A Σ_1^1 axiom of finite choice and Steel forcing

Jun Le Goh

University of Wisconsin-Madison

SEALS, Gainesville March 1, 2020

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω -models of full second-order arithmetic is the class HYP of hyperarithmetical sets.

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω -models of full second-order arithmetic is the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω -model is HYP?

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω -models of full second-order arithmetic is the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω -model is HYP?

There are several such theories, including Δ_1^1 -CA and Σ_1^1 -AC.

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω -models of full second-order arithmetic is the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω -model is HYP?

There are several such theories, including Δ_1^1 -CA and Σ_1^1 -AC. In fact, every ω -model of (say) Σ_1^1 -AC is hyp closed, i.e., closed under hyperarithmetic reduction and \oplus .

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω -models of full second-order arithmetic is the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω -model is HYP?

There are several such theories, including Δ_1^1 -CA and Σ_1^1 -AC. In fact, every ω -model of (say) Σ_1^1 -AC is hyp closed, i.e., closed under hyperarithmetic reduction and \oplus .

Theory	Closure of ω -models	Minimum ω -model
RCA ₀	Turing reduction and \oplus	REC

Theory	Closure of ω -models	Minimum ω -model
RCA ₀	Turing reduction and \oplus	REC
ACA_0	Arithmetic reduction and \oplus	ARITH

Theory	Closure of ω -models	Minimum ω -model
RCA ₀	Turing reduction and \oplus	REC
ACA ₀	Arithmetic reduction and \oplus	ARITH
?	Hyp reduction and \oplus	HYP

Q: Is there a theory whose ω -models are exactly those which are hyp closed?

Theory	Closure of ω -models	Minimum ω -model
RCA ₀	Turing reduction and \oplus	REC
ACA ₀	Arithmetic reduction and \oplus	ARITH
?	Hyp reduction and \oplus	HYP

The answer is no:

Theorem (van Wesep '77)

For any theory T all of whose ω -models are hyp closed, there is some T' which is strictly weaker than T, all of whose ω -models are hyp closed.

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

- every ω -model of T is hyp closed;
- **2** for every $Y \subseteq \omega$, $HYP(Y) \models T$.

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

• every ω -model of T is hyp closed;

2) for every
$$Y \subseteq \omega$$
, $HYP(Y) \models T$.

By van Wesep, there is no weakest theory of hyp analysis.

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

```
• every \omega-model of T is hyp closed;
```

```
2 for every Y \subseteq \omega, HYP(Y) \models T.
```

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the "zoo" of theories of hyp analysis look like?

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

• every ω -model of T is hyp closed;

2 for every
$$Y \subseteq \omega$$
, $HYP(Y) \models T$.

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the "zoo" of theories of hyp analysis look like?

For example, are they linearly ordered?

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

• every ω -model of T is hyp closed;

2) for every
$$Y \subseteq \omega$$
, $HYP(Y) \models T$.

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the "zoo" of theories of hyp analysis look like?

For example, are they linearly ordered?

Q: Are there any theories of hyp analysis which can be formulated without using concepts from logic?

Definition (Montalbán '06, relativizing Steel '78)

T is a theory of hyp analysis if:

• every ω -model of T is hyp closed;

2 for every
$$Y \subseteq \omega$$
, $HYP(Y) \models T$.

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the "zoo" of theories of hyp analysis look like?

For example, are they linearly ordered?

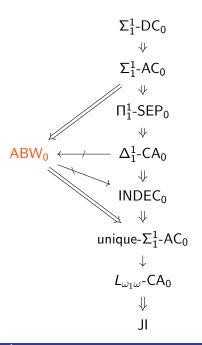
Q: Are there any theories of hyp analysis which can be formulated without using concepts from logic?

"Clearly" $\Sigma^1_1\text{-}\mathsf{AC}$ and $\Delta^1_1\text{-}\mathsf{CA}$ do not qualify.

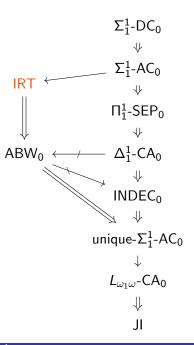
Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08

 Σ_1^1 -DC₀ \mathbf{V} Σ_1^1 -AC₀ \mathbf{V} Π_1^1 -SEP₀ \mathbf{V} Δ_1^1 -CA₀ $\downarrow\downarrow$ **INDEC**₀ \Downarrow unique- Σ_1^1 -AC₀ $L_{\omega_1\omega}$ -CA₀ ₽ JI

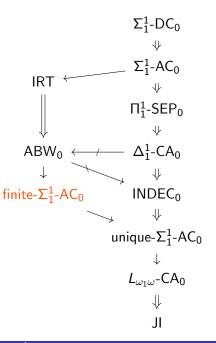
Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08 Conidis '12



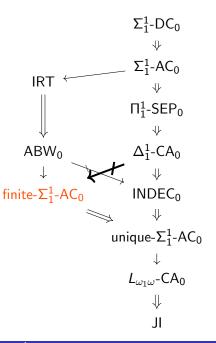
Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08 Conidis '12 Barnes, G., Shore in preparation



Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08 Conidis '12 Barnes, G., Shore in preparation

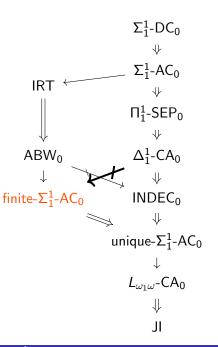


Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08 Conidis '12 Barnes, G., Shore in preparation



Kleene '59, Kreisel '62, Friedman '67, Harrison '68, van Wesep '77, Steel '78, Simpson '99, Montalbán '06, '08, Neeman '08 Conidis '12 Barnes, G., Shore in preparation

All of these separations (except Σ_1^1 -AC₀ $\nvdash \Sigma_1^1$ -DC₀) were proved using Steel forcing and variants thereof.



A Σ_1^1 axiom of finite choice

Kreisel '62: Σ_1^1 -AC₀ consists of the sentences

$$(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists \langle X_n \rangle_n)(\forall n)\varphi(n,X_n)$$

for φ arithmetical.

A Σ_1^1 axiom of finite choice

Kreisel '62: Σ_1^1 -AC₀ consists of the sentences

```
(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists \langle X_n \rangle_n)(\forall n)\varphi(n,X_n)
```

for φ arithmetical.

Definition

Finite- Σ_1^1 -AC₀ consists of the sentences

 $(\forall n)(\exists \text{ finitely many } X)\varphi(n,X) \rightarrow (\exists \langle X_n \rangle_n)(\forall n)\varphi(n,X_n)$

for φ arithmetical.

A Σ_1^1 axiom of finite choice

Kreisel '62: Σ_1^1 -AC₀ consists of the sentences

$$(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists \langle X_n \rangle_n)(\forall n)\varphi(n,X_n)$$

for φ arithmetical.

Definition

Finite- Σ_1^1 -AC₀ consists of the sentences

 $(\forall n)(\exists \text{ finitely many } X)\varphi(n,X) \rightarrow (\exists \langle X_n \rangle_n)(\forall n)\varphi(n,X_n)$

for φ arithmetical.

Finite- Σ_1^1 -AC₀ is a theory of hyp analysis, since it is sandwiched between theories of hyp analysis.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not finite- Σ_1^1 -AC₀.

Our results

Theorem (G.)

There is an ω -model which satisfies Δ_1^1 -CA₀ but not finite- Σ_1^1 -AC₀.

Theorem (G.)

 $ABW_0 + I\Sigma_1^1 \vdash finite-\Sigma_1^1-AC_0.$

There is an ω -model which satisfies Δ_1^1 -CA₀ but not finite- Σ_1^1 -AC₀.

Theorem (G.)

 $\mathsf{ABW}_0 + \mathsf{I}\Sigma_1^1 \vdash \mathsf{finite}\text{-}\Sigma_1^1\text{-}\mathsf{AC}_0.$

Our results strengthen

Theorem (Conidis '12)

There is an ω -model which satisfies Δ_1^1 -CA₀ but not ABW₀.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not finite- Σ_1^1 -AC₀.

Theorem (G.)

 $\mathsf{ABW}_0 + \mathsf{I}\Sigma_1^1 \vdash \mathsf{finite}\text{-}\Sigma_1^1\text{-}\mathsf{AC}_0.$

Our results strengthen

Theorem (Conidis '12)

There is an ω -model which satisfies Δ_1^1 -CA₀ but not ABW₀.

Theorem (Conidis '12)

 $\mathsf{ABW}_0 + I\Sigma_1^1 \vdash \mathsf{unique} \Sigma_1^1 - \mathsf{AC}_0.$

There is an ω -model which satisfies Δ_1^1 -CA₀ but not finite- Σ_1^1 -AC₀.

Theorem (G.)

 $\mathsf{ABW}_0 + \mathit{I}\Sigma_1^1 \vdash \mathsf{finite}{\text{-}}\Sigma_1^1{\text{-}}\mathsf{AC}_0.$

Our results strengthen

Theorem (Conidis '12)

There is an ω -model which satisfies Δ_1^1 -CA₀ but not ABW₀.

Theorem (Conidis '12)

 $\mathsf{ABW}_0 + \mathsf{I}\Sigma_1^1 \vdash \mathsf{unique}{-}\Sigma_1^1{-}\mathsf{AC}_0.$

We do not know if finite- Σ_1^1 -AC₀ implies ABW₀.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not Σ_1^1 -AC₀.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not Σ_1^1 -AC₀.

Steel constructs a generic tree $T^G \subseteq \omega^{<\omega}$ and generic paths $\langle \alpha_i^G \rangle_{i \in \omega}$ on T^G such that the α_i^G 's are not easily definable from one another.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not Σ_1^1 -AC₀.

Steel constructs a generic tree $T^G \subseteq \omega^{<\omega}$ and generic paths $\langle \alpha_i^G \rangle_{i \in \omega}$ on T^G such that the α_i^G 's are not easily definable from one another.

For each finite $F \subset \omega$, define the model M_F to consist of all sets which are computable in the λ^{th} jump of $T^G \oplus \langle \alpha_i^G \rangle_{i \in F}$, for some $\lambda < \omega_1^{CK}$.

There is an ω -model which satisfies Δ_1^1 -CA₀ but not Σ_1^1 -AC₀.

Steel constructs a generic tree $T^G \subseteq \omega^{<\omega}$ and generic paths $\langle \alpha_i^G \rangle_{i \in \omega}$ on T^G such that the α_i^G 's are not easily definable from one another.

For each finite $F \subset \omega$, define the model M_F to consist of all sets which are computable in the λ^{th} jump of $T^G \oplus \langle \alpha_i^G \rangle_{i \in F}$, for some $\lambda < \omega_1^{CK}$.

Lemma

For each finite $F \subset \omega$, the set of paths on T^G in M_F is exactly $\{\alpha_i^G : i \in F\}$.

Theorem (Steel '78)

There is an ω -model which satisfies Δ_1^1 -CA₀ but not Σ_1^1 -AC₀.

Steel constructs a generic tree $T^G \subseteq \omega^{<\omega}$ and generic paths $\langle \alpha_i^G \rangle_{i \in \omega}$ on T^G such that the α_i^G 's are not easily definable from one another.

For each finite $F \subset \omega$, define the model M_F to consist of all sets which are computable in the λ^{th} jump of $T^G \oplus \langle \alpha_i^G \rangle_{i \in F}$, for some $\lambda < \omega_1^{CK}$.

Lemma

For each finite $F \subset \omega$, the set of paths on T^G in M_F is exactly $\{\alpha_i^G : i \in F\}$.

Finally, define $M_{\infty} = \bigcup_{F \subset \omega \text{ finite }} M_F$.

Steel's proof

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_\infty\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Steel's proof

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_\infty\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Consider $\varphi(n, X)$: X is a set of n distinct paths on T^G . For each n, $\varphi(n, \cdot)$ has a solution in M_{∞} .

Steel's proof

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_\infty\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Consider $\varphi(n, X)$: X is a set of n distinct paths on T^G . For each n, $\varphi(n, \cdot)$ has a solution in M_{∞} .

A Σ_1^1 -AC₀-solution $\langle X_n \rangle_{n \in \omega}$ would compute an infinite sequence of distinct paths on T^G .

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_\infty\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Consider $\varphi(n, X)$: X is a set of n distinct paths on T^G . For each n, $\varphi(n, \cdot)$ has a solution in M_{∞} .

A Σ_1^1 -AC₀-solution $\langle X_n \rangle_{n \in \omega}$ would compute an infinite sequence of distinct paths on T^G . But M_∞ does not contain any infinite sequence of distinct paths on T^G , by the lemma.

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_{\infty}\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Consider $\varphi(n, X)$: X is a set of n distinct paths on T^G . For each n, $\varphi(n, \cdot)$ has a solution in M_{∞} .

A Σ_1^1 -AC₀-solution $\langle X_n \rangle_{n \in \omega}$ would compute an infinite sequence of distinct paths on T^G . But M_∞ does not contain any infinite sequence of distinct paths on T^G , by the lemma.

$$M_{\infty} \models \Delta_1^1$$
-CA₀.

$$\left(\bigcup_{F\subset\omega\text{ finite}}M_F=\right)M_{\infty}\models\neg\Sigma_1^1\text{-}\mathsf{AC}_0.$$

Consider $\varphi(n, X)$: X is a set of n distinct paths on T^G . For each n, $\varphi(n, \cdot)$ has a solution in M_{∞} .

A Σ_1^1 -AC₀-solution $\langle X_n \rangle_{n \in \omega}$ would compute an infinite sequence of distinct paths on T^G . But M_∞ does not contain any infinite sequence of distinct paths on T^G , by the lemma.

 $M_{\infty} \models \Delta_1^1$ -CA₀.

Main ingredient of proof is to show that if two forcing conditions are sufficiently "alike", then they force the same Σ_1^1 formulas.

This helps to control the complexity of the forcing relation.

Conditions are $p = \langle T^p, f^p, h^p \rangle$ where:

 $\ \, \bullet \ \, T^p\subseteq \omega^{<\omega} \ \, \text{is finite}$

Conditions are $p = \langle T^p, f^p, h^p \rangle$ where:

 $\ \, \bullet \ \ \, T^p\subseteq \omega^{<\omega} \ \, \text{is finite}$

 f^p is a finite partial function from ω to T^p (for each i, f^p(i) is an initial segment of the generic path α_i^G)

Conditions are $p = \langle T^p, f^p, h^p \rangle$ where:

 $\ \, \bullet \ \ \, T^p\subseteq \omega^{<\omega} \ \, \text{is finite}$

- f^p is a finite partial function from ω to T^p (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- **(a)** h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞

Conditions are $p = \langle T^p, f^p, h^p \rangle$ where:

 $\ \, \bullet \ \ \, T^p\subseteq \omega^{<\omega} \ \, \text{is finite}$

- f^p is a finite partial function from ω to T^p (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- **(a)** h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- q extends p if:
 - $T^q \supseteq T^p$
 - 2 $h^q \supseteq h^p$

Conditions are $p = \langle T^p, f^p, h^p \rangle$ where:

 $\ \, \bullet \ \ \, T^{p} \subseteq \omega^{<\omega} \ \ \, \text{is finite}$

- f^p is a finite partial function from ω to T^p (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- § h^p tags nodes of \mathcal{T}^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- q extends p if:
 - $T^q \supseteq T^p$
 - 2 $h^q \supseteq h^p$
 - § f^q can extend paths in f^p , subject to a technical restriction
 - If q can add new paths to f^p, subject to a technical restriction (f^q(j) is new if j ∉ dom(f^p).)

Conditions are $p = \langle T^p, f^p, h^p, \ell^p \rangle$ where:

 $\ \, {\bf 0} \ \ \, T^p \subseteq \omega^{<\omega} \ \, {\rm is \ finite}$

- f^p is a finite partial function from ω to T^p
 (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- § h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- $\ell^p \subseteq \{n : \langle n \rangle \in T^p\}$. $\langle n \rangle$ is locked if $n \in \ell^p$.

q extends p if:

- $T^q \supseteq T^p$
- $\bigcirc h^q \supseteq h^p$
- § f^q can extend paths in f^p , subject to a technical restriction
- f^q can add new paths to f^p , subject to a technical restriction

Conditions are $p = \langle T^p, f^p, h^p, \ell^p \rangle$ where:

 $\ \, {\bf 0} \ \ \, T^p \subseteq \omega^{<\omega} \ \, {\rm is \ finite}$

- f^p is a finite partial function from ω to T^p (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- § h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- $\ell^p \subseteq \{n : \langle n \rangle \in T^p\}$. $\langle n \rangle$ is locked if $n \in \ell^p$.

q extends p if:

- $T^q \supseteq T^p$
- $\bigcirc h^q \supseteq h^p$
- § f^q can extend paths in f^p , subject to a technical restriction
- If q can add new paths to f^p, subject to a technical restriction and restriction by the locks

Conditions are $p = \langle T^p, f^p, h^p, \ell^p \rangle$ where:

 $\ \, {\bf 0} \ \ \, T^p \subseteq \omega^{<\omega} \ \, {\rm is \ finite}$

- f^p is a finite partial function from ω to T^p
 (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- § h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- $\ell^p \subseteq \{n : \langle n \rangle \in T^p\}$. $\langle n \rangle$ is locked if $n \in \ell^p$.

q extends p if:

- $T^q \supseteq T^p$
- $\bigcirc h^q \supseteq h^p$
- § f^q can extend paths in f^p , subject to a technical restriction
- If q can add new paths to f^p, subject to a technical restriction and restriction by the locks

Conditions are $p = \langle T^p, f^p, h^p, \ell^p \rangle$ where:

 $\ \, {\bf 0} \ \ \, T^p \subseteq \omega^{<\omega} \ \, {\rm is \ finite}$

- f^p is a finite partial function from ω to T^p
 (for each i, f^p(i) is an initial segment of the generic path α_i^G)
- § h^p tags nodes of T^p with a computable ordinal or ∞
 - if $\tau \subseteq \sigma$, then $h^p(\tau) > h^p(\sigma)$
 - nodes in $\operatorname{range}(f^p)$ must be tagged ∞
- $\ell^p \subseteq \{n : \langle n \rangle \in T^p\}$. $\langle n \rangle$ is locked if $n \in \ell^p$.

q extends p if:

- $T^q \supseteq T^p$
- 2 $h^q \supseteq h^p$
- § f^q can extend paths in f^p , subject to a technical restriction
- If q can add new paths to f^p, subject to a technical restriction and restriction by the locks

Thank you!