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Abstract

We isolate two simple infinite determined games on analytic graphs.
With their help, we prove that certain large classes of analytic graphs
have countable chromatic number.

1 Introduction

Chromatic number of graphs is a notoriously difficult topic. In this paper, we
isolate two graph games which can be used to give conceptual and brief proofs of
two strengthenings of countable chromatic number for analytic graphs on Polish
spaces: the countable coloring number, and left-separation.

Definition 1.1. Let Γ be a graph on a set X.

1. [2] Γ has countable coloring number if there is a well-ordering ≤ on X such
that for every x ∈ X, the set {y ∈ X : y ≤ x and y Γ x} is finite.

2. If in addition X is a Polish space, Γ is left-separated if there is a well-
ordering ≤ on X such that for every x ∈ X, x is not an accumulation
point of the set {y ∈ X : y ≤ x and y Γ x}.

It is easy to see that countable coloring number implies left-separation, which
in turn implies countable chromatic number (Corollary 3.3). Our first game
provides a brief proof of a previously known dichotomy for countable coloring
number.

Definition 1.2. The topological graph ∆0 is the graph of the space X0 which
is the disjoint union of 2ω and 2<ω (the former with the usual topology and the
latter with discrete topology) connecting points t ∈ 2<ω and x ∈ 2ω if t ⊂ x.

∗2000 AMS subject classification 05C15.
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Theorem 1.3. [1] Let Γ be an analytic graph on a Polish space X. Exactly one
of the following occurs:

1. there is a continuous injective homomorphism from ∆0 to Γ;

2. Γ has countable coloring number.

The second game provides a quick way to verify left-separation for many graphs,
even though in this case we do not get a dichotomy.

Definition 1.4. The topological graph ∆1 is the graph of the space X1 which
is the disjoint union of 2ω and 2<ω connecting points t ∈ 2<ω and x ∈ 2ω if
t ⊂ x. Unlike for the graph ∆0 of Definition 1.2, the topology on X1 is induced
by the metric d(x, y) = 2−n where n is the length of the longest common initial
segment of x and y, so the initial segments of any point x ∈ 2ω converge to x.

Theorem 1.5. Let Γ be an analytic graph on a Polish space X. One of the
following occurs:

1. there is a continuous injective homomorphism from ∆1 to Γ;

2. Γ is left-separated.

As a fairly immediate corollary, one can conclude that distance graphs on Eu-
clidean spaces are left-separated and therefore countably chromatic, a result of
[5]. There are many analytic graphs which satisfy both (1) and (2) of the above
theorem–∆1 is a trivial example. To partially address this issue, we provide a
game-free argument for the following.

Theorem 1.6. If X is a Polish field, d > 0 is a number, and Γ is the union of
countably many pairwise disjoint irreflexive-algebraic graphs on Xd, then Γ is
left-separated.

There are many open questions. In particular, we do not know if there is an
exact characterization of left-separation of analytic graphs by a determined game
and a minimal problematic graph.

For the notation, a graph Γ on a set X is a symmetric irreflexive relation
on X. For a set A ⊆ X we write Γ(A) = {x ∈ X : ∀y ∈ A y = x ∨ y Γ x}. If
X is a Polish field and d ≥ 1 is a number, a set A ⊂ Xd is algebraic if there
is a finite collection {pi : i ∈ j} of polynomials with parameters in X and d
many free variables such that A = {x̄ ∈ Xd : ∀i ∈ j pi(x̄) = 0}. If Y ⊂ X
is a subfield, then the set A ⊂ Xd is Y -algebraic if the defining polynomials
can be selected so that all their coefficients belong to Y . A graph Γ on Xd is
algebraic if the set {〈x̄, ȳ〉 ∈ (Xd)2 : x̄ Γ ȳ or x̄ = ȳ} is an algebraic subset of
X2d. A graph Γ on Xd is irreflexive-algebraic if the set {〈x̄, ȳ〉 ∈ (Xd)2 : x̄ Γ ȳ}
is an algebraic subset of X2d. Γ is σ-algebraic if it is a union of countably many
algebraic graphs. The only fact about algebraic sets used in this paper is the
Hilbert Basis Theorem: an intersection of an arbitrary collection of algebraic
sets is equal to the intersection of a finite subcollection. An amalgamation
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operation on well-orderings is repeated in several proofs of this paper. If b is a
set, b =

⋃
α∈κ cα is an increasing union for some ordinal κ, and for each α ∈ κ a

relation ≤α is a well-ordering on the set cα, the amalgamation of the orderings
≤α is a relation on b defined as follows. If x, y ∈ b are elements and αx, αy ∈ κ
are the smallest ordinals α such that x ∈ cα and y ∈ cα respectively, we put
x ≤ y if either αx ∈ αy or (αx = αy and x ≤α y) holds. It is immediate that an
amalgamation of well-orderings is a well-ordering again.

The first author was supported by the Czech Academy of Sciences (RVO
67985840). The second author was partially supported by the Czech Academy
of Sciences (RVO 67985840) and grant EXPRO 20-31529X of GA ČR.

2 Coloring number

In this section we provide a characterization of countable coloring number of
analytic graphs via a simple infinite game. This provides an efficient, forcing-
free proof of a dichotomy result of [1]. For the sake of exposition and parallel of
the treatment in Section 3, we maintain the proof of the following well-known
proposition.

Proposition 2.1. [2] Let Γ be a graph on a Polish space X. The following are
equivalent:

1. Γ has countable coloring number;

2. Γ has an orientation in which every point has finite outflow.

Proof. To show that (1) implies (2), choose a well-ordering ≤ on X witnessing
countable coloring number of Γ. Orient every edge of Γ from the larger to the
smaller vertex in the ordering ≤ and observe that the outflow of every vertex is
finite. To show that (2) implies (1), let ~Γ be an orientation of Γ in which every

vertex has finite outflow. Say that a set b ⊂ X is ~Γ-closed if with every vertex
b contains all vertices in its outflow. It is clear that every infinite subset of X
is a subset of a ~Γ-closed set of the same cardinality.

By transfinite induction on the cardinality of an infinite ~Γ-closed set b, prove
that Γ � b has countable coloring number. In the end, applying this for b = X,
(1) will be proved. The case in which b is countable is easy: the well-ordering
can be chosen as one of ordertype ω. Now, suppose that the statement has
been proved for all infinite ~Γ-closed sets of cardinality smaller than b. Stratify b
as b =

⋃
α∈κ cα as a continuous increasing union of ~Γ-closed sets of cardinality

strictly smaller than b. Use the inductive assumption to find a well-ordering ≤α
on cα witnessing the fact that Γ � cα has countable coloring number. Let ≤ be
the well-ordering of b which is the amalgamation of orderings ≤α; we claim that
≤ is a witness to b having countable coloring number.

To see this, suppose that x ∈ b is any vertex. Find the smallest ordinal α
such that x ∈ cα holds; note that α must be a successor ordinal, α = β + 1 for
some β. Now, consider the set d = {y ∈ b : y ≤ x and y Γ x}. The set d is the
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union of d0 = {y ∈ cβ : y ≤ x and y Γ x} and d1 = {y ∈ cα \ cβ : y ≤ x and

y Γ x}. If y ∈ d0 then y ~Γ x cannot hold by the closure of the set cβ , therefore

x ~Γ y must hold. Thus, the set d0 must be finite, since it is a subset of the finite
~Γ-outflow of the vertex x. The set d1 is finite by the choice of the well-ordering
≤α. In sum, the set d is finite as required.

It is now time to define the first game of the paper.

Definition 2.2. Let Γ be an analytic graph on a Polish space X. Choose a
complete compatible metric on the space X. The coloring game G0(Γ) is played
between Players I and II for infinitely many rounds as follows. In round n
Player I plays a point xn ∈ X and a basic open ball Bn of radius smaller than
2−n. Player II answers with a point yn ∈ X. Player I must make sure that his
points are all distinct and yn /∈ B̄n+1 ⊂ Bn holds. In the end, let z ∈ X be the
unique point in

⋂
nBn–the outcome of the play. Player I wins if ∀n ∈ ω zΓxn

holds.

In principle, the game depends on the choice of the complete compatible metric
on X. However, the existence of a winning strategy is independent of that
choice. This is one of the consequences of the following central theorem.

Theorem 2.3. Let Γ be an analytic graph on a Polish space X. The game
G0(Γ) is determined. In addition,

1. Player I has a winning strategy in G0(Γ) if and only if there is an injective
continuous homomorphism from ∆0 to Γ;

2. Player II has a winning strategy in G0(Γ) if and only if Γ has countable
coloring number.

Proof. Determinacy of the game G0(Γ) follows from a straightforward unrav-
eling argument. First, use the assumption that the graph Γ is analytic to find
a continuous function k : ωω → Xω+1 such that its range is the set of all tu-
ples 〈xn : n ∈ ω, z〉 such that for all n ∈ ω, xn Γ z. Then, consider the game
Gu0 (Γ) played in the same way as G0(Γ) except Player I in addition plays strings
tn ∈ ωn such that t0 ⊂ t1 ⊂ . . . . In the end, Player I wins if he wins the play of
G0(Γ) and in addition k(

⋃
n tn) = 〈xn : n ∈ ω, z〉. It is not difficult to see that

the unraveled game is closed for Player I and therefore determined [4]. Thus,
the following two claims prove the determinacy of the game G0(Γ):

Claim 2.4. If Player I has a winning strategy in Gu0 (Γ), then he has a winning
strategy in G0(Γ).

Proof. Game Gu0 (Γ) is clearly more difficult for Player I to win than G0(Γ).

Claim 2.5. If Player II has a winning strategy in Gu0 (Γ), then he has a winning
strategy in G0(Γ).
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Proof. Let σ be a winning strategy for Player II in the unraveled game Gu0 (Γ).
Let κ be an uncountable cardinal large enough such that X belongs to Hκ, the
set of all sets whose transitive closure has cardinality less than κ. To describe
the winning strategy for Player II in G0(Γ), as the game progresses, let Player II
on the side construct an increasing elementary chain 〈Mn : n ∈ ω〉 of countable
elementary submodels of Hκ such that σ ∈ M0 and xn ∈ Mn for every n ∈ ω,
and play the points yn in such a way that {yn : n ∈ ω} =

⋃
nMn∩X. We claim

that this is a winning strategy for Player II.
Suppose towards a contradiction that Player I has a winning counterplay

against this strategy, consisting of points xn for n ∈ ω, basic open sets Un, and
an outcome point z ∈ X. Let u ∈ ωω be a point such that k(u) = 〈xn : n ∈ ω, z〉,
and {yn : n ∈ ω} be the sequence of responses the strategy of Player II produced.
Player I will now beat the strategy σ in the game Gu0 (Γ) in the following way. His
first move is (x0, ∅, U0), Player II responds with y′0, following σ. In a subsequent
round n Player I chooses i ∈ ω large enough so that (xn, u � n,Ui) is a legal
move, Player II follows σ and responds y′n. Such i ∈ ω exists since the model
M =

⋃
nMn is closed under the strategy σ and it must be the case that {y′k : k <

n} ⊂ {yk : k ∈ ω}. Since Player II won in the play of the game Gu0 (Γ), the two
plays produced the same outcome z, and {y′k : k ∈ ω} ⊆ {yk : k ∈ ω}, he must
have won the play of the game Gu(Γ), contradicting the initial assumption.

For the right-to-left implication of item (1), let h be the injective continuous
homomorphism. Let Player I play the game G0(Γ) in such a way that xn = h(tn)
for some binary string tn ∈ 2<ω and basic open sets Bn such that t0 ⊂ t1 ⊂ . . . ,
yn /∈ Bn+1, and {h(z) : z ∈ 2ω and tn ⊂ z} ⊂ Bn. This is not difficult to do. In
the end, the unique point z ∈

⋂
nBn is equal to

⋃
n tn, as such is Γ-connected

to xn for all n ∈ ω, and it is not equal to any point yn for n ∈ ω.
For the left-to-right implication of item (1), let σ be a winning strategy for

Player I. Two claims will be helpful.

Claim 2.6. Let p be a finite play of the game G0(Γ) played according to the
strategy σ, ended with a move of Player I. Let a ⊂ X be a finite set. There is
an extension played according to the strategy σ such that

1. the last point played by I does not belong to a;

2. the last open set is disjoint from a.

Proof. The first item follows from the demand that the points played by I are
pairwise distinct. The second follows from the fact that Player II is free to
produce the points of the set a among his answers.

Claim 2.7. Let p be a finite play of the game G0(Γ) played according to the
strategy σ, ended with a move of Player I. There are extensions p0, p1 played
according to the strategy σ in which the closures of the last open sets played by
Player I are disjoint.
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Proof. Produce any infinite extension of the play p using the strategy σ. Let
z0 ∈ X be the final point of the play. Consider any infinite play of the strategy
σ extending p in which Player II plays z0 as one of his moves. Let z1 be the
final point of this second play. Since z0 6= z1 and the diameters of open sets
played by the strategy σ must converge to zero, there must be initial segments
p0, p1 of the two plays in which the last open sets played by the strategy σ are
disjoint.

Now, by tree induction on t ∈ 2<ω build finite plays pt of the game G0(Γ) in
which Player I follows his strategy σ, produces final move xt, Bt, the points xt
for t ∈ 2<ω are pairwise disjoint, and for each t ∈ 2<ω the sets Bta0 and Bta1

are pairwise disjoint, and they do not contain any of the points xs for binary
strings s shorter than t. This is easily possible using the claims. In the end, let
h be the map defined by h(t) = xt and h(z) = the unique point in

⋂
n∈ω Bz�n. It

is not difficult to check that this is a continuous injective homomorphism from
∆0 to Γ.

For the left-to-right direction of item (2), suppose that Player II has a win-
ning strategy σ in the game G0(Γ). The following claim is key.

Claim 2.8. If b ⊂ X is a set closed under the strategy σ and z ∈ X \ b is a
point, then the set {x ∈ b : x Γ z} is finite.

Proof. Otherwise, Player I can play points xn in the infinite set {x ∈ b : x Γ z}
and the basic open neighborhods Bn so that they all contain the point z. In
the end of such a play against the strategy σ, he wins, since the set b is closed
under the strategy σ, so all points the strategy σ plays are in b and therefore
not equal to z. This contradicts the choice of σ.

Now, by transfinite induction on the infinite cardinality of a set b ⊂ X closed
under the strategy σ argue that G � b has countable coloring number. This is
clear for countable cardinality of b since then the witnessing well-ordering of b
can be chosen of ordertype ω. Now suppose that b ⊂ X is an infinite set closed
under the strategy σ and for all sets of cardinality smaller than |b| the statement
has been proved. Stratify b =

⋃
α∈κ cα as a well-ordered continuous increasing

union of sets of smaller cardinality, all of them of closed under the strategy σ.
For each α ∈ κ pick a well-ordering ≤α on cα witnessing the countable coloring
number of Γ � cα. Now, let ≤ be the amalgamation well-ordering on b and argue
that it witnesses the left-separation of the graph Γ � b.

Suppose that x ∈ b is an arbitrary point and argue for the finiteness of the
set a = {y ∈ b : y ≤ x and y Γ x}. Let α ∈ κ be the first ordinal such that
x ∈ cα holds. By the continuity of the stratification, the ordinal α is a successor
of some β. The set a ∩ cβ is finite by Claim 2.8 applied to cβ and x. The set
a \ cβ is a subset of {y ∈ cα : y ≤α x and y Γ x} which is finite by the choice of
the well-ordering ≤α. It follows that the set a = (a ∩ cβ) ∪ (a \ cβ) is finite as
required.

The right-to-left direction of item (2) is proved in the contrapositive. If
Player II has no winning strategy, then Player I must have it, and by (1) there
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must be a continuous homomorphic injection of ∆0 to Γ. To conclude that Γ
does not have countable coloring number, it is then enough to show that ∆0 does
not have it. Indeed, suppose towards a contradiction that ~∆0 is an orientation
of ∆0 in which every vertex has finite outflow. By a counting argument, there
must be a point x ∈ 2ω which does not belong to the outflow of any point in
2<ω. By another counting argument, there must be an initial segment t ⊂ x
which does not belong to the outflow of x. Since {t, x} is an edge in ∆0, this is
a contradiction.

Theorem 1.3 is now an immediate corollary.

Example 2.9. [3] If a is a countable set of positive reals and Γ is the graph
on R2 connecting points whose distance belongs to a, then Γ has countable
chromatic number. To construct a winning strategy for Player II, just make
sure as Player I produces points xn for n ∈ ω, if n0, n1 are distinct numbers and
r0, r1 are elements of a, the (at most two) points in R2 which have distance r0
from xn0

and distance r1 from xn1
are on the sequence Player II plays. This is

easy to do, and it constitutes a winning strategy for Player II.

3 Left-separation

Left-separation of graphs on Polish spaces is characterized by a tool parallel
to orientation with finite outflows. This tool has the advantage of abstracting
away from well-orderings.

Definition 3.1. Let Γ be a graph on a Polish space X. A Γ-neighborhood
assignment is a function π which to every point x ∈ X assigns an open neigh-
borhood π(x) ⊂ X of x so that if x, y are Γ-related points then either x /∈ π(y)
or y /∈ π(x).

Proposition 3.2. Let Γ be a graph on a Polish space X. The following are
equivalent:

1. Γ is left-separated;

2. there is a Γ-neighborhood assignment.

Proof. To show that (1) implies (2), choose a well-ordering ≤ on X witnessing
left-separation of Γ. For every point x ∈ X, let π(x) ⊂ X be any open neigh-
borhood of x containing no points of the set {y ∈ X : y ≤ x and y Γ x}. Clearly,
this is a Γ-neighborhood assignment. To show that (2) implies (1), let π be a
Γ-neighborhood assignment. Let d be a compatible metric on the space X. For
every number n ∈ ω, let An = {x ∈ X : π(x) contains an open ball of radius
2−n around x}. Clearly, The sets An increase with respect to inclusion as n
grows, and X =

⋃
nAn. Let ≤ be any well-ordering on X in which An is an

initial segment for every n ∈ ω. We claim that ≤ witnesses left-separation of
the graph Γ.
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Indeed, suppose that y ≤ x are Γ-connected points in the space X and n
is the smallest number such that x ∈ An holds. Since y ∈ An and π is a Γ-
neighborhood assignment, d(x, y) ≥ 2−n must hold. Thus, the open 2−n-ball
around x contains no points of the set {y ∈ X : y ≤ x and y Γ x} as desired.

Corollary 3.3. Let Γ be a graph on a Polish space X. If Γ is left-separated,
then it is countably chromatic.

Proof. Let π be a Γ-neighborhood assignment. Shrinking the values of π if
necessary, we may assume that they are all basic open sets. Then π is in fact a
Γ-coloring with a countable range.

It is important to understand that, unlike the coloring number, the definition
of left-separation and Γ-neighborhood assignments depends on the topology of
the underlying space.

Example 3.4. Let ∆2 be a graph on 2ω connecting points x, y if x contains only
finitely many 1’s, y contains infinitely many 1’s, and all 1’s of x appear in x∩ y,
the longest common initial segment of x and y. Then ∆2 is not left-separated.

It is obvious that if 2ω is equipped with a larger topology in which the set of its
rational points is clopen, the graph ∆2 becomes left-separated.

Proof. Suppose that π is a neighborhood assignment on 2ω; shrinking π if nec-
essary, we assume that its values are in fact clopen sets. It will be enough to
find a point y and points xn for n ∈ ω such that limn xn = y and for all n ∈ ω
xnΓy and y ∈ π(x) both hold. Then π(y) must contain all but finitely many
points xn, violating the definitory property of a Γ-neighborhood assignment.

To find the points xn, just construct them so that each of them has exactly
n many unit entries, all unit entries of xn appear in xn ∩ xn+1, and xn ∈⋂
m∈n π(xm). This is easy to accomplish. In the end, let y = limn xn. It is clear

from the construction that y is Γ-connected with every point xn, and belongs
to π(xn) as well. This concludes the proof.

There is a natural graph game associated with existence of a Γ-neighborhood
assignment. Even though this time the game does not provide a full character-
ization, it still provides interesting information difficult to obtain otherwise.

Definition 3.5. Let Γ be a graph on a Polish space X. The game G1(Γ)
proceeds as follows. Players I and II alternate for ω many rounds, playing
points xn ∈ X and yn ∈ X for n ∈ ω. Player I wins if the points xn converge
to some point z ∈ X (this point is referred to as the outcome of the play), and
for each n ∈ ω, z Γ xn and z 6= yn both hold.

Theorem 3.6. Let Γ be an analytic graph on a Polish space X. The game
G1(Γ) is determined. Moreover,

1. Player I has a winning strategy if and only if there is a continuous homo-
morphic injection from ∆1 to Γ;
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2. if Player II has a winning strategy then Γ is left-separated.

Proof. The determinacy proof is very close to that of Theorem 2.3. We only
indicate the unraveled version of the game and leave the rest to the reader. Fix
a continuous function k : ωω → Xω+1 such that its range consists exactly of
points 〈xn : n ∈ ω, z〉 such that z = limn xn and for every n ∈ ω, xn Γ z. The
unraveled game Gu1 (Γ) is played just as G1(Γ), except Player I in addition plays
finite sequences tn of natural numbers of length at least n such that yn does
not belong to the closure of the set {k(u)(ω) : tn+1 ⊂ u} ⊂ X; in addition, the
sequences tn are required to form an inclusion increasing sequence. Player I
wins if 〈xn : n ∈ ω〉 = k(

⋃
n tn) � ω. This is a closed game for Player I, therefore

determined. It is more difficult for Player I than the original game G1(Γ), and
Player II has a winning strategy in the original game if and only if he has a
winning strategy in the unraveled game.

The right-to-left implication of item (1) is easy. Let π : X1 → X be the
injective continuous homomorphism of ∆1 to Γ. Let Player I play points xn =
π(tn) where tn ∈ 2n form an inclusion increasing sequence such that yn /∈ π′′{z ∈
2ω : tn+1 ⊂ z}. This is clearly a winning strategy for Player I.

The left-to-right implication of item (1) is notationally more difficult. Let σ
be a winning strategy for Player I. Let d be a compatible complete metric on
X. For a finite play p of the game let z(p) be the set of all points that Player
I can produce as outcomes in plays extending p and observing the strategy σ.
The following claims will streamline the construction.

Claim 3.7. Let a ⊂ X be a finite set and p a finite play observing the strategy
σ. There is an extension q of p observing σ such that z(q) is disjoint from a.

Proof. If this failed for some set a and a play p, Player II could win against
the strategy σ from p by listing all points in a among his points and finding an
infinite play in which the strategy σ produces infinitely many points arbitrarily
close to points in a. Note that the outcome of the play would have to belong to
the set a.

Claim 3.8. Let ε > 0 be a positive real and p a finite play of the game observing
the strategy σ. There is an extension q of p observing σ such that z(q) has metric
diameter smaller than ε.

Proof. If this failed for some ε > 0 and p, then Player II could find a counterplay
starting with p in which the strategy σ produces points xn for n ∈ ω in such a
way that for every n there is m ≥ n such that d(xm, xn) > ε/2. Such a sequence
of points cannot converge, and Player II would win the play, contradicting the
choice of the strategy σ.

Claim 3.9. Let p be a finite play of the game observing the strategy σ. There
are extensions q0, q1 of p observing the strategy σ such that the closures of the
sets z(q0) and z(q1) are disjoint.
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Proof. Find two infinite extensions r0, r1 of p such that for every ε > 0 there
is an initial segment qε0 ⊂ r0 such that z(qε0) < ε, similarly for r1, and in
addition, the outcome z0 of r0 is one of the points Player II played in the play
r1. This is possible by the previous claim. The outcome z1 of r1 is distinct from
z0, and they are at a distance δ > 0. Find finite intermediate stages q0, q1 or
r0, r1 such that the sets z(q0), z(q1) both have diameters smaller than δ/4. It is
not difficult to see that q0, q1 work as desired.

Now, by a tree induction on t ∈ 2<ω produce points xt and plays pt observing
the strategy σ so that s ⊂ t implies ps ⊂ pt, xt is among the points produced
by the strategy σ in pt, the points xt for t ∈ 2<ω are pairwise distinct, and for
every n ∈ ω the sets z(pt) for t ∈ 2n are pairwise disjoint and contain none of
the points xs for s ∈ 2n. This is easily possible by the three above claims. In the
end, let h : 2<ω ∪ 2ω → X be the map defined as follows. h(t) = xt for t ∈ 2<ω,
and h(y) =the outcome of the play

⋃
n py�n for y ∈ 2ω. It is not difficult to see

that the map h is a continuous injective homomorphism of ∆1 to Γ.
For the second item, suppose that σ is a winning strategy for Player II. The

following is immediate.

Claim 3.10. Let b ⊂ X be a set closed under the strategy σ and z ∈ X \ b be a
point. Then z is not an accumulation point of the set {y ∈ b : z Γ y}.

Proof. Otherwise, Player I can construct a winning counterplay using a sequence
of points in b whose limit is z.

Now, by induction on cardinality of an infinite set b ⊆ X closed under the
strategy σ prove that Γ � b is left-separated. Applied to the set b = X, this
provides item (2). Now, the induction statement is immediate for a countable
set b, since the well-ordering ≤ can have ordertype ω in this case. Now suppose
that b ⊆ X is a set closed under σ such that left-separation has been proved for
all infinite sets closed under the strategy σ of smaller cardinality.

Stratify b =
⋃
α∈κ cβ as a continuous increasing union of sets closed under σ

of strictly smaller cardinality than b. For each ordinal α ∈ κ use the induction
assumption to select a well-ordering ≤α on cα witnessing the fact that Γ � cα is
left-separated. Amalgamate the well-orderings ≤α for α ∈ κ to obtain a well-
ordering ≤ on b. Now, argue that the resulting well-ordering ≤ on the set b
witnesses left-separation of Γ � b.

To see this, let x ∈ b be an element and αx be the smallest ordinal α ∈ κ
such that x ∈ cα+1. Then, the set {y ∈ b : y ≤ x and y Γ x} is a subset of the
union of the sets {y ∈ cα : x Γ y} and {y ∈ cα+1 : y ≤α+1 x and x Γ y}. The
former set does not have x as an accumulation point by Claim 3.10 applied to
the set cα; the latter set does not have x as an accumulation point by the choice
of ≤α+1. This concludes the induction step.

Theorem 1.5 is now an immediate corollary. There are other colorful corollaries.

Corollary 3.11. Let X be a Polish field. Let Γ be a closed σ-algebraic graph
on Xd for some d ≥ 1. Exactly one of the following occurs:
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1. Γ contains a perfect clique;

2. there is a Γ-neighborhood assignment.

Proof. It is immediate that (1) implies the negation of (2); we need to show
that the negation of (1) implies (2). For every closed set A ⊂ Xd, let h(A) =
{x ∈ A : ∀y ∈ A x = y ∨ xΓy}. Since Γ is a closed graph and A is closed, h(A)
is closed. The set h(A) is a Γ-clique by its definition. If there is a closed set A
for which h(A) is uncountable, then h(A) contains a perfect clique and item (1)
prevails. Thus, assume that for every closed set A, h(A) is countable and work
to find a winning strategy for Player II in the game G1(Γ), verifying item (2).

Let Γ =
⋃
n Γn be a presentation of Γ as a union of countably many algebraic

graphs on Xd. Consider the strategy for Player II in which, if Player I produces
points xi for i ∈ ω, Player II enumerates all points in sets h(A), where A runs
through all possible sets of the form

⋂
i∈a Γni(xi) where a ⊂ ω is a finite set and

〈ni : i ∈ a〉 is a tuple of natural numbers. Since the sets h(A) are all countable,
this is easy for Player II to do. We will argue that this is a winning strategy for
Player II.

To this end, suppose that points xi for i ∈ ω converge to z, and ∀i xi Γ z
holds. For each i ∈ ω let ni ∈ ω be a number such that xi Γni z holds. Use the
Hilbert Basis Theorem to find a finite set a ⊂ ω such that A =

⋂
i∈ω Γni(xi) is

equal to the set
⋂
i∈a Γni

(xi). The set h(A) is countable, and all of its elements
are among the points the strategy for Player II produced when confronted with
the points xi for i ∈ ω. Thus, it will be enough to show that z ∈ h(A) holds.
And indeed, if y ∈ A is any point distinct from z, then y is Γ-connected to every
point xi ∈ ω, and by the closure of the graph Γ, it is also connected to z as
well.

Corollary 3.12. Let X be a Polish field. Let Γ be a closed σ-algebraic graph
on Xd for some d ≥ 1. Suppose that Γ =

⋃
m Γm is a union of algebraic graphs

such that

(*) for any distinct points x, y ∈ X there is an open neighborhood O of x such
that for every z ∈ O and every m ∈ ω, at least one of x Γm z, y Γm z
fails.

Then there is a Γ-neighborhood assignment.

Proof. By Theorem 2.3, it is enough to produce a winning strategy for Player
II in the game G1(Γ). To do this, let Player I play a sequence of points xn ∈ X
for n ∈ ω. Player II plays in such a way that if n0 ∈ ω is a number and mn

for n ∈ n0 are numbers and the set
⋂
n∈n0

Γmn
(xn) is a singleton, then the

unique point in the intersection appears on the sequence played by Player II.
This is easily possible as there are only countably many finite strings of natural
numbers.

In the end, Player II must have won. To see this, suppose that z = limn xn
and the point z is Γ-connected to every point xn for n ∈ ω. It follows that
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there must be numbers mn for n ∈ ω such that z Γmn
xn holds. By the Hilbert

Basis Theorem, there must be a number n0 such that C =
⋂
n∈ω Γmn

xn =⋂
n∈n0

Γmn
xn. The set C must be the singleton {z}: if it contained another

point w different from z, there would be an open neighborhood O ⊂ X of z
witnessing (*) of the assumptions for Γ, there would have to be a number n ∈ ω
such that xn ∈ O, and then the point xn and the number mn would violate the
choice of the set O. It follows that the point z has appeared on the sequence of
points that Player II produced, resulting in a victory for Player II.

Example 3.13. Let d ≥ 1 be a number, let a be a countable set of positive
reals, and let Γ be the graph on Rd connecting points x, y if their Euclidean
distance belongs to the set a. Clearly Γ =

⋃
m Γm where {rm : m ∈ ω} is any

listing of the set a and Γm connects points of Euclidean distance rm. Then
(*) is satisfied: for distinct points x, y ∈ Rn choose O to be any open ball
around x whose radius is smaller than half of the distance between x and y. By
Corollary 3.12, the graph Γ is left-separated. This reproves a result of Schmerl
[6, Theorem 4].

In the last theorem of this paper, we provide a proof of left-separation for σ-
algebraic graphs which works even in some cases where Player I has a winning
strategy in the game G1.

Theorem 3.14. Let d > 0 be a natural number. Let X be a Polish field and Γ
be a σ-algebraic graph on Xd. Suppose that Γ is a countable disjoint union of
irreflexive-algebraic graphs. Then Γ is left-separated.

Proof. Fix a partition Γ =
⋃
n Γn into pairwise disjoint irreflexive-algebraic

graphs. Let Y ⊂ X be a subfield. Say that π is a suitable map on Y if

• dom(π) consists of all Y -algebraic subsets of Xd;

• for every Y -algebraic set A, π(A) ⊂ Xd is an open neighborhood of A;

• A ⊆ B implies π(A) ⊆ π(B);

• for every A ∈ dom(π), for all but finitely many n ∈ ω, π(Γn(A)) ∩A = 0.

By induction on cardinality of a subfield Y ⊂ X we now show that there is
a suitable map on Y . To conclude the proof of the theorem from this, let π
be a suitable map on X. Let χ be any neighborhood assignment on Xd such
that χ(x) ⊂ π({x}) and χ(x) is disjoint from the finitely many sets Γn({x}) for
which π(Γn({x})) does not contain the point x. It is not difficult to see, that
this will be the desired Γ-neighborhood assignment.

Suppose first that Y is countable, and enumerate nonempty Y -algebraic sets
as {Ai : i ∈ ω}. By recursion on i ∈ ω build the values π(Ai) so that (a) for
i, j ∈ ω, Aj ⊆ Ai implies π(Aj) ⊆ π(Ai); and (b) for every j < i, either
Aj ∩ Ai 6= 0, or π(Ai) ∩ Aj = 0, or there is k < j such that Ak ⊆ Ai and
π(Ak) ∩ Aj 6= 0. To see how this is done, suppose the values of π(Aj) for
j < i have been constructed. Let O ⊂ Xd be an open neighborhood of the
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set Ai which is disjoint from Aj for all j < i such that Aj ∩ Ai = 0, and let
π(Ai) = (O ∪

⋃
{π(Aj) : j < i and Aj ⊆ Ai}) ∩

⋂
{π(Aj) : j < i and Ai ⊆ Aj}.

First note that this choice of π(Ai) preserves the recursion hypothesis. Item
(a) is satisfied at i by the definition of π(Ai) and item (a) below i. To verify item
(b), suppose that j < i is a number such that Ai ∩Aj = 0 and π(Ai) ∩Aj 6= 0.
Then, by the definition of π(Ai), there must be some l < i such that Al ⊂ Ai
and π(Al) ∩ Aj 6= 0. There are two cases. If l < j then let k = l and observe
that k witnesses (b) for j and i. If l > j, find k < j witnessing (b) for j and l
and observe that k witnesses (b) for j and i.

Second, observe that the map π is then suitable on Y . To see this, let A ⊂ Xd

be a nonempty Y -algebraic set. Find j ∈ ω such that A = Aj . The sets Γn(A)
are all Y -algebraic and disjoint from Aj by the irreflexivity assumptions. Since
the graphs Γn are pairwise disjoint, for all but finitely many n ∈ ω there is no
k < j such that Ak ⊆ Γn(A). Item (b) then shows that for all such n, π(Γn(A))
must be disjoint from A as desired.

Now suppose that Y ⊂ X is a subfield of uncountable cardinality κ and for
all subfields of smaller cardinality suitable maps have been produced. Express
Y =

⋃
β∈α Yβ as a continuous increasing union of subfields of smaller cardinality,

for some ordinal α. By recursion on β ∈ α build suitable maps πβ on Yβ in such
a way that γ ∈ β implies πγ ⊂ πβ . At limit ordinals β, take a union and observe
that all items above are preserved. Now, suppose that πβ has been constructed,
and work to find πβ+1.

First, use the induction hypothesis to find a suitable map π on Yβ+1. The
difficulty now is that π may not extend πβ . Thus, define πβ+1 in the following
way. Let πβ+1(A) = (π(A) ∩ πβ(B)) ∪

⋃
{πβ(C) : C ⊆ A is a Yβ-algebraic set},

where B is the smallest Yβ-algebraic set containing A as a subset.
It is immediate that πβ+1 is a map which preserves inclusion, and it extends

πβ . Now, let A ⊂ Xd be an Yβ+1-algebraic set, and work to show that for all
but finitely many n ∈ ω, the set πβ+1(Γn(A)) is disjoint from A. Let B ⊂ X be
the smallest Yβ-algebraic set containing A as a subset.

Claim 3.15. For every number n ∈ ω, Γn(B) is the largest Yβ-algebraic subset
of Γn(A).

Proof. Suppose that C ⊆ Γn(A) is an Yβ-algebraic set. Consider the set D =
Γn(C). D is Yβ-algebraic and it is a superset of A. Therefore, B ⊆ D, which
implies that C ⊆ Γn(D) ⊆ Γn(B) holds as desired.

Thus, for every number n ∈ ω, πβ+1(Γn(A)) ⊆ π(Γn(A)) ∪ πβ(Γn(B)). For
all but finitely many n ∈ ω, the first entry of this union is disjoint from A and
the other from B by the choice of π and πβ . Since A ⊆ B holds, for all but
finitely many n the union is disjoint from A as desired. This concludes the
transfinite recursion step and the proof of the theorem.
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4 Questions

Many questions regarding Γ-neighborhood assignments remain unresolved. In
the following, Γ stands for an analytic graph on a Polish space. However, the
questions are already interesting for smaller classes of graphs such as σ-algebraic
graphs on Euclidean spaces.

Question 4.1. Are the following equivalent:

1. Γ has countable chromatic number;

2. Γ is left-separated in a suitable Polish topology on X.

Question 4.2. Are the following equivalent:

1. Γ is left-separated;

2. there is no continuous homomorphic injection from ∆2 to Γ.

Question 4.3. Is the statement “Γ is left-separated” absolute between models
of set theory?

Question 4.4. For an analytic set A ⊂ X, is the statement “Γ ∩ (A × A) is
left-separated” Π1

1?
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