
The purpose of this note is to give a streamlined proof of Gö del’s first
incompleteness theorem, perhaps more compact than in the textbook. Recall
that Peano Arithmetic PA has an intended model, which is the structure N of
all natural numbers with the usual ordering, addition, and multiplication. PA
has many other models as well.

I first need to introduce several basic notions regarding the syntax of Peano
Arithmetic; they will be useful also outside of the specific context of Gödel’s
first incompleteness theorem.

Definition 0.1. Given a natural number n, the symbol n denotes the term
SS . . . S0 of the language of PA, where the successor function is applied n times.
The terms of this form are called numerals.

Make sure that the distinction between natural numbers and numerals denoting
them is clear. A number is a number; a numeral is a term in the language of
Peano Arithmetic. The distinction may seem miniscule, but in the confusing
context of the incompleteness theorem such distinctions make a difference.

Definition 0.2. A bounded quantifier in a formula of the language of PA is one
of the form ∀x < y φ or ∃x < y φ, where y is a term not mentioning x.

Note that if one runs some sort of brute force verification algorithm for sentences,
quantifiers present in principle an unsurmoutable obstacle as there are infinitely
many numbers to try and plug in into the quantified variable. The bounded
quantifiers, on the other hand, do not present such an obstacle.

Definition 0.3. A ∆0 formula is one in which all quantifiers are bounded. A
Σ1 formula is one of the form ∃xφ where φ is ∆0. A Π1 formula is one of the
form ∀xφ where φ is ∆0.

This is just the beginning of a complexity hierarchy in which one counts the
number of alternating unbounded quantifiers. Given a formula, we often want
to find the lowest stage of the hierarchy which contains a formula provably
equivalent to the given one. This often has major practical consequences. In
the context of the incompleteness theorem, the following information about the
bottom stage of the hierarchy will be useful:

Theorem 0.4. Let φ be a ∆0 sentence. Then PA proves φ if and only if N |= φ.

In particular, for every ∆0 sentence φ, PA proves either it or its negation since
one of the two is satisfied in N.

Proof. The prof proceeds by lengthy and uneventful induction on the complexity
of φ. I will only indicate two essential claims proved by induction on m:

Claim 0.5. For all numbers n,m, k, if n+m = k then PA proves n+m = k.

Claim 0.6. For every number m, PA proves ∀x < m x = 0∨x = S0∨· · ·∨x =
m− 1.

1



The incompleteness theorem is a consequence of a key idea: it is possible to
arithmetize the syntax of PA inside PA. The arithmetization of syntax is a map
φ 7→ pφq which assigns to every formula φ of the language of PA a numeral pφq
(often called the Gödel number or code of φ) such that

1. we can talk about provability. This means that there is a (Σ1) formula
Provable(x) such that for every sentence ψ, PA ` ψ just in case N |=
Provable(pψq);

2. we can talk about substitution. This means that there is a ∆0 formula
Subst(x, y, z) such that for every formula φ of one free variable and every
number n, N |= pφ(n)q is the unique y such that Subst(pφq, n, y) holds.

One rather inscrutable feature of arithmetization of syntax is that for any
formula φ(x) of one free variable x, one can form a sentence by plugging in the
code for φ into the variable of φ: φ(pφq). It is perhaps not clear why one would
want to do that, but the result is the following key lemma:

Lemma 0.7. (Diagonalization lemma) For every formula φ of one free variable
there is a sentence ψ such that Peano Arithmetic proves ψ ↔ φ(pψq).

Proof. This uses only the substitution demand on the arithmetization of syntax.
Let θ(x) be the formula ∃y φ(y) ∧ Subst(x, x, y) ∧ ∀z < y ¬Subst(x, x, z). Let
ψ = θ(pθq). I claim that ψ works. For this, note first that PA proves that
pψq is the smallest y such that Subst(pθq, pθq, y) since this sentence is ∆0 and
satisfied in N.

To see the left-to-right implication, in the theory PA,ψ I must prove φ(pψq).
To do this, by the preceding paragraph, the first existential quantifier of ψ can
be witnessed only by pψq and so φ(pψq) must hold.

To see the right-to-left implication, in the theory PA, φ(pψq) I must prove
ψ. To see this, look at the first existential quantifier in ψ and note that it is
witnessed by pψq by the assumption and the first paragraph of this proof.

Corollary 0.8. (Gödel’s first incompleteness theorem) There is a sentence ψ
in the language of PA such that PA does not prove ψ and PA does not prove ¬ψ
either.

Proof. Let ψ be a sentence such that PA proves ψ ↔ ¬Provable(pψq). I claim
that ψ works.

To see this, assume towards contradiction that PA proves ψ. Then it also
proves ¬Provable(pψq) and so N |= ¬Provable(pψq). By the first item in the
arithmetization of syntax description, it should be the case that PA does not
prove ψ, which is a contradiction.

Now assume towards contradiction that PA proves ¬ψ. In such a case, it
also proves Provable(pψq) and so N |= Provable(pψq). By the first item in the
arithmetization of syntax description, it should be the case that PA proves ψ,
which is a contradiction in PA.

2



The sentence ψ produced in the previous proof is provably equivalent to a
Π1 sentence ¬Provable(pψq). This is the minimal complexity of an undecidable
sentence. The sentence ψ is satisfied in the model N.

Corollary 0.9. (Tarski’s undefinability of truth) There is no formula φ(x) in
the language of PA such that for every sentence ψ, N |= ψ ↔ φ(pψq).

Proof. Given a putative candidate for such a formula φ, use the diagonalization
lemma to find a sentence ψ such that PA proves ψ ↔ φ(pψq) and ask whether
N |= ψ or not. There will be a contradiction in both cases.

3


