {y ⊂ ω : limn µ(y \ n) = 0}. Note that in
fact K is Borel.

Suppose that P is a forcing and ẋ is a P -name for a subset of ω. Consider
the P-cover game PCG(P, ẋ, I) between Karpov and Korchnoi. In it, Karpov
produces an initial condition pini, one by one open dense sets Dn ⊂ P and
dynamically on a fixed schedule a set y ⊂ ω, y ∈ K. Korchnoi produces one by
one a descending chain pini ≥ p0 ≥ p1 ≥ . . . of conditions such that pn ∈ Dn

and pn decides the statement ň ∈ ẋ. He can hesitate for an arbitrary finite
number of steps before placing his next move. In the end, let g ⊂ P be the filter
Korchnoi created. Korchnoi wins if y ⊂ ẋ/g modulo a finite set.

To make this precise, we need to specify Karpov’s schedule for the set y. At
round n Karpov decides whether n ∈ y or not and specifies a number mn ∈ ω
such that µ(y \mn) ≤ 2−mn . The latter demand is equivalent to the condition
that for every number k ∈ ω, µ(y ∩ k \ mn) ≤ 2−mn . It is quite clear that
Karpov can produce any give set in the ideal K under this schedule.

As in the previous sections, it will be enough to prove the following lemma.
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Lemma 8.6. The following are equivalent.

• P 
 ẋ falls out of all ground model coded Borel I-small sets.

• Korchnoi has a winning strategy in the game PCG(P, ẋ, I).

One direction of the lemma is again trivial. If there is a condition p ∈ P
forcing the set y \ ẋ to be infinite, then Karpov can win by playing on the side
an increasing sequence 〈Mn : n ∈ ω〉 of countable elementary submodels of some
large structure, enumerating all the open dense subsets of P in M =

⋃
nMn,

producing p = pini and the set y, and playing so that Korchnoi’s filter g is
M -generic. In the end, M [g] |= y \ ẋ/g is infinite by the forcing theorem, and
so y \ ẋ/g is infinite and Karpov won.

The opposite direction is harder. Suppose that the first item of the lemma
is satisfied. A small claim will be used repeatedly.

Claim 8.7. For every condition p ∈ P there are numbers m(p) and k(p) such
that for every set y ∈ K of submeasure ≤ 2−m(p) there is a condition q ≤ p
forcing y̌ \ ẋ ⊂ ǩ(p).

Proof. Suppose that this fails for some p. By induction on n ∈ ω find sets
yn ∈ K and increasing numbers kn such that

• µ(yn) ≤ 2−n and µ(
⋃
m∈n ym) \ kn ≤ 2−n.

• yn ∩ kn = 0.

• p 
 y̌n \ ẋ 6= 0.

To start, let k0 = 0. To find the set yn and the number kn+1 once the
sets ym : m ∈ n and the number kn are known, use the failure of the claim at
p,−n and kn to find a set yn ∈ K such that yn ∩ kn = 0, µ(yn) ≤ 2−n and
p 
 y̌n \ ẋ 6= 0. Then z =

⋃
m∈n+1 yn ∈ K and therefore there is a number

kn+1 ∈ ω such that µ(z \ kn+1) ≤ 2−n−1. This concludes the inductive step.
In the end, let y =

⋃
n yn. It is not difficult to verify from the first induction

hypothesis that µ(y \kn) ≤ 2−n+ Σm≥n2−m and therefore y ∈ K. The last two
induction hypotheses then show that p 
 y̌ \ ẋ is infinite, contradiction.

The game PCG(P, ẋ, I) is Borel and therefore determined. To conclude the
proof of the lemma, it will be enough to derive a contradiction from the assump-
tion that Karpov has a winning strategy σ. To find Korchnoi’s counterplay, let
M be a countable elementary submodel of a large enough structure and let
p = pini ∈ P be Karpov’s initial condition. Let m(p), k(p) be the numbers from
the claim. The idea now is to construct a counterplay such that the resulting
filter g ⊂ P ∩M is M -generic and y \ ẋ/g ⊂ max{k(p),mm(p)}. In order to do
that, find Korchnoi’s moves pn ∈ P ∩M played at rounds in in such a way that

• the condition pn ∈M belongs to the n-th open dense set Karpov played,
to the n-th open dense subset of P in the model M under some fixed
enumeration, and it decides the statement ň ∈ ẋ
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• pn 
 ẋ ∩ y̌ ∩ in ⊂ max{k(p),mmp}; note that the set y ∩ in is known at
round in.

• the number mm(pn) is known at round in, and in > k(pn),mm(pn).

The second induction hypothesis then immediately implies that Korchnoi
won the resulting play of the game, obtaining the desired contradiction. To
construct p0, i0, let y ∈ K be the set the strategy σ produces if Korchnoi
forever hesitates to place a nontrivial move in the play. By the claim, there is
a condition q ≤ p forcing y̌ \ ẋ ⊂ max{mm(p), k(p)}. Let p0 ≤ q, p0 ∈ M be a
condition in the first open dense subset of the poset P in the model M and in
the first open dense set Karpov played, deciding the statement 0 ∈ ẋ. Let i0 be
a sufficiently large number so that the last induction hypothesis is satisfied. The
induction step is similar. Going through the same motions as in the previous
sections will then conclude the proof of the theorem.

The dependence on Solecki’s result and the determinacy of the PCG game
make it difficult to extend the result to the case of P-cover ideals generated by
undefinable P-ideals. It is not difficult to observe that if K is the complement
of a Ramsey ultrafilter F , I ′ is the P-cover ideal derived from K and I is the
ideal generated by I ′ and {F} then PI is in the forcing sense equivalent to the
standard c.c.c. poset Q diagonalizing the Ramsey ultrafilter F , since it adds
a diagonalizing real and such a real is Q-generic by the Mathias criterion for
Q-genericity.

The posets PI associated with an analytic P-ideal K are strongly inhomoge-
neous, and some singletons such as {ω} are positive in the ideal I. The P-ideal
K itself is a condition in the forcing PI and below this condition the poset has
much more reasonable properties. Note that it adds an element of the analytic
P-ideal K which modulo finite includes all ground model elements of K.

Lemma 8.8. The ideal I is homogeneous below K.

Proof. Recall that an ideal I � K is homogeneous if and only if for every Borel
I-positive set B ⊂ K there is a function f : K → B such that f -preimages
of I-small sets are I-small [35], Definition 2.3.1. In this case, every function f
mapping a set y ∈ K to a set x ∈ B which covers y modulo a finite set will
clearly work.

The homogeneity of ideals considerably simplifies the statements of abso-
luteness theorems in [35]. It is not immediately clear if the poset PI � K is
homogeneous per se.

8.2 Dichotomies

Again a routine modification of the proofs in §3.2 gives the following.

Theorem 8.9. In the choiceless Solovay model, every P-cover ideal is closed
under well-ordered unions.
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Corollary 8.10. In the choiceless Solovay model, every set has either a Borel
I-small superset or a Borel I-positive subset.

Corollary 8.11. (LC) Every universally Baire set has either a Borel I-small
superset or a Borel I-positive subset.

There is an alternative integer game proof for the previous corollary. The
argument should be more or less obvious to the interested reader at this point.

9 Other forcings

It is not difficult to find definable proper forcings which do not fall into any of
the classes described above. This follows from the following general theorem.

Theorem 9.1. (LC) If I is a universally Baire ideal such that PI is < ω1-
proper in every σ-closed extension, and every universally Baire set has either
a Borel I-positive subset or a Borel I-small superset, then every intermediate
extension V ⊂W ⊂ V PI is either a c.c.c. extension of V or it is equal to V PI .

An inspection of the proofs of properness in the previous sections will show
that they in fact yield < ω1-properness, and this in every σ-closed extension.

Proof. The argument follows the lines of [34]. Consider the game G between
Fischer and Karpov . . . errr, this is not a game proof. Instead, consider a PI -
name Ȧ for a set of ordinals and suppose that there is a condition B ∈ PI forcing
that V [Ȧ] is not a c.c.c. extension of V . We must show that the model V [A]
contains the PI -generic real.

First fix some natural objects. Let {Mn : n ∈ ω} be an ∈-increasing se-
quence of countable elementary submodels of a large structure containing all
the relevant objects, with union M =

⋃
nMn. Let C = {r ∈ B : r is M -

generic}; this is an I-positive Borel set. Let G : C → P(M) be the function
defined by G(r) = Ȧ/r; this is a function which is in a suitable sense Borel, and
C 
 Ȧ ∩ M̌ = G(ṙgen).

For every set a ⊂ ω let Ca be the set of those reals r ∈ C which are Mn-
generic for every number n ∈ a, and not Mn-generic for every n /∈ a, and in the
latter case even G(r) ∩Mn is not Mn-generic. The abstract argument of [34]
shows that the sets Ca ⊂ C are I-positive–this uses the forcing assumptions on
the poset PI and the name Ȧ. It is clear that these sets are Borel, mutually
disjoint, and even their images under the function G are mutually disjoint.

Finally we are in the position to make use of the descriptive set theoretic
assumptions on the ideal I. Let Y ⊂ P(ω) × R be a universal analytic set.
Use the universally Baire uniformization to find a universally Baire function
F : P(ω)→ R such that F (a) ∈ Ca \ Ya in the case that the vertical section Ya
belongs to the ideal I, and F (a) ∈ Ca otherwise. The range rng(F ) ⊂ C of this
function is a universally Baire set which has no analytic superset in the ideal
I. This is so because every such putative superset would have to be indexed
as a vertical section Ya ⊃ rng(F ) of the set Y , but then the definition of the
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function F shows that F (a) /∈ a, contradiction. By the descriptive set theoretic
assumptions on the ideal I, there is a Borel I-positive set D ⊂ rng(F ). Note
that the function G � D is one-to-one. By Borel absoluteness then, D 
 ṙgen =

Ġ−1(Ȧ ∩ M̌) and ṙgen ∈ V [Ȧ] as desired.

It is well-known that Mathias forcing can be decomposed into a σ-closed*c.c.c.
iteration, and Silver forcing can be decomposed as a σ-closed*Grigorieff itera-
tion. Similarly, the E0 forcing can be decomposed into a σ-closed*c.c.c. iter-
ation. Thus Theorem 9.1 shows that these posets do not fit into the classes
described previously for purely descriptive set theoretic reasons. A direct de-
scriptive proof is also possible. Theorem 9.1 does not give any information as
to which c.c.c. forcings fit into the classes described above. The only ones we
can see to fit are the Cohen forcing (the porosity class or the closed set class)
and the Solovay forcing (the null class). We do not have any negative results in
this direction.

9.1 Mathias forcings, M(K)

Let us describe a class of forcings associated with Borel ideals on ω that has
recently attracted a considerable attention (see [6]). If K is a Borel (analytic,
projective) ideal on ω, consider the quotient Boolean algebra P(ω)/K. As a
forcing notion, this quotient is frequently proper. For convenience, we sometimes
consider K as an ideal on some other countable set.

Example 9.2. Let NWD(Q) be the ideal of all nowhere dense subsets of
the rationals. Balcar, Hernández Hernández and Hrušák ([1]) proved that
P(Q)/NWD(Q) is proper.

Example 9.3. Steprāns ([30]) has defined a family of 2ℵ0 coanalytic ideals
whose quotients are pairwise nonequivalent proper forcing notions. Each one
of these forcings is an iteration of a forcing that adds a real of minimal degree
followed by P(ω)/Fin.

Example 9.4. Let Z0 and Zlog be the ideals of sets of density zero and loga-
rithmic density zero, respectively. Steprāns and the first author ([8, Theorem
1.3]) proved that a quotient over either of these two ideals (and over many other
density ideals) is forcing equivalent to the iteration of P(ω)/Fin and a measure
algebra of Maharam character equal to continuum, and therefore proper. Since
by a result of W. Just the quotients over Z0 and Zlog can be nonisomorphic,
this example also shows that nonisomorphic quotients P(ω)/K can be forcing
equivalent.

All three proofs of properness of quotients of the form P(ω)/K in the above
examples are different. By [11] there is an analytic P-ideal such that the forcing
P(ω)/K is improper. None of these forcings are of the form PI , since they are
not completely countably generated.
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Definition 9.5. If K is an ideal on ω, define the Mathias forcing M(K) asso-
ciated to K as follows. Conditions are pairs (s,A) where s ⊆ ω is finite, A ⊆ ω
is K-positive, and max(s) < min(A). Let (s,A) ≤ (t, B) if s ⊇ t, A ⊆ B, and
s \ t ⊆ B.

The case K = Fin is the Mathias forcing [20]. Every forcing of the form
M(K) is equivalent to one of the form PI and it is definable whenever K is
definable. As mentioned before, in the case of M(Fin) the ideal I is the ideal
of all nowhere dense subsets of P(ω)/Fin. If K is definable then the quotient
algebra P(ω)/K is not ccc: it even contains a (not necessarily regular) subalge-
bra isomorphic of the nowhere c.c.c. quotient P(ω)/Fin by a result of Mathias.
Therefore Theorem 9.1 implies that no M(K) belongs to any of the classes of
forcing notions considered earlier in the present paper.

By changing Definition 9.5 to require ω \ A ∈ K, we obtain Prikry forcing
P (K∗) corresponding to the dual filter K∗ of K. The following lemma is imme-
diate. For the second part note that P (K) is, being σ-centered, always proper.
The case of K = Fin is due to Mathias.

Lemma 9.6. Let K be any ideal on ω.

1. M(K) is forcing equivalent to the iteration of P(ω)/K and P (Ḟ ), where
Ḟ is the P(ω)-generic filter.

2. M(K) is proper if and only if P(ω)/K is proper.

By Theorem 9.1 and the fact that P(ω)/K is not ccc if K is definable, neither
of the forcings M(K) fits any of the classes described previously. Note that the
generic filter Ḟ is forced to be an ultrafilter on ω only when P(ω) does not add
reals.

While many forcings of the form M(K) have the Laver property defined
in 5.16, this is not true in general since the forcing in Example 9.2 adds Cohen
reals. As a matter of fact, we have a dichotomy.

Theorem 9.7. Assume K is any ideal on ω. Then M(K) either has the Laver
property or it adds Cohen reals.

This will follow from a more general Theorem 9.10 below. The proof assumes
reader’s familiarity with the theory of semiselective coideals [5]. Semiselectivity
is a property of coideals introduced in [5] as a weakening of selectivity or ‘happi-
ness,’ of [20], where it was shown to be equivalent to several natural properties
of the forcing M(K), like Prikry property of Mathias property. Here, a forcing
M(K) has the Prikry property if for every sentence φ of the forcing language
and every condition (s,A) there is (s,B) ≤ (s,A) deciding φ. It has the Mathias
property if every subset of the generic subset of ω is generic.

Lemma 9.8 adds two more equivalent reformulations of semiselectivity.

Lemma 9.8. For an ideal K the following are equivalent.

1. Forcing M(K) has the Prikry property.
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2. Forcing M(K) does not add Cohen reals.

Proof. Assume M(K) has the Prikry property. By [5], M(K) has the Prikry
property if and only if the coidealH = K+ is semiselective. Let ṙ be a name for a
new real. SinceH is semiselective, we can find A ∈ H such that |A∩(n+1)| <

√
n

for all n ∈ A. By using the Prikry property of M(K) ([5, Theorem 4.1]), find
(∅, B) ≤ (∅, A) such that for every n ∈ B and every s ⊆ B ∩ (n + 1) there is
ts ∈ 2n such that (s,B/n) 
 ṙ � n = ts. Then (∅, B) forces that ṙ ∈ [T ], where
T is the tree determined by ts (s ⊆ B, s finite). Note that the n-th level of T
has size at most 2|B∩(n+1)| < 2

√
n. Therefore [T ] is a closed null set, and ṙ is

not Cohen or random over V .
Now assume M(K) does not have the Prikry property, equivalently H is not

semiselective. Then there is A ∈ H and maximal antichains {An : n ∈ ω} in
(H,⊆∗) such that noB ⊆ A inH diagonalizes allAn. We may assume thatAn+1

refines An. In V [x], where x is a M(K)-generic subset of ω, let An be the unique
element of An such that x ⊆∗ An. Recursively define sequences 〈ni,mi : i ∈ ω〉
as follows. Let n0 = minx. If ni has been defined and x/ni ⊆ Ani , then
let ni+1 = mi+1 = min(x/ni). Otherwise, let mi+1 = min(x/ni \ Ani) and
ni+1 = min(x/mi+1). Finally let

g(i) =

{
0, if x/ni ⊆ Ani
1, if x/ni 6⊆ Ani .

We will denote M(K) names for these objects by ẋ, ṅi, ġ.

Claim 9.9. Assume (s,B) ≤ (∅, A) decides ġ � i and nk,mk (k < i) but not ni
for some i ≥ 1, then for every j ∈ {0, 1}, there is (t, C) ≤ (s,B) and forcing
g(i) = j and deciding ni,mi but not ni+1.

Proof. Since (s,B) does not decide ni, we must have Ani−1
/nn−i 6⊆ B and

also mi−1 = max(s). If j = 0, let n = min(B/mi−1), find D ∈ An such that
C = B ∩ D is in H and let t = s ∪ {n}. Then (t, C) forces ni = mi = n and
g(i) = 0.

Now assume j = 1. Since B/mi−1 is not a diagonalization of Ai for any
i ∈ ω, there is n ∈ B/mi−1 such that B/n 6⊆ An. Pick m ∈ B/n \ An and let
t = s ∪ {n,m}, C = B/m. Then (t, C) forces ni = n, mi = m and g(i) = 1.

Note that in either case (t, C) forces that ni+1 is equal to minx/mi, and the
value of this expression is not yet decided by (t, C).

To see that (∅, A) forces g is Cohen over V , fix a dense open subset U of 2ω

and a condition (s,B) ≤ (∅, A). Since B is not a diagonalization of the family
{An}, (s,B) decides only a finite initial segment u of g. Find v extending u
such that [v] ⊆ U , and use Claim to find an extension of (s,B), digit by digit,
that forces g ∈ [v].

In many cases the forcing M(K) is σ-closed. By [14] this is equivalent
to P(ω)/K being countably saturated (in the model-theoretic sense) and this
holds for a large class of ideals K (see [7, §6]). For example, the ideal Iω2 of all
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subsets of ω2 whose order type is less than ω2 has countably saturated quotient.
Therefore under CH its quotient is isomorphic to P(ω)/Fin, these two being
saturated elementary equivalent models of the same cardinality. It is natural to
ask whether M(Fin) and M(Iω2) are forcing equivalent. The negative answer
follows from the equivalence of (6) and (7) in the following theorem.

An ideal K on ω is dense if every infinite set has an infinite subset in K.
It is nowhere dense if every positive set has an infinite subset B such that the
restriction of K to B coincides with Fin.

Theorem 9.10. The following are equivalent for any ideal K on ω.

1. M(K) does not add Cohen reals.

2. M(K) has the Laver property.

3. M(K) has the Prikry property.

4. M(K) has the Mathias property.

5. Coideal K+ is semiselective.

If K is moreover definable then under a large cardinal assumption the following
are equivalent to the above.

6. K is nowhere dense.

7. M(K) is forcing equivalent to M(Fin).

Proof. The equivalence of (3), (4) and (5) was proved in [5]. Lemma 9.8 gives
the equivalence of (1) and (3). The implication from (3) to (2) is standard [2,
the proof of Corollary 7.4.7]. Finally, (2) implies (1) since Cohen forcing does
not have the Laver property.

Since (6) implies (7) implies (1) is clear, we only need to check that (5)
implies (6). Assume K is definable and there is A ∈ K+ such that every infinite
subset of A has an infinite subset in K. By the semiselective version of Mathias’
theorem [5, Theorem 4.3], there is B ⊆ A in K+ such that either all infinite
subsets of B are in K or all infinite subsets of B lie outside K. Since both
alternatives are false, K is not semiselective.
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