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Jindřich Zapletal †

Academy of Sciences, Czech Republic
University of Florida

February 21, 2013

Abstract

Certain separation problems in descriptive set theory correspond to a
forcing preservation property, with a fusion type infinite game associated
to it. As an application, it is consistent with the axioms of set theory that
the circle T can be covered by ℵ1 many closed sets of uniqueness while a
much larger number of H-sets is necessary to cover it.

1 Introduction

Let X be a Polish space and K(X) its hyperspace of compact subsets of X.
If J ⊆ I ⊆ K(X) are two collections of compact sets, one may ask whether
it is possible to separate J from K(X) \ I by an analytic set, i.e. if there is
an analytic set A ⊆ K(X) such that J ⊆ A ⊆ I. A typical context arises
when I, J are both coanalytic σ-ideals of compact sets or even J = Kℵ0(X), the
collection of countable compact subsets ofX. For example, Pelant and Zelený [9,
Theorem 4.8] showed that Kℵ0(X) cannot be separated by an analytic set from
the collection of non-σ-porous sets, where X is an arbitrary compact separable
metric space. On the other hand, Loomis [7] [5, page 129 and 185] showed that
Kℵ0(T) can be separated by an analytic set from the collection of compact sets
of multiplicity, where T is the unit circle.

In this paper, I explore the connection of such separation problems with the
theory of definable proper forcing [13]. I first isolate a natural infinite game
which equivalently characterizes the separation problem (Theorem 2.2). The
winning strategies for the good player in this game are immediately reminiscent
of fusion arguments in forcing. I then define the related forcing property (the
overspill property of Definition 3.1) and show that it is a true forcing preservation
property (Theorem 3.2). Within the realm of suitably definable proper forcings,
it is preserved under the operation of countable support product (Theorem 3.5),
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countable union (Theorem 3.8) as well as the countable support iteration (not
proved in this paper). I also provide several subtle examples of forcings that do
or do not have the overspill property (Section 4) and explain the relationship
with the preexisting Sacks-type property (Section 5).

A good application of these ideas can be found in harmonic analysis. I com-
pare the cardinal invariants of the σ-ideal Hσ σ-generated by H-sets, introduced
by Rajchman [10], and the σ-ideal Uσ σ-generated by closed sets of uniqueness
[5] on the unit circle T. It is well-known that Hσ ⊂ Uσ.

Theorem 1.1. (Theorem 6.3) Suppose that the Generalized Continuum Hypoth-
esis holds and κ ≥ ℵ1 is a regular cardinal. Then there is a cardinal preserving
forcing extension in which T is covered by ℵ1 many closed sets of uniqueness
but not fewer than κ many H-sets.

The main point of this result is in the methodology through which it is obtained.
The combinatorics of both H-sets and sets of uniqueness is very complex, seem-
ingly prohibiting any straightforward approach via combinatorial proper forcing.
The present proof attacks directly the main descriptive set theoretic difference
between the σ-ideals Hσ and Uσ: the collection Kℵ0(T) cannot be separated
from the former by an analytic set, but it can be so separated from the lat-
ter. This difference survives the various forcing manipulations necessary and
yields the independence result in a conceptual, compartmentalized way. The
arguments seem to be impossible to replicate meaningfully through the combi-
natorial approach to proper forcing.

The notation in the paper follows the set theoretic standard of [4]. I use
[5] as a canonical reference for harmonic analysis, [6] for descriptive set theory,
and [13] for definable forcing. If I is a σ-ideal on a Polish space X, then PI
denotes the partial order of Borel I-positive sets ordered by inclusion. For a
Polish space X, K(X) denotes its hyperspace, i.e. the space of compact subsets
of X with the Vietoris topology. A subset I ⊂ K(X) is hereditary if it is closed
under taking subsets: K ⊂ L ∈ I implies K ∈ I. The closure of a set A in a
topological space is denoted by a bar: A. If t : ω → 2 is a partial finite function
then [t] = {x ∈ 2ω : t ⊂ x}; a similar notation prevails for the Baire space ωω.
If A ⊂ X × Y is a set then p(A) denotes its projection into the first (i.e. X)
coordinate. A tree is a set of finite sequences closed under initial segment. For
a tree T , the expression [T ] denotes the set of infinite branches through T . A
σ-ideal I on a Polish space X is Π1

1 on Σ1
1 if for every Polish space Y and every

analytic set D ⊂ Y ×X the set {y ∈ Y : the vertical section Dy of D above y
is in the ideal I} is coanalytic. A forcing is bounding if every function in ωω in
its generic extension is pointwise dominated by a ground model function.

2 The separation game

Definition 2.1. Let X be a compact metric space. Let I ⊂ K(X) be a co-
analytic collection of compact subsets of X, closed under subsets. Let J be a
σ-ideal of compact subsets of X, containing all singletons. The game G(J, I,X)
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is played between Player I and II for infinitely many rounds. In the n-th round
of the game G(J, I,X), Player I produces a compact set Kn ∈ J and Player II
responds with an open set On ⊃ Kn. In the end, Player II wins if the result of
the play, the intersection

⋂
nOn is a compact element of I.

Note that Player II has a simple strategy for making the result of the play
compact. He can just make sure that the n-th open set is a subset of 2−n-
neighborhood of the set Kn in some fixed complete metric on X, and then the
result of the play must be totally bounded and therefore compact.

Theorem 2.2. Suppose that X is a Polish space, J ⊂ K(X) is a σ-ideal, and
I ⊂ K(X) is hereditary. Then

1. Player II has no winning strategy in the game G(J, I,X) if and only if
there is no analytic set A ⊂ K(X) with J ⊆ A ⊆ I;

2. if I is coanalytic then the game G(J, I,X) is determined.

Proof. To prove the left-to-right direction of (1), suppose first that Player II has
a winning strategy σ in the game G(J, I,X). To produce the desired analytic
set A ⊂ K(X), fix a countable basis O for the space X closed under finite unions
and intersections, and by tree induction build a countable tree T of partial finite
plays according to the strategy σ ending with a move of Player II, such that if
t ∈ T is a node and O ∈ O is a basic open set such that Player I can make a
move after t which forces the strategy σ to respond with a superset of O, then
there is an immediate successor s ∈ T of the node t that indeed ends with the
strategy σ playing a superset O. Now, if b ∈ [T ] is a branch through the tree
T , it is an infinite play against the strategy σ, so Player II won and the end
result of it is in the collection I. Consider the set A = {C ∈ K(X) : for some
branch b ∈ [T ], K is covered by the end result of the play b}. This is an analytic
collection of compact sets, and since I is closed under subsets, A ⊂ I. Moreover,
J ⊂ A: if C ∈ J is a compact set, then by induction on n build nodes tn ∈ T
so that C is a subset of all moves of Player II in the play tn. The induction
step is possible to perform, since the set C is a possible move of Player I in
the next round past tn and the strategy σ must respond to it with some open
set P ⊃ C. By the compactness of the set C, there must ba a basic open set
O ⊂ P still covering C. The construction of the tree T guarantees that there is
an immediate successor tn+1 of tn whose last move is still a superset of both O
and C as desired. In the end, the end result of the play

⋃
n tn is a superset of

C and shows that C ∈ A.
For the right-to-left direction of (1), suppose that A ⊂ K(X) is an analytic

collection containing J , and A ⊂ I. To produce a winning strategy σ for Player
II, fix a continuous function g : ωω → K(X) such that A = rng(g). Player II
will win by producing, along with the moves of the game, sequences tn ∈ ωn so
that 0 = t0 ⊂ t1 ⊂ . . . and for every number n ∈ ω, the following statement
(*n) holds: for every compact set K ⊂

⋂
m∈nOm in J there is a point y ∈ ωω

extending tn such that K ⊂ g(y). That way, the end result L ⊂ X of the play
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will be a subset of g(y) where y =
⋃
n tn, and as g(y) ∈ I and I is closed under

subsets, L ∈ I and Player II won. To see that L ⊂ g(y), observe that if some
point x ∈ L did not belong to the compact set g(y), by the continuity of the
function g there would have to be a number n such that for every point y′ ∈ ωω
with tn ⊂ y′ it is the case that x /∈ L, contradicting (*n) as x ∈

⋂
m∈nOm and

{x} ∈ J .
It is necessary to prove that Player II can maintain (*n) at every stage n of

the play. (*0) by the assumptions on the set A no matter what the open set O0

is. Now suppose that (*n) holds and Player I produces a set Kn ∈ J . I must
show that there is an open set O containing Kn and a number i ∈ ω such that
(*n+ 1) holds with On+1 = O and tn+1 = tan i. Suppose for contradiction that
this is not the case. Choose inclusion decreasing basic open sets 〈Pi : i ∈ ω〉 such
that each of them is a legal move for Player II at this stage and Kn =

⋂
i Pi.

Since (*n + 1) must fail for each of them, there are countable compact sets
Li ⊂

⋂
m∈nOm∩P i such that for every point y ∈ ωω with tan i ⊂ y the inclusion

Li ⊂ g(y) fails. Consider the closure L
⋂
m∈nOm of the union

⋃
i Li. The set

L contains only the points in
⋃
i Li and points in Kn, and as J is a σ-ideal, it

follows that L ∈ J . By the induction hypothesis, there must be a point y ∈ ωω
extending tn such that L ⊂ g(y). This, however, contradicts the choice of the
set Li where i is the first entry of the sequence y past tn!

(2) of the theorem is proved by a standard unraveling argument. Since the
collection I is coanalytic, there is a continuous function g : ωω → K(X) whose
image is the complement of I. Consider the game G′(J, I,X) which is slightly
more difficult than G(J, I,X) for Player I. The game G′(I, J,X) proceeds in the
same way as the previous one, except in some rounds, Player I also indicates a
number in. The number in does not have to be played at round n but perhaps
at a later round at Player I’s will, and it must be smaller than the index of that
round. Player I wins if he played all numbers in for n ∈ ω, thereby creating a
sequence y ∈ ωω, and g(y) ⊂

⋂
nOn. Thus, if Player I wins in a play of the

game G′(J, I,X), then he also won the associated play of the game G(J, I,X):
the set g(y) is not in I, and as the collection I is closed under subsets, the set⋂
nOn cannot belong to I either. In the wide tree of all possible plays of the

game G′(J, I,X), the plays in which Player I wins forms a Gδ set, and the game
G′(I, J,X) is therefore determined [8]. I will show that winning strategies for
both players in the new game translate to winning strategies in the old game.

It is clear that if Player I has a winning strategy in the game G′(J, I,X), then
the same strategy, merely omitting the additional moves, will be his winning
strategy in the game G(I, J,X). Now suppose that σ′ is a winning strategy for
Player II in the game G′(J, I,X). To get a winning strategy for this player in
the original game, note that σ′ can be easily improved not to depend on the
choices of the numbers in. Simply at each round consider the finitely many
possibilities for such choices of these numbers in the previous round and play
the intersection of all sets that σ′ advises to play against each. I claim that
this improved strategy σ is in fact winning for Player II in the original game
G(J, I,X). Indeed, if there is a play p in the game G(J, I,X) against this
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strategy in which Player II loses, then the result L of that play cannot be in I
and there is a point y ∈ ωω such that g(y) = L. Consider the play p′ against the
strategy σ′ in which Player I plays the same compact sets as in p and produces
the point y in such a way that each number on it is added at a round with
index larger than that number. The definition of the strategy σ implies that the
moves of the strategy σ′ in p′ will be supersets of the corresponding moves of
the strategy σ in p, therefore the moves of Player I in p′ are legal and the result
L′ of the Play p′ will be a superset of L = g(y), resulting in Player I’s victory.
This of course contradicts the choice of the strategy σ′.

Corollary 2.3. If J ⊂ K(X) is a σ-ideal of compact sets containing all single-
tons and I0, I1 ⊂ X are coanalytic families of compact sets such that J ⊂ I0∩I1,
and there is no analytic set A such that J ⊂ A ⊂ I0 or J ⊂ A ⊂ I1, then there
is no analytic set A ⊂ K(X) such that J ⊂ A ⊂ I0 ∪ I1.

Proof. Finitely many strategies for Player I can be combined together, with
Player I playing unions of the compact sets indicated by all of them in any
given round.

As the most trivial example for Player I, he has a winning strategy if I = J
is the collection of countable compact subsets of the Cantor space X = 2ω. He
will win by playing finite sets Cn such that C0 ⊂ C1 ⊂ . . . such that for every
number n and every point x ∈ Cn there is another point x 6= y ∈ Cn+1 such
that x, y agree on the first n positions. In the end, the result of the play must
contain the closure of the set

⋃
n Cn, which is perfect, therefore uncountable and

winning for Player I. Note the similarity between this winning strategy and the
fusion arguments for the Sacks forcing (which is isomorphic to a dense subset
of PI).

As the most trivial example for Player II, he has a winning strategy if I
equals to the Lebesgue null sets. He will simply make use of the fact that every
countable set is null and at the n-th move, he will cover the move Kn with an
open set of mass ≤ 2−n. In this way, the result of the play will be Lebesgue null
and therefore winning for Player II.

3 The forcing connection

The winning strategies for Player I in the game G(J, I,X) certainly remind the
alert reader of various forcing fusion arguments. To exploit this parallel, we will
consider only the case of J equal to the σ-ideal of compact countable sets, where
we will make use of the closure of the class of countable sets under arbitrary
images as well as finite products. We will also look at the case of σ-ideal I only
and make a connection with the forcing properties of the quotient poset PI of
Borel I-positive sets ordered by inclusion.

Definition 3.1. Let I be a σ-ideal on a Polish space X. If Y is a Polish space
and C ⊂ X × Y is closed, write Kℵ0(C) and KI(C) (or Kℵ0 and KI if no
confusion is possible) of the σ-ideals of countable compact subsets of C and the
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compact subsets of C with projection in I. Say that I has the overspill property
if for every Polish space Y and every closed set C ⊂ X × Y with I-positive
projection, there is no analytic set A ⊂ K(C) with Kℵ0(C) ⊆ A ⊆ KI(C).

As every Polish space is a continuous injective image of a closed subset of ωω,
the overspill property needs to be verified only for the case Y = ωω. I will now
proceed to derive several forcing consequences of the overspill property.

Theorem 3.2. Suppose that I is a σ-ideal on a Polish space X such that the
quotient poset PI is proper. The following are equivalent:

1. I has the overspill property;

2. every I-positive analytic set has an I-positive Borel subset, and for ev-
ery Polish space Y and every analytic family A ⊂ K(Y ) containing all
countable compact subsets of Y , PI forces the space Y to be covered by the
ground model coded elements of the set A.

Proof. For the (1)→(2) implication, assume the overspill property. Suppose that
Y is a Polish space, A ⊂ K(Y ) an analytic set containing all countable compact
subsets, and suppose that B  ẏ ∈ Y is a point. I must find a strengthening
B′ ⊂ B and a compact set K ∈ A such that B′  ẏ ∈ K̇. Use the Borel reading
of names to thin out the set B if necessary to find a Borel function f : B → Y
such that B  ẏ = ḟ(ẋgen). Find a closed set C ⊂ X × Y × ωω projecting into
the graph of f . Let A′ ⊂ K(C) be the collection of those compact subsets L ⊂ C
whose projection pY (L) into Y belongs to A. This is an analytic subset of K(C)
containing all countable compact sets, and by the overspill property it contains
an element L whose projection pX(L) into X is I-positive. The Mostowski
absoluteness implies that pX(L)  ẏ ∈ pY (L) and (2) has been verified.

For the (2)→(1) implication, assume (2) holds, and towards the verification
of the overspill property choose a closed subset C ⊂ X × Y for some Polish
space Y with I-positive projection, and an analytic set A ⊂ K(C) containing all
countable compact sets. I must find a set K ∈ A with an I-positive projection.
To do this, first produce an I-positive Borel set B ⊂ p(C). The properness
of PI implies that it is possible to thin out B if necessary and find a Borel
function f : B → Y whose graph is a subset of C–[13, Proposition 2.3.4]. (2)
shows that it is possible to thin out B further to find a set K ∈ A such that
B  〈ẋgen , ḟ(ẋgen)〉 ∈ K̇. Now, the set K must have an I-positive projection
since there is a condition (namely B) which forces the generic point to belong
to that projection. The overspill property follows.

The two most prominent consequences:

Corollary 3.3. Suppose that I is a σ-ideal on a Polish space X such that the
poset PI is proper, and I has the overspill property. Then

1. the poset PI is bounding;

2. the poset PI forces the set of ground model reals to be nonmeager.
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Proof. For the bounding property, [13, Theorem 3.3.2] shows that it is enough
to verify that every closed subset of X × ωω with I-positive projection has a
compact subset with I-positive projection. This follows immediately from the
overspill property applied to the collection A = K(C).

For (2), assume for contradiction that it fails. Then, there must be an I-
positive Borel set B ⊂ X and a name K̇ for a compact nowhere dense subset of
2ω such that B  2ω ∩ V is a subset of the union of all rational translates of K̇
in the Cantor group. Use the bounding property to thin out B if necessary to
make sure that B is compact and there is a continuous function f : B → K(2ω)
such that B  K̇ = ḟ(ẋgen). Let Y = rng(f); this is a compact subset of
K(2ω). Let A ⊂ K(Y ) be the collection of all compact subsets D ⊂ Y such
that there is z ∈ 2ω such that for every L ∈ D, no rational translate of z belongs
to L. This is an analytic collection of compact sets, and it contains all countable
compact sets. By Theorem 3.2, there is z ∈ 2ω and an I-positive compact set
C ⊂ B such that for all x ∈ C, z belongs to no rational translate of f(x). Then,
C  x̌ belongs to no rational translate of K̇, contradicting the choice of the
name K̇.

With a reformulation of overspill as a forcing preservation property, a ques-
tion immediately arises whether it persists under the usual forcing operations.
The game characterization of overspill leads to preservation theorems for the
countable support product of definable forcings. First, recall the basic defini-
tions and results about the countable support product. Let {In : n ∈ ω} be
σ-ideals on respective Polish spaces {Xn : n ∈ ω}. The box product

∏
n In is

the collection of all analytic sets A ⊂
∏
nXn which do not contain a subset of

the form
∏
nAn, where each An ⊂ Xn is an In-positive Borel set. It is not clear

why this collection should be a σ-ideal; however, in a good number of cases it
is, and its quotient corresponds to the countable support product

∏
n PIn .

Fact 3.4. [13, Theorem 5.2.6] Let {In : n ∈ ω} be σ-ideals on respective Polish
spaces {Xn : n ∈ ω}, such that for every number n,

1. every In-positive analytic set has a Borel In-positive subset;

2. the product poset PIn is proper, bounding, and forces the set of the ground
model reals to be non-meager;

3. In is Π1
1 on Σ1

1.

Then the box product J =
∏
n In is a σ-ideal and the σ-ideal J shares the

properties (1,2,3).

Theorem 3.5. Let {In : n ∈ ω} be σ-ideals on respective Polish spaces {Xn :
n ∈ ω}, such that for every number n,

1. the product poset PIn is proper;

2. In is Π1
1 on Σ1

1;
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3. In has the overspill property.

Then the box product J =
∏
n In is a σ-ideal and the σ-ideal J shares the

properties (1,2,3).

Proof. The collection J is a Π1
1 on Σ1

1 σ-ideal and the quotient PJ is proper and
bounding by Fact 3.4. Note that the overspill property of each In implies that
every In-positive analytic set has an In-positive Borel subset and the quotient
PIn is bounding and preserves Baire category by Corollary 3.3.

To prove (3), suppose that C ⊂
∏
nXn × ωω is a closed set with a J-

positive projection. I must produce a winning strategy for Player I in the game
G(Kℵ0 ,KJ , C). For every number n ∈ ω find an In-positive compact set Bn ⊂
Xn such that

∏
nBn ⊂ p(C). Use the properness and the bounding property of

the poset PJ to thin out the sets Bn if necessary and find a continuous function
f :

∏
nBn → C such that for every x ∈

∏
nBn, f(x) = 〈x, y〉 for some y ∈ ωω.

For each n ∈ ω pick an arbitrary point xn ∈ Bn. The winning strategy σ
in the game G(Kℵ0 ,KJ , C) for Player I is described as follows. As the play
〈Ki, Oi : i ∈ ω〉 of the game proceeds, at round i Player I will on the side create
countable compact sets Lin ⊂ Xi and open sets P in ⊂ Xi for all n ∈ ω and find
a strategy σi so that for each i,

• Lin = {xn} for all i ∈ n and Ki = f ′′
∏
n L

i
n;

• Lin ⊂ P in and all but finitely many sets P in are equal to Xn. Moreover,∏
n P

i
n ⊂ f−1Oi;

• σi is a winning strategy for Player I in the gameG(Kℵ0 ,KIn , Bn∩
⋂
j∈i P

j

i ),

• for each j ≤ i the sequence 〈Lkj , P kj : j ≤ k ≤ i〉 is a play against the
strategy σj .

The construction is straightforward, using an elementary claim at each stage:

Claim 3.6. Whenever 〈Yi : i ∈ j〉 are topological spaces, 〈Li : i ∈ j〉 compact
subsets of each, and O ⊂

∏
i Yi is an open set covering

∏
i Li, then there are

open sets 〈Oi : i ∈ j〉 of the respective spaces such that Ki ⊂ Oi and
∏
iOi ⊂ O.

Proof. It is enough to treat the case j = 2. First, argue that for every point
y ∈ L0, there are open sets O0x ⊂ Y0 and O1x ⊂ Y1 such that x ∈ O0x,
K1 ⊂ O1x, and O0x × O1x ⊂ O. To see this, note that the set {x} × K1 is
compact, and therefore it is covered by finitely many open rectangles included
in O; let {Pk × Qk : k ∈ l} be such a finite list, with the demand that x ∈ Pk
for each k ∈ l. Let O0x =

⋂
k Pk and O1x =

⋃
kQk; these two open sets work.

Now, by compactness of the set K0, there is a finite list {xk : k ∈ l} of points
in K0 such that K ⊂

⋃
k∈lO0xk . Let O0 =

⋃
k∈lO0xk and O1 =

⋂
k∈lO1xk . The

sets O0, O1 work as requested in the statement of the claim.
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At the end of the play, consider the results Cn ⊂ Bn of the plays against the
strategies σn constructed on the side; so Cn ⊂ Bn is an I-positive compact set.
It is not difficult to see that f ′′

∏
n Cn ⊂ C will be a subset of the result of the

main play, and therefore Player I won. The proof of the theorem is complete.

Corollary 3.7. Let κ be a cardinal and {Iα : α ∈ κ} be Π1
1 on Σ1

1 σ-ideals on
Polish spaces with the overspill property such that the quotient PIα is proper for
every α ∈ κ. Let P be the countable support product of the posets {PIα : α ∈ κ}.
Then for every Polish space Y and every analytic set A ⊂ K(Y ) containing all
countable compact sets, P forces Y to be covered by the ground model elements
of the set A.

Proof. Suppose for Y is a Polish space and A ⊂ K(Y ) is an analytic set con-
taining all countable compact sets. Let ẏ be a P -name for an element of Y and
p ∈ P be a condition; I must find a set C ∈ A and a condition q ≤ p which
forces ẏ ∈ Ċ. Let M be a countable elementary submodel of a large enough
structure containing p, ẋ. A standard argument shows that there are Iα-positive
compact sets {Kα : α ∈ κ∩M} such that the product L = Πα∈κ∩MKα consists
of M -generic sequences only for the product forcing meeting the condition p,
and the function g : L→ Y given by g(~x) = ẏ/~x is continuous. Let A′ ⊂ K(L)
be the collection of all compact subsets of L whose images are covered by sets
in A; this is an analytic collection of sets containing all countable sets. By
the overspill property of the product ideal Πα∈κ∩MIα, there are compact sets
{K ′α : α ∈ κ∩M} such that K ′α ⊂ Kα and L′ = Πα∈κ∩MK

′
α ∈ A′. The g-image

of L′ is then covered by some set C ∈ A, and a review of the definitions shows
that L′ is a condition below p that forces ẏ ∈ Ċ as desired.

Finally, I prove that the overspill property is preserved under countable
union of σ-ideals generated by countable sets.

Theorem 3.8. Let {In : n ∈ ω} be Π1
1 on Σ1

1 σ-ideals generated by closed sets,
each with the overspill property, on some fixed Polish space X. The σ-ideal
σ-generated by

⋃
n In is Π1

1 on Σ1
1 and it has the overspill property again.

Proof. The family A ⊂ F (X) given by C ∈ A if and only if there is n ∈ ω such
that C ∈ In is hereditary and coanalytic by the definability assumptions on the
σ-ideals In for n ∈ ω. It σ-generates the σ-ideal I which then is Π1

1 on Σ1
1 by

[6, Theorem 35.38].
For the verification of the overspill property of the σ-ideal I, fix a closed set

C ⊂ X × ωω whose projection is I-positive. To construct the winning strategy
for Player I in the game G(Kℵ0 ,KI , C), first thin out C if necessary so that
its intesections with basic open sets are either empty or else have I-positive
projections. Let {〈Pi,mi〉 : i ∈ ω} be an enumeration of pairs consisting of a
basic open subset of C and a natural number, with infinite repetitions. The
strategy for Player I is described in the following way. As the play 〈Ki, Oi : i ∈
ω〉 proceeds, at round i ∈ ω Player I on the side constructs countable compact
sets 〈Lji : j ≤ i〉 as well as a strategy σi so that
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• if
⋂
j∈iOj ∩ Pi is nonempty then σi is a winning strategy for Player I in

the game G(Kℵ0 ,KImi
, C ∩

⋂
j∈iOj ∩ P i);

• for every j ∈ ω, the sequence pj = 〈Lji , Oi : i ≥ j〉 is a play of the game
according to the strategy σj ;

• Ki =
⋃
j≤i Lj .

This is easy to arrange from the assumption that each ideal In for n ∈ ω has
the overspill property. Let D be a (compact) outcome of the play; we must
show that p(D) is an I-positive set. Since the σ-ideals In for n ∈ ω are σ-
generated by closed sets, it will be enough to show that whenever O is an open
set with nonempty intersection with p(D) and n ∈ ω then p(D) ∩ O /∈ In–for
then, the closed sets in the generating σ-ideals must be relatively meager in the
set p(D). Let P be an open subset of C such that p(P ) ⊂ O, and let i ∈ ω
be an index such that 〈Pi,mi〉 = 〈P,m〉. The outcome E of the play pi is a
compact subset of P ∩ D with In-positive projection. Since the play pi was
played according to the winning strategy σi, it must be the case that p(E) /∈ In.
Now p(E) ⊂ p(D) ∩O /∈ In as required. This completes the proof.

The attentive reader should not fail to notice how overspill fits into the
doctrine of [13, Section 3.10]. Many forcing properties can be restated as the
bad player not having a winning strategy in a certain game. If the forcing in
question is suitably definable, then the game in question is determined, and the
winning strategies for the good player can serve as a tool for proving preservation
theorems for product or iteration.

4 Examples

In order to efficiently use the ideas developed in the previous section for inde-
pendence results, one must develop a dictionary of σ-ideals with and without
the overspill property. In this section, I will provide a number of examples.
They are typically associated with forcings adding a certain highly independent
real.

One large class of examples is best motivated by the following consideration.

Definition 4.1. Let I be a Π1
1 on Σ1

1 σ-ideal on a Polish space X with the
overspill property. The overspill ordinal is the smallest ordinal α such that in
all separation games of Definition 3.1 Player I has a winning strategy using only
countable compact sets of Cantor–Bendixson rank < α.

The overspill ordinal is a finer invariant that can discern between the various
σ-ideals with the overspill property. It will turn out that the σ-ideal Hσ σ-
generated by H-sets has overspill ordinal 3. The countable union operation does
not increase the overspill ordinal. The countable support product may increase
the overspill ordinal by adding ω to it, as products of n-many sets of rank α
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may have rank α + n. Here I show that there are quite natural σ-ideals with
arbitrarily large prescribed countable overspill ordinal.

Let α ∈ ω1 be a nonzero countable ordinal and let f : ω → α be any
surjection with infinite fibers. Call a set a ⊂ ω small if fα � a is a decreasing
function; in particular, such sets must be finite. Let Iα be the σ-ideal on 2ω

σ-generated by all sets K ⊂ 2ω such that for every n ∈ ω there is a small set
a ⊂ ω such that n < min(a) and a function u ∈ 2a such that every point x ∈ K
has nonempty intersection with u. The notation neglects the possibly nontrivial
dependence of the σ-ideal Iα on the choice of the surjection f .

Theorem 4.2. Let α ∈ ω1 be a countable ordinal. The σ-ideal Iα

1. is σ-generated by closed sets and is Π1
1 on Σ1

1;

2. has the overspill property, with the overspill ordinal ≤ α+ 2;

3. if ω · α = α then the overspill ordinal of Iα is exactly α+ 2.

The case α = 1 corresponds to a poset introduced by Shelah [11, Proposition
1.10] and studied also by Spinas [12] in a combinatorial form.

Proof. For (1), it is clear that a closure of a generating set of Iα is again a
generating set. Moreover, the collection of closed generating sets is hereditary
and Gδ, and therefore the σ-ideal Iα is Π1

1 on Σ1
1 by [6, Theorem 35.38].

The argument for (2) begins with an auxiliary claim.

Claim 4.3. Suppose that C ⊂ 2ω×ωω is a closed set such that its intersections
with clopen sets are either empty or have Iα-positive intersection. There is a
countable compact set K ⊂ C of rank ≤ α + 1 such that for every small set
a ⊂ ω and every function u ∈ 2a, if there is x ∈ p(C) such that x ∩ u = 0 then
there is x ∈ p(K) such that x ∩ u = 0.

Proof. By induction on β ≤ α prove the following stronger sentence Θ(β): for
every clopen set O with nonempty intersection with C, there is a countable
compact set K ⊂ C ∩ O of rank ≤ β + 1 such that for every small set a ⊂ ω
with f(min(a)) < β and every function u ∈ 2a, if there is x ∈ p(C ∩ O) such
that x ∩ u = 0 then there is x ∈ p(K) such that x ∩ u = 0.

The sentence Θ(0) is trivially satisfied. Suppose Θ(γ) holds for all γ < β, and
verify Θ(β). For simplicity assume that O = C. Pick a point 〈x, y〉 ∈ C ∩ [s, t]
and by induction find numbers ni so that

• 0 = n0 < n1 < . . . ;

• for every small set a with min(a) > ni+1 and every u ∈ 2a there is a point
〈x′, y′〉 ∈ C ∩O ∩ [x � ni, y � ni] such that x′ ∩ u = 0.

This is possible as the nonempty intersections of C with clopen sets are
Iα-positive. For every sequence p ∈ 2ni+2 extending x � ni and every number
m ∈ ni+2 such that f(m) < β use the induction hypothesis to find a set Kp,m ⊂
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C∩[p, y � ni] of rank f(m) such that for every small set a ⊂ ω with min(a)) = m
and every function u ∈ 2a, if there is 〈x′, y′〉 ∈ C ∩ [p, y � ni] such that x∩u = 0
then there is such a point in Kp,m. Let K be the union of all sets thus obtained
together with the point 〈x, y〉. This is a countable compact set of rank at most
β. I claim that this set confirms Θ(β).

Indeed, if a ⊂ ω is a finite small set and u ∈ 2a is a set such that there is
x ∈ C with x ∩ u = 0, look at m = min(a) and find the number i ∈ ω such
that ni ≤ m < ni+1. For definiteness assume that i > 0. Then there is a
point 〈x′, y′〉 ∈ C � x � ni, y � ni such that x′ ∩ u = 0. Let p = x′ � ni+1,
and observe that the choice of the set Kp,m ensures that there is such a point
〈x′, y′〉 ∈ Kp,m ⊂ K as required.

Let C ⊂ 2ω×ωω be a closed set with an I-positive projection; I must describe
a winning strategy for Player I in the game G(Kℵ0 ,KIα , C) that uses only sets
of rank at most α. First, thin out the set C so that its nonempty intersections
with basic open sets have I-positive projections. Let 〈Pn : n ∈ ω〉 enumerate
all basic open subsets of C, and let Player I proceed in the following way. As
the play 〈Kn, On : n ∈ ω〉 proceeds, he makes sure that K0 ⊂ K1 ⊂ . . . , and
if the set Pn has nonempty intersection with

⋂
m∈nOn, then he uses the claim

to provide a compact set Kn such that for every small set a ⊂ ω and every
function u ∈ 2a, if there is x ∈ p(C ∩

⋂
m∈nOn ∩ Pn) such that x ∩ u = 0 then

there is such an x in p(Kn).
To prove that this is a winning strategy for Player I, let L ⊂ C be the

result of the game and show that for every generating set D ⊂ 2ω the set
{x ∈ L : p(x) ∈ D} is meager in L. Suppose that small sets an and functions
un ∈ 2an with n < min(an) witness that D is a generating set of I. Let P ⊂ C be
an open set with nonempty intersection with L, say P = Pn for some n. There
must be a point x ∈ p(C ∩

⋂
m∈nOm∩Pm) such that x∩uk = 0 for some k ∈ ω,

since the set p(C ∩
⋂
m∈nOm ∩Pm) is I-positive by the choice of the set C. By

the choice of the set Kn, there must be a point 〈x, y〉 ∈ Kn∩
⋂
m∈nOm∩Pm, such

that x∩uk = 0, and this point will appear in all later sets Km for m > n and also
in the result L. This point has a neighborhood given by x � max(ak) + 1 whose
projection is disjoint with the set D. This means that the set {x ∈ L : p(x) ∈ D}
is meager in L as desired.

The proof of (3) is best packaged with the help of a certain forcing preser-
vation property.

Claim 4.4. Suppose that J is a Π1
1 on Σ1

1 σ-ideal on a Polish space Y such that
the quotient forcing PJ is proper. Suppose that α ∈ ω1 is a countable ordinal
such that α = ω ·α. Suppose that J has the overspill property, with the overspill
ordinal ≤ α. Then PJ forces that 2ω is covered by the ground model coded sets
in the σ-ideal Iα.

Proof. First argue that for every β ∈ α and every countable compact set K ⊂ 2ω

of Cantor–Bendixson rank < β and every n ∈ ω there is a small set a ⊂ ω such
that n < min(a) and f(min(a)) < ω · β, and a function u ∈ 2a such that
every point x ∈ K has nonempty intersection with K. The proof proceeds by
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induction on β. The case β = 0 is trivial. Now suppose that K ∈ K(2ω) is
a countable compact set of rank < β and for ordinals below β the statement
has been verified. Let {xi : i ∈ k} be the finite list of points of K of the
largest rank, say of rank γ ∈ β. Find a small set b ⊂ ω of size k such that
f ′′b ⊂ [ω ·γ, ω ·(γ+1)) and a function v ∈ 2b such that for every i ∈ k, the point
xi has nonempty intersection with v. Now, consider the countable compact set
L = {x ∈ K : x ∩ v = 0}. This is a set of rank < γ and so by the induction
hypothesis there is a small set c ⊂ ω with max(b) < min(c), f(min(c)) < β · γ,
and a function w ∈ 2c such that every point x ∈ L has nonempty intersection
with w. The set a = b ∪ c and the function u = v ∪ w work as desired for the
set K.

Now, look at the poset PJ , and suppose that B ∈ PJ is a condition and ẏ
is a PJ -name for an element of 2ω. Use the bounding assumption to find an I-
positive compact set C ⊂ B and a continuous function h : C → 2ω such that C 
ẏ = h(ẋgen). Find a winning strategy σ for Player I in the game G(Kℵ0 ,KJ , C)
which uses only sets of rank < α. Let Player II construct a counterplay against
the strategy σ as follows: whenever Player I indicates a compact set Kn, the
image h′′Kn ⊂ 2ω is a countable compact set of rank < α and so by the previous
paragraph there is a small set an ⊂ ω with n < min(an) and a function un ∈ 2an

such that every point of h′′Kn has nonempty intersection with un. Let Player II
answer with the set O = {x ∈ C : h(x) ∩ u 6= 0}; this is a clopen neighborhood
of the set Kn. Let D ⊂ C be the result of the play thus constructed. Then for
every point x ∈ D and every n ∈ ω, h(x)∩un = 0, and so D  ∀n ∈ ω ẏ∩ǔn 6= 0.
The claim follows.

Since the quotient forcing of the σ-ideal Iα forces its generic point not to
belong to any Iα-small set, its overspill ordinal must be at least α + 2 by the
previous claim and (3) follows.

Theorem 4.2 yields an interesting corollary about the complexity of the
bounding condition on definable proper partial orderings.

Theorem 4.5. There is a Polish space Y and a Π1
1 on Σ1

1 σ-ideal I on Y × 2ω

σ-generated by closed sets, such that

1. for every y ∈ Y the vertical section By = {〈y, x〉 : x ∈ 2ω} is I-positive;

2. the sets {y ∈ Y : PI � By is bounding}, {y ∈ Y : PI � By adds no Cohen
real}, {y ∈ Y : I � By has the overspill property} are all equal and they
are complete coanalytic sets.

In other words, checking whether a given quotient forcing is bounding (or has
overspill, or adds no Cohen reals) is at least a complete coanalytic job, even if
it is known that the σ-ideal is σ-generated by closed sets.

Proof. Let Y be the collection of all linear orders on ω topologized as a closed
subset of P(ω × ω). Fix a surjection π : ω → ω with infinite fibers. Let I be
the σ-ideal σ-generated by sets K ⊂ Y × 2ω such that K is a subset of single
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vertical section By of Y ×2ω and for every n ∈ ω there is a finite set a ⊂ ω such
that min(a) > n and for k,m ∈ a, k < m implies π(k) <y π(l), and a function
u ∈ 2a such that for every x ∈ K, x ∩ u 6= 0. I claim that this σ-ideal works as
required.

It is not difficult to see that a closure of a generating set is a generating
set again, so the σ-ideal I is generated by closed sets. It is also clear that the
collection of generating compact sets is hereditary and Gδ, and so the σ-ideal
is Π1

1 on Σ1
1 by [6, Theorem 35.38]. Now let C ⊂ Y be the set of all wellorders.

This is a complete coanalytic set. Theorem 4.2 shows that if y ∈ C then I � By
has overspill. The proof of the theorem will be complete if I show that whenever
y /∈ C then PI � By adds a Cohen real.

Thus, assume that y ∈ Y is not a wellorder and let a ⊂ ω be an infinite set
such that for k, l ∈ a, l < k implies π(l) <y π(k). I will show that PI � By forces
ẋgen � a to be a Cohen real where ẋgen ∈ 2ω is name for the 2ω-coordinate of
the PI -generic pair. Indeed, if O ⊂ 2a is an open dense set, then for every n ∈ ω
there is a finite partial function u : a → 2 with min(dom(un)) > n such that
for every z ∈ 2a, z ∩ un = 0 implies z ∈ O. A brief review of the definition
of generating sets for the σ-ideal I shows that By  ∃n ẋgen ∩ un = 0 and so

ẋgen � a ∈ Ȯ as required.

I will now produce a family of σ-ideals generated by closed sets generated in
a similar way to the σ-ideals Iα of Theorem 4.2, with different properties. The
important representatives of this class fail to have the overspill property, while
the quotient forcings are bounding.

Let φ be a lower semicontinuous submeasure on ω which assigns finite
nonzero masses to finite nonempty sets. If x ∈ 2ω, a ⊂ ω is a finite set, u ∈ 2a

and ε > 0 is a real number, say that x ε-coheres with u if φ({m ∈ a : x(m) =
u(m)}) > (1 − ε)φ(a). Let Iφ be the σ-ideal σ-generated by sets K ⊂ 2ω such
that there is ε > 0 such that for every n ∈ ω there is a finite set a ⊂ ω with
n < min(a), a function u ∈ 2a, and no point x ∈ K ε-coheres with u.

Theorem 4.6. Let φ be a lower semicontinuous submeasure on ω assigning
finite nonzero masses to nonempty finite sets.

1. Iφ is a Π1
1 on Σ1

1 σ-ideal σ-generated by closed sets.

2. If φ is strongly subadditive then the poset PIφ is bounding.

3. If φ is the measure with φ({n}) = 1
n+1 then Iφ fails to have the overspill

property: there is an analytic set A ⊂ K(2ω)∩ Iφ containing all countable
compact sets.

4. if φ is the chromatic number of the random graph, then PIφ adds a Cohen
real.

Here, the submeasure φ is strongly subadditive if φ(a ∪ b) ≤ φ(a) + φ(b) −
φ(a ∩ b) for all sets a, b ∈ dom(φ). Good examples of strongly subadditive
submeasures are measures or suprema of measures. If G is a graph on ω and φ
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assigns to each set b ⊂ ω the chromatic number of G � b, then φ will typically
fail to be strongly subadditive.

Proof. I will start with the proof of (1). A closure of a generating set is again
a generating set, so the σ-ideal is σ-generated by closed sets. The collection of
compact generating sets is hereditary and Gδσ, therefore the σ-ideal is Π1

1 on
Σ1

1 by [6, Theorem 35.38].
The argument for (2) starts with a definition. For every set B ⊂ 2ω and

every ε > 0, write n(B, ε) for the smallest number n such that for every finite
set a ⊂ ω with n < min(a) and every u ∈ 2a there is x ∈ B which ε-coheres
with u. Note that if B /∈ Iφ then the number n(B, ε) must exist. The proof of
(2) hinges on an auxiliary claim.

Claim 4.7. Whenever {Bk : k ∈ ω} are Iφ-positive sets whose intersections
with open sets are Iφ-positive or empty, and ε, δ > 0 are positive real numbers,
then there is l ∈ ω such that n(

⋃
k∈lBk, ε+ δ) ≤ n(

⋃
k∈ω Bk, ε).

Proof. Suppose that this fails, and for each l ∈ ω find finite sets al ⊂ ω and
functions ul ∈ 2al witnessing the failure of the inequality. There are three cases.

Case 1. The numbers φ(al) are unbounded. Find γ > 0 such that (1 −
ε)(1 − γ) > (1 − ε − δ). Consider the number m = n(B0, γ). Find a number
l ∈ ω such that εφ(al) > φ(al ∩m), so φ(al \m) > (1 − ε)φ(al). Find a point
x ∈ B0 such that x γ-coheres with ul \m. Then x ε + δ-coheres with ul, and
this contradicts the choice of the function ul.

Case 2. The numbers φ(al) are not bounded away from zero. Consider
the number m = n(B0, ε) and find l ∈ ω large enough so that min(al) > m.
Find x ∈ B0 which ε-coheres with ul. This point x contradicts the choice of the
function ul.

Case 3. Both of the previous cases fail. Passing to a subsequence if nec-
essary, we may assume that the sets al converge to some a ⊂ ω, the functions
ul converge to some u ∈ 2a, and there are positive real numbers 0 < r < s
such that for every l ∈ ω, r < φ(al) < s. Note that n < min(a). Let b ⊂ a
be a finite set such that φ(a)− φ(b) < δr/2. Let x ∈

⋃
n∈ω Bn be a point that

ε-coheres with u � b. Let k ∈ ω be such that x ∈ Bk. Consider the nonempty,
and therefore Iφ-positive, set C = Bk ∩ [x � max(b) + 1]. Let γ > 0 be a real
such that γs < δr, and consider the number n(C, γ). Find a number l > n
such that n(C, γ) < min(al \ a) and find a point y ∈ C which γ-coheres with
ul � al \ n(C, γ). The strong subadditivity of φ now shows that y ε+ δ-coheres
with ul, contradicting the choice of the function ul.

A contradiction results in all cases, completing the proof of the claim.

Since the σ-ideal I is σ-generated by compact sets, to verify the bounding
property it is sufficient to show that every I-positive analytic set contains an
I-positive compact subset. Let A ⊂ 2ω be an I-positive analytic set, say A =
rng(f) for some continuous function f : ωω → 2ω. Thinning out the set A
and manipulating the function f if necessary, we may assume that f -images of
nonempty open sets are I-positive. For a (finite or infinite) function h ∈ ω≤ω
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write Dh = {y ∈ ωω : ∀m ∈ dom(h) y(m) ≤ h(m)}. By induction on i ∈ ω
build a function h ∈ ωω such that for every i ∈ ω, every j ≤ i and every t ∈ ωj ,
n(f ′′Dh�i ∩ [t], 2−j+1 − 2−i) ≤ n(f ′′Dh�i+1 ∩ [t], 2−j+1 − 2−i−1). This is easily
possible by a repetitive application of the previous claim. It will be enough to
show that the compact set f ′′Dh ⊂ A is Iφ-positive.

To this end, choose positive reals εi > 0 and finite partial functions uji : ω →
2 such that j < min(dom(uji )); I must produce a point y ∈ Dh such that for

every i ∈ ω, the point f(y) εi-coheres with some uji . To do this, by induction
on i ∈ ω build sequences ti ∈ ω<ω so that

• 0 = t0 ⊂ t1 ⊂ . . . and the sequences remain below h;

• for every z ∈ [ti+1], the point f(z) εi-coheres with some function uji .

Once the induction is performed, setting y =
⋃
i ti will complete the proof.

Suppose ti has been found. Find k > |ti| such that 2−k+1 < εi and find
a sequence s ∈ ωk extending ti below the function h. Consider the number
j = n(f ′′[t], 2−j) and the function uji . By the construction of the function h, for
every m there must be a point ym ∈ Dh�m ∩ [s] such that f(y) εi-coheres with

uji . Some subsequence of the points 〈ym : m ∈ ω〉 converges to some z ∈ Dh,

and then f(z) also has to εi-cohere with uji . Choose an initial segment ti+1 ⊂ z
longer than ti such that all points in f ′′[ti+1] εi-cohere with uji . This completes
the induction step and the proof of (2).

For (3), let A ⊂ K(2ω) be the collection of generating compact subsets of Iφ.
This is a Gδσ collection of compact sets, and it is clearly a subset of Iφ. I must
show that A contains all countable compact sets. This will be accomplished by
proving a stronger statement that has the virtue of surviving the induction on
the Cantor-Bendixson rank. A provisional definition: if K ⊂ 2ω is a set, ε, δ > 0
are positive real numbers and a ⊂ ω is a set, say that a is K, ε, δ-good if for
every set c ⊂ a of φ-mass > δ, no point x ∈ K 1

2 + ε-coheres with any of the
two flipping functions on the set c. By the flipping functions I mean the two
functions on the set c whose values constantly oscillate between 0 and 1.

Claim 4.8. For every countable compact set K ⊂ 2ω, all positive numbers
ε, δ > 0 and every set a ⊂ ω with φ(a) = ∞ there is b ⊂ a such that φ(b) = ∞
and b is K, ε, δ-good.

Proof. By induction on the Cantor–Bendixson rank of K. For the basis of
induction, if the rank is 1 (and so K is finite), then there is a set b ⊂ a such
that φ(b) = ∞ on which all elements of K are constant and 1

min(b)+1 < εδ.

Then, the set b is K, ε, δ-good: for every set c ⊂ b with φ(c) > δ, every flipping
function u on c and every x ∈ K, since x � c is constant and the φ-masses of
singletons decrease, it must be the case that φ({m ∈ c : x(m) = u(m)}) <
1
2φ(c) + φ({min(c)}) < 1

2φ(c) + εδ < ( 1
2 + ε)φ(c) as required.

For the induction step, suppose that K ⊂ 2ω is a countable compact set and
the statement of the claim has been verified for all countable compact sets of
smaller rank. It is enough to check the case in which K has a single point (call
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it y) of the highest rank–if there are finitely many such points then decompose
K into finitely many compact pieces, each with a single point of the highest
rank and perform the thinning of the set a repeatedly for each of these pieces.
First, thin out the set a if necessary, we may assume that y � a is constant. By
induction on i ∈ ω build sets ai, bi ⊂ ω so that

I1 a ⊃ a0 ⊃ a1 ⊃ . . . are all sets with infinite φ-mass;

I2 bi are finite sets with 1
4εδ < φ(bi) < 1

3εδ,
1

min(b0)
< 1

3εδ, max(bi) <

min(bi+1), and bi ⊂ ai;

I3 the set ai is K ∩ [y � ia(1− y(i))], 13ε,
1
3εδ-good.

This is easy to do, using the fact that the statement of the claim has been
verified for all sets K ∩ [y � ia(1 − y(i))], which have rank smaller than K. In
the end, let b =

⋃
i bi; I claim that this is the required K, ε, δ-good set.

It is clear that φ(b) = ∞ by the demand I2. Suppose that c ⊂ b is a finite
set with φ(c) > δ, u is a flipping function on c and x ∈ c. If x = y then
certainly x does not 1

2 + ε-cohere with u as x � c is constant, just as in the first
paragraph of this proof. If x 6= y then find the least i ∈ ω such that x(i) 6= y(i)
and consider the sets c0 = c ∩

⋃
j∈i bj , c1 = c ∩ bi, and c2 = c \

⋃
j≤i bj . Now,

x � c0 is constant and so φ({m ∈ c0 : x(m) = u(m)}) < 1
2φ(c0) + 1

3εδ. Also,
φ(c1) < 1

3εδ. For the set c2, there are two cases: either φ(c2) < 1
3εδ, or else

φ({m ∈ c2 : x(m) = u(m)}) < ( 1
2 + ε

3 )φ(c2) by the demand I3 since c2 ⊂ ai+1.
In both cases, we conclude that φ({m ∈ c : x(m) = u(m)}) < ( 1

2 + ε)φ(c) as
desired.

Now suppose that K is a countable compact set, and use the claim to find
a set a ⊂ ω such that φ(a) = ∞ and a is K, 14 , 1-good. Thus, for every n ∈ ω
there is a finite set an ⊂ a with n < min(an) and a function u ∈ 2a (namely, a
flipping function on an) such that no point of K 3/4-coheres with un. We have
just verified that K ∈ A.

For (4), let G be a random graph on ω, let φ be the submeasure on ω which
assigns the chromatic number of G � b to every set b ⊂ ω, and let a ⊂ ω be an
infinite G-independent set. I will show that PIφ  ẋgen � a is a Cohen real. To
this end, suppose that O ⊂ 2a is a dense open set; it will be enough to prove
that the set {x ∈ 2ω : x � a /∈ O} belongs to Iφ.

For every number n ∈ ω find a finite set an ⊂ a with n < min(an) and a
function un ∈ 2an such that [un] ⊂ O in 2a. This is possible as the set O is
open dense. Now, for every number n ∈ ω find a finite set bn ⊂ ω such that
n < min(bn), an ⊂ bn, and G � b is a cycle of odd length. Thus, φ(bn) = 3 while
the φ-mass of any proper subset of bn is at most 2. Let vn ∈ 2bn be any function
such that vn � an = un. The number ε = 1/3 and functions vn for n ∈ ω now
witness that {x ∈ 2ω : x � a /∈ O} ∈ Iφ as desired.
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5 The weak Sacks property

The simplest case of the overspill property arises when the overspill ordinal is
equal to 2; in other words, Player I has winning strategies that use finite sets
only. In a remarkable turn of events, this feature can be immediately translated
into a preexisting forcing property.

Definition 5.1. A forcing P is said to have the weak Sacks property if for
every function f ∈ ωω in the P -extension there is a ground model infinite set
a ⊂ ω and a ground model function g with domain a such that for every n ∈ a,
|g(n)| ≤ 2n and f(n) ∈ g(n).

The weak Sacks property is an obvious weakening of Sacks property which
requires a = ω [1, Definition 6.3.37]. It clearly implies the bounding property,
and in a suitably definable case, its conjunction with adding no independent
reals is in fact equivalent to the conjunction of the bounding property and P-
point preservation [14]. The main point here is

Theorem 5.2. Let I be a Π1
1 on Σ1

1 σ-ideal on a Polish space X such that the
poset PI is proper and every I-positive analytic set contains an I-positive Borel
subset. Then the following are equivalent:

1. PI has the weak Sacks property;

2. I has the overspill property with the overspill ordinal equal to 2.

Proof. (2) immediately implies (1). Suppose that B ∈ PI is a condition and ẏ
a name for a point in the Baire space ωω. Since the forcing PI is bounding,
there is a compact I-positive set C ⊂ B and a continuous function f : C → ωω

such that C  ẏ = ḟ(ẋgen) and Player I has a winning strategy σ in the game
G(Kℵ0 , I, C) that uses only finite sets as moves. Now consider the counterplay
against the strategy σ in which Player II at round n finds a number m = mn such
that 2m > |Kn| and plays an open set On covering Kn on which the continuous
function x 7→ f(x)(m) takes fewer than 2m many values, collected in some set
g(m) of size < 2m. In the end, the result of the play is an I-positive compact
set D ⊂ C, and, writing a = {mn : n ∈ ω}, it forces ∀n ∈ a ẏ(n) ∈ ǧ(n) as
desired.

The other direction is more difficult. Suppose that (1) holds and (2) fails
in some closed set C ⊂ X × ωω with I-positive projection. Use the bounding
property to find a compact I-positive set B and a continuous function h : B → C
such that every x ∈ B is the first coordinate of h(x). Use the bounding property
to thin out B further if necessary so that all open sets from the countable basis
of the space X are relatively clopen in B. Note that (2) fails in the set B as
well, since any winning strategy for Player I in G(Kℵ0 , I, B) is transported by
h to a winning strategy in the game G(Kℵ0 ,KI , C) without increasing the rank
of the sets used. Thus, it must be the case that Player II has a winning strategy
σ in the game G similar to G(Kℵ0 , I, B) except Player I is allowed to play finite
sets only in the game G. Now, by induction on n ∈ ω build increasing finite

18



sets en of finite plays of the game G in which Player II follows the strategy σ
and, whenever t ∈ en is a play with the last move the strategy σ made in it a
certain open set O, whenever K ⊂ O ∩B is a set of size 2n then there is a one
round extension s of t in the set en+1 such that the last move of strategy σ in
s contains K as a subset.

In order to see how to make the induction step, choose t ∈ en and note
that the set [O ∩ B]2

n

is compact, and the set U = {P 2n :there is a move
K ∈ [O ∩ B]2

n

of Player I that provokes the strategy σ to play P} covers it,
since every set of size 2n will provoke σ’s answer that covers it. A compactness
argument will yield a finite subcover of U , which will lead immediately to the
construction of the finite set en+1 on the next stage of induction.

Once the induction is complete, consider the function f defined on the set
B so that f(x)(n) = the intersection of the collection of those open sets used
as last moves of plays in the set en to which x belongs. I claim that the name
ḟ(ẋgen) violates the weak Sacks property: there is no condition B′ ⊂ B, with
an infinite set a ⊂ ω and a function g on a such that for every n ∈ a, |g(n)| < 2n

and B′  ḟ(ẋgen)(n) ∈ ǧ(n). Suppose for contradiction that such C, a, g exist
and thin out B′ so that for every x ∈ B′ and every n ∈ a, f(x)(n) ∈ g(n).
Let {ni : i ∈ ω} enumerate the set a in an increasing order and by induction
on i build plays ti ∈ eni so that t0 ⊂ t1 ⊂ . . . , ti+1 is a one move extension
of ti, and its last move still contains C as a subset. If this succeeds, then in
the end the result of the play

⋃
i ti contains B′ as a subset and Player I won,

contradicting the assumption that σ was a winning strategy for Player I. The
induction step is simple: given ti, find a set K ⊂ B′ of size 2ni+1 such that the
values f(x)(ni+1) for x ∈ K exhaust all possibilities in C. Note that there are
fewer than 2ni+1 possibilities for this value at the set B′ since they are controlled
by the function g. By the construction of the set eni+1

, there must be a one
round extension ti+1 of ti such that the last move O on it contains K as a
subset. But then, O also contains C as a subset: for every point x ∈ B′, there
is x′ ∈ K such that f(x)(n) = f(x′)(n), and by the definition of the function f ,
x ∈ f(x)(n) = f(x′)(n) ⊂ O as desired!

This theorem yields many examples of σ-ideals with the overspill property,
since Sacks or weak Sacks property are fairly common in the realm of definable
forcing. Thus, the σ-ideal σ-generated by Borel subsets of 2ω consisting of
pairwise non-modulo-finite-equal sequences has the overspill property, since the
quotient forcing is proper and has the Sacks property [13, Section 4.7.1].

6 The σ-ideal generated by H-sets

In this section, I will apply the work of previous sections to obtain an indepen-
dence result for two σ-ideals from harmonic analysis. Let T be the unit circle,
understood as the group R/2πZ.

Definition 6.1. A set A ⊂ T is a set of uniqueness if every trigonometric series
converging to zero pointwise off A is trivial. Uσ is the σ-ideal σ-generated by
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closed sets of uniqueness.

Fourier showed that the empty set is a set of uniqueness, and Cantor proved
that every countable closed set is a set of uniqueness. While it is not true that
the union of two sets of uniqueness is a set of uniqueness, and it is not known
whether this holds for Borel sets, Bary [2] showed that the union of countably
many closed sets of uniqueness is a set of uniqueness.

Definition 6.2. A set A ⊂ T is an H-set if there is an infinite set b ⊂ ω and
a nontrivial open set O ⊂ T such that for every n ∈ b, nA ∩ O = 0. Hσ is the
σ-ideal σ-generated by H-sets.

Rajchman [10] defined H-sets in a search for perfect sets of uniqueness. He
proved that H-sets are sets of uniqueness, and since the closure of an H-set is
again an H-set, it follows that Hσ ⊂ Uσ. He also showed that the Cantor middle
third set is an H-set, producing a perfect set of uniqueness. The combinatorics
of both H-sets and sets of uniqueness is quite complicated [5]. I will show

Theorem 6.3. Suppose that the Generalized Continuum Hypothesis holds and
κ ≥ ℵ1 is a regular cardinal. Then there is a cardinal preserving forcing exten-
sion in which cov(Uσ) = ℵ1 and cov(Hσ) ≥ κ.

Proof. The plan of attack is straightforward. Consider the quotient forcing PHσ
of Borel Hσ-positive sets ordered by inclusion. Hσ turns out to be a Π1

1 on Σ1
1

σ-ideal σ-generated by closed sets, with the overspill property; the poset PHσ is
bounding and preserves Baire category. Consider the countable support product
P of κ many copies of PHσ . This is a proper bounding forcing preserving Baire
category; a standard argument shows that it is ℵ2-c.c. and therefore preserves
all cardinals. It is not difficult to show that P  cov(Hσ) ≥ κ, since any H-set
in the extension can cover at most countably many among the κ many PHσ -
generic points added by the product. Most importantly, a result of Loomis [7]
shows that there is an analytic (in fact Gδσ) set A ⊂ K(T) that contains all
countable closed sets and consists only of sets of uniqueness; in other words,
the σ-ideal Uσ does not have the overspill property. By Theorem 3.7, in the
P -extension, T =

⋃
(A ∩ V ) and therefore cov(Uσ) = ℵ1.

In order to fill in the details of this plan, I must first prove the requisite
properties of the poset PHσ . To do that, I will consider a different poset that
seems to have nothing to do with harmonic analysis. Let ω =

⋃
k ak be a

partition into infinite sets, and let I be the σ-ideal on 2ω σ-generated by sets
K ⊂ 2ω for which there is k ∈ ω such that for every n ∈ ω there is m > n in
the set ak and b ∈ 2 such that for every x ∈ K, x(m) = b.

Claim 6.4. I is a Π1
1 on Σ1

1 σ-ideal with the overspill property, and the quotient
forcing PI is proper.

Proof. Observe that I is σ-generated by
⋃
k Ik where each Ik is a σ-ideal on 2ω

σ-generated by sets K ⊂ 2ω such that for every n ∈ ω there is m > n in ak
and b ∈ 2 such that for every x ∈ K, x(m) = b. The σ-ideals Ik are pairwise
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isomorphic, and they have been treated in Theorem 4.2, case α = 1. Thus, they
are σ-generated by closed sets, Π1

1 on Σ1
1, and have the overspill property. The

overspill property of I then follows from Theorem 3.8.

The quotient poset PI is quite complicated, in particular, it seems to be
highly inhomogeneous. It can be combinatorially presented as the poset of
those binary trees T ⊂ 2<ω such that for every node t ∈ T and every number
k ∈ ω there is a number m ∈ ω such that for every n ∈ ak greater than m there
are extensions s0, s1 of t in the tree T such that s0(n) = 0 and s1(1) = 1.

To see the connection between the poset PI and PHσ , enumerate the nontriv-
ial rational open intervals of T by {Ok : k ∈ ω} and consider the map h : T→ 2ω

defined by h(x)(m) = 0 if nx ∈ Ok, where m is the n-th element of ak. It is
immediate that h is a one-to-one Borel function, thus its range rng(h) ⊂ 2ω is
a Borel set, and the function h also carries the σ-ideal Hσ to I � rng(h). It
immediately follows that the σ-ideal Hσ has all the properties of I claimed in
the above claim.

The rest of the plan outlined in the first paragraph follows from the references
there, with perhaps one exception–that any H-set in the P -extension contains
only countably many PHσ -generic points. To see this, suppose that p  Ȧ is
an H-set, for some condition p ∈ P . By the standard analysis of the countable
support product of definable forcing, there is a countable set b ⊂ κ, Hσ-positive
sets {Kα : α ∈ b} and a Borel set D ⊂ Πα∈bKα×T such that the vertical sections
of D are all H-sets and the condition q ≤ p, q = Πα∈bKα forces Ȧ ⊂ D~xgen�b.
I claim that the only generic points in the product that can belong to the set
Ȧ are indexed by the ordinals in the set b. Indeed, choose a condition r ≤ q
and an ordinal γ ∈ κ \ b; thinning out if necessary I may find a countable set
c ⊃ b ∪ {γ} and Hσ-positive sets {Lα : α ∈ c} such that r = Πα∈cLα. The
set E ⊂ ΠLα, E = {~x : ~x(γ) ∈ D~x�b} is Borel and has Hσ-small sections in
γ-th coordinate. Therefore, it cannot contain a Borel rectangular box with Iα-
positive sides, and by Fact 3.4, it must be the complement of E that contains
such a box s = Πα∈cMα. The condition s ≤ r must force the γ’th generic point
not to belong to Ȧ, as an immediate absoluteness argument shows.

The properties of the poset PHσ beyond those that follow from its overspill
property are not easy to identify. I will just observe that the poset adds an
independent real: if x ∈ T is the generic point and O ⊂ T is a nontrivial
rational interval, then neither the set {n ∈ ω : nx ∈ O} nor its complement in
ω can contain an infinite set by the definition of the σ-ideal Hσ.

As the last point in the paper, I will prove two independence results com-
plementary to Theorem 6.3. They show that there is a great degree of freedom
in moving the covering numbers of the σ-ideals Hσ, Uσ around by forcing.

Theorem 6.5. It is consistent with ZFC that T is covered with ℵ1 many H-sets
while the continuum is very large.
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Proof. It is enough to reach for a model of ZFC in which the continuum is
large while there is a P -point basis of size ℵ1, such as in the product Sacks
extension. For every point x ∈ T there is a set a ⊂ ω in the P-point ultrafilter
such that the points {nx : n ∈ a} converge, and therefore they avoid a certain
nonempty open interval in the circle T. This shows that the ℵ1 many sets
Ba,O = {x ∈ T : ∀n ∈ a nx /∈ O}, as a ranges over the P-point basis of size ℵ1
and O ranges over all possible open intervals with rational endpoints, cover the
circle T, and they are all H-sets.

Theorem 6.6. It is consistent with ZFC that T cannot be covered by fewer than
ℵ2 many closed sets of uniqueness while there are dominating, nonmeager and
nonnull sets of size ℵ1.

Proof. Consider the σ-ideal U0 of sets of extended uniqueness on T. The deep
results of Debs and Saint-Raymond [3] show that this is a σ-ideal σ-generated
by closed sets and it is polar. The collection of closed sets in U0 is coanalytic,
in fact Π1

1-complete by a result of Solovay and Kaufman [5, Section IV.2], and
so by [13, Theorem 3.8.9] the σ-ideal U0 is Π1

1 on Σ1
1. Thus, the quotient PU0

is proper, bounding, preserves Baire category, and outer Lebesgue measure by
[13, Theorem 3.6.2]. Moreover, every set of uniqueness is a set of extended
uniqueness, and so the poset PU0

forces its generic real not to belong to any
ground model coded closed sets of uniqueness. Ergo, starting with a model of
the Continuum Hypothesis and iterating PU0

ω2 many times, a model of the
statement of the theorem is achieved as the various preservation theorems of
[13, Section 6.3] or [1] show.

Note that the poset does not have the Sacks property–by the results of the
previous section, it would imply a particularly strong version of overspill, and
the σ-ideal U0 does not have the overspill property since it includes Uσ and with
it the analytic collection of compact sets of uniqueness discovered by Loomis.
Thus, in the extension, the cofinality of the Lebesgue null ideal is ℵ2. I do not
know if the products of the poset PU0

preserve outer Lebesgue measure, and
therefore I do not know if it is possible to push the continuum beyond ℵ2.
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