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Q: Given a theory, does it have a minimum model?

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω-models of full second-order arithmetic is
the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω-model is HYP?

There are several such theories, including ∆1
1-CA and Σ1

1-AC.

In fact, every ω-model of (say) Σ1
1-AC is hyp closed, i.e., closed

under hyperarithmetic reduction and ⊕.

Q: Is there a theory whose ω-models are exactly those
which are hyp closed?
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ω-models of theories of second-order arithmetic

Q: Is there a theory whose ω-models are exactly those
which are hyp closed?

Theory Closure of ω-models Minimum ω-model

RCA0 Turing reduction and ⊕ REC
ACA0 Arithmetic reduction and ⊕ ARITH

? Hyp reduction and ⊕ HYP

The answer is no:

Theorem (van Wesep ‘77)

For any theory T all of whose ω-models are hyp closed, there is
some T ′ which is strictly weaker than T , all of whose ω-models are
hyp closed.
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Theories of hyp analysis

Definition (Montalbán ‘06, relativizing Steel ‘78)

T is a theory of hyp analysis if:

1 every ω-model of T is hyp closed;

2 for every Y ⊆ ω, HYP(Y ) |= T .

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the “zoo” of theories of hyp analysis look
like?

For example, are they linearly ordered?

Q: Are there any theories of hyp analysis which can be
formulated without using concepts from logic?

“Clearly” Σ1
1-AC and ∆1

1-CA do not qualify.
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Over RCA0 + IΣ1
1:

Kleene ‘59, Kreisel ‘62,
Friedman ‘67, Harrison ‘68,
van Wesep ‘77, Steel ‘78,
Simpson ‘99,
Montalbán ‘06, ‘08,
Neeman ‘08

Conidis ‘12
Barnes, G., Shore in
preparation

All of these separations
(except Σ1

1-AC0 0 Σ1
1-DC0)

were proved using Steel
forcing and variants thereof.

Σ1
1-DC0

Σ1
1-AC0

Π1
1-SEP0

∆1
1-CA0

INDEC0

unique-Σ1
1-AC0

Lω1ω-CA0

JI

IRT

ABW0

finite-Σ1
1-AC0

|

|
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A Σ1
1 axiom of finite choice

Kreisel ‘62: Σ1
1-AC0 consists of the sentences

(∀n)(∃X )ϕ(n,X )→ (∃〈Xn〉n)(∀n)ϕ(n,Xn)

for ϕ arithmetical.

Definition

Finite-Σ1
1-AC0 consists of the sentences

(∀n)(∃ finitely many X )ϕ(n,X )→ (∃〈Xn〉n)(∀n)ϕ(n,Xn)

for ϕ arithmetical.

Finite-Σ1
1-AC0 is a theory of hyp analysis, since it is sandwiched

between theories of hyp analysis.
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Our results

Theorem (G.)

There is an ω-model which satisfies ∆1
1-CA0 but not finite-Σ1

1-AC0.

Theorem (G.)

ABW0 + IΣ1
1 ` finite-Σ1

1-AC0.

Our results strengthen

Theorem (Conidis ‘12)

There is an ω-model which satisfies ∆1
1-CA0 but not ABW0.

Theorem (Conidis ‘12)

ABW0 + IΣ1
1 ` unique-Σ1

1-AC0.

We do not know if finite-Σ1
1-AC0 implies ABW0.
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Steel’s proof

Theorem (Steel ‘78)

There is an ω-model which satisfies ∆1
1-CA0 but not Σ1

1-AC0.

Steel constructs a generic tree TG ⊆ ω<ω and generic paths
〈αG

i 〉i∈ω on TG such that the αG
i ’s are not easily definable from

one another.

For each finite F ⊂ ω, define the model MF to consist of all sets
which are computable in the λth jump of TG ⊕ 〈αG

i 〉i∈F , for some
λ < ωCK

1 .

Lemma

For each finite F ⊂ ω, the set of paths on TG in MF is exactly
{αG

i : i ∈ F}.

Finally, define M∞ =
⋃

F⊂ω finite MF .
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Steel’s proof

(⋃
F⊂ω finite MF =

)
M∞ |= ¬Σ1

1-AC0.

Consider ϕ(n,X ): X is a set of n distinct paths on TG .
For each n, ϕ(n, ·) has a solution in M∞.

A Σ1
1-AC0-solution 〈Xn〉n∈ω would compute an infinite sequence of

distinct paths on TG . But M∞ does not contain any infinite
sequence of distinct paths on TG , by the lemma.

M∞ |= ∆1
1-CA0.

Main ingredient of proof is to show that if two forcing conditions
are sufficiently “alike”, then they force the same Σ1

1 formulas.

This helps to control the complexity of the forcing relation.
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Steel tagged tree forcing

Conditions are p = 〈T p, f p, hp〉 where:

1 T p ⊆ ω<ω is finite

2 f p is a finite partial function from ω to T p

(for each i , f p(i) is an initial segment of the generic path αG
i )

3 hp tags nodes of T p with a computable ordinal or ∞
if τ ⊆ σ, then hp(τ) > hp(σ)
nodes in range(f p) must be tagged ∞

q extends p if:

1 T q ⊇ T p

2 hq ⊇ hp

3 f q can extend paths in f p, subject to a technical restriction

4 f q can add new paths to f p, subject to a technical restriction
(f q(j) is new if j /∈ dom(f p).)
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Steel tagged tree forcing with locks (G.)

Conditions are p = 〈T p, f p, hp, `p〉 where:

1 T p ⊆ ω<ω is finite

2 f p is a finite partial function from ω to T p

(for each i , f p(i) is an initial segment of the generic path αG
i )

3 hp tags nodes of T p with a computable ordinal or ∞
if τ ⊆ σ, then hp(τ) > hp(σ)
nodes in range(f p) must be tagged ∞

4 `p ⊆ {n : 〈n〉 ∈ T p}. 〈n〉 is locked if n ∈ `p.

q extends p if:

1 T q ⊇ T p

2 hq ⊇ hp

3 f q can extend paths in f p, subject to a technical restriction

4 f q can add new paths to f p, subject to a technical restriction

and restriction by the locks

5 `q ⊇ `p.
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