Theorem 0.1. There are Σ_{1} sets $A, B \subset \omega$ such that $A \not \leq_{m} B$ and $B \not \leq_{m} A$
Proof. Fix a universal set $W \subset \omega \times\left(\omega^{2}\right)$ with a stratification $\bigcup_{s \in \omega} W_{s}$. Fix a partition $\omega=\bigcup_{e \in \omega} a_{e}$ of natural numbers into infinite sets.

By recursion on $s \in \omega$ build finite sets $A_{s}, B_{s} \subset \omega$ and finite partial functions $w_{s}: \omega \rightarrow \omega^{2}$ (the work) such that, among other things,

- A_{s}, B_{s} increase with respect to inclusion;
- for every $e \in \omega$, if $2 e \in \operatorname{dom}\left(w_{s}\right)$ then $f(2 e)=\langle n, m\rangle$ for a pair $\langle n, m\rangle \in W_{e}$ such that $n \in A_{s} \nless m \in B_{s}$;
- for every $e \in \omega, 2 e+1 \in \operatorname{dom}\left(w_{s}\right)$ then $f(2 e+1)=\langle n, m\rangle$ for a pair $\langle n, m\rangle \in W_{e}$ such that $n \in B_{s} \nleftarrow m \in A_{s}$.

The idea is that the whole construction will be performed by a Turing machine. This together with (1) will guarantee that $A=\bigcup_{s} A_{s}$ and $B=\bigcup_{s} B_{s}$ will be Σ_{1} sets. Moreover, the work w_{s} will converge to some partial function $w: \omega \rightarrow \omega^{2}$ such that for every e such that W_{e} is a graph of a total function, both $2 e$ and $2 e+1$ will be in the domain of w. It then has to be the case that A is not many-one reducible to B and vice versa: every putative recursive reduction is realized as W_{e} for some $e \in \omega$, and then the second and third item show that $w(2 e)$ and $w(2 e+1)$ are pairs witnessing that W_{e} does not reduce A to B and vice versa.

One important thing to understand is that the work w_{s} will not monotonically increase to w, but converge to w in some unpredictable fashion. As a result, w will not be a Σ_{1} function.

To describe the recursion, I need some provisional definitions. If $e \in \omega$, I will say that the requirement $2 e$ needs attention at stage s if $2 e \notin \operatorname{dom}\left(w_{s}\right)$ and there is a pair $\langle n, m\rangle \in\left(W_{s}\right)_{e}$ such that $n \in a_{2 e}, n \notin A_{s}$, and n is not equal to any number on the pairs in the set $\operatorname{rng}\left(w_{s} \upharpoonright 2 e\right)$. Similarly, the requirement $2 e+1$ needs attention if $2 e+1 \notin \operatorname{dom}\left(w_{s}\right)$ and there is a pair $\langle n, m\rangle \in\left(W_{s}\right)_{e}$ such that $n \in a_{2 e+1}, n \notin B_{s}$, and n is not equal to any number on the pairs in the set $\operatorname{rng}\left(w_{s} \upharpoonright 2 e+1\right)$.

Now, the recursion can be succintly described as follows. Start with $A_{0}=$ $B_{0}=w_{0}=0$. Suppose that A_{s}, B_{s}, w_{s} have been found. Look for the least requirement d (the requirement of highest priority) which needs attention at stage s. This is a finite search as the set W_{s} is finite. If the search comes up empty, set $A_{s+1}=A_{s}, B_{s+1}=B_{s}, w_{s+1}=w_{s}$. Otherwise, the description divides according to whether d is even or odd; let me describe the case when d is even, $d=2 e$. Find the least pair $\langle n, m\rangle$ which witnesses the fact that $2 e$ needs attention; again, this is a finite search. Let $w_{s+1}=\left(w_{s} \upharpoonright 2 e\right) \cup\{\langle 2 e,\langle n, m\rangle\}$. If $m \in B_{s}$ then let $A_{s+1}=A_{s}, B_{s+1}=B_{s}$; if $m \notin B_{s}$ then let $A_{s+1}=A_{s} \cup\{n\}$ and $B_{s+1}=B_{s}$. If d is odd, $d=2 e+1$, exchange the role of A, B.

The first important observation is that the recursion demands listed in the bulleted items above survive each stage of the recursion. The second observation is that $w_{s} \subset w_{s+1}$ may fail; the tail of w_{s} past d is erased, and the work done there is said to have been injured.

We now have to verify the expectations set out initially about the limit w of w_{s}.

Claim 0.2. For every $e \in \omega$ there is a stage $s_{e} \in \omega$ such that for all $s \geq s_{e}$, $w_{s} \upharpoonright e=w_{s_{e}} \upharpoonright e$.

Proof. By induction on $e . s_{0}=0$ works. Suppose the claim is known for e. If for all $s \geq s_{e}, e \notin \operatorname{dom}\left(w_{s}\right)$, then $s_{e+1}=s_{e}$. Otherwise, pick the least $s \geq s_{e}$ such that $e \in \operatorname{dom}\left(w_{s}\right)$ and let $s_{e+1}=s$. In this latter case, to see that s works as desired, observe that the work done at e is never injured past stage s, since such an injury would require that some work of priority higher than e is done past stage s, and by induction hypothesis this is not the case.

The claim lets us define the limit $w=\bigcup_{e} w_{s_{e}} \upharpoonright e$.
Claim 0.3. $A \subset \bigcup_{e} a_{2 e}, B \subset \bigcup_{e} a_{2 e+1}$, and for each e, the sets $A \cap a_{2 e}$ and $B \cap a_{2 e+1}$ are finite.

Proof. The only time a number n gets placed in the set A, it is for a requirement $2 e$ of highest priority, and one of the demands there is that $n \in a_{2 e}$. Thus $A \subset \bigcup_{e} a_{2 e}$. Also, by the previous claim, the requirement $2 e$ has highest priority only finitely many times, so $A \cap a_{2 e}$ is finite.

Claim 0.4. For every $e \in \omega$ such that W_{e} is a total function, both $2 e$ and $2 e+1$ are in $\operatorname{dom}(w)$.

Proof. Let me deal with case of $2 e$. Look at the set $a_{2 e} \cap A$ together with set of all numbers that appear in the pairs in the range of $w_{s_{2 e+1}} \upharpoonright 2 e$. This is a finite set. Thus, there has to be a number $n \in a_{2 e}$ which is not in it. Since W_{e} is a total function, there is a number m such that $\langle n, m\rangle \in W_{e}$. Suppose towards contradiction that $2 e \notin \operatorname{dom}\left(w_{s_{2 e+1}}\right)$. Then, the triple $\langle e,\langle n, m\rangle\rangle$ will appear in W_{s} for some $s>s_{2 e+1}$ and at that stage the pair $\langle n, m\rangle$ stands witness to the fact that the requirement $2 e$ has the highest priority and will be placed in $\operatorname{dom}\left(w_{s+1}\right)$, which contradicts the choice of $s_{2 e+1}$.

The proof of the theorem is now complete.

