
Interpreter for topologists
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Abstract: Let M be a transitive model of set theory. There is a canonical in-
terpretation functor between the category of regular Hausdorff, continuous open
images of Čech-complete spaces of M and the same category in V , preserving
many concepts of topology, functional analysis, and dynamics. The functor can
be further canonically extended to the category of Borel subspaces. This greatly
simplifies and extends similar results of Fremlin.
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1 Introduction

A powerful trick set theorists may employ in proving a statement φ with parameters is
to move to a different model of set theory, prove that φ holds there, and then pull back
the statement to the original universe. The trick requires knowledge about how the
parameters and the formula φ survive the transportation between various models of set
theory. While there are deep results in this direction such as Shoenfield absoluteness
[5, Theorem 25.20] or Woodin’s Σ2

1 absoluteness [6, Theorem 3.2.1], the current wave
of applications of logic and set theory to complicated topological structures seems
to present new challenges here. In this paper, I will show that for transitive models
M ⊂ V of set theory with the axiom of choice, there is an intepretation functor from
a broad category of topological structures in the model M to a similar category in V .
The functor satisfies most if not all reasonable demands on canonicity, it commutes
with most natural topological operations, and happily interacts with many fundamental
theorems of various areas of mathematics. As a result, a rich theory is obtained that
supports and clarifies various absoluteness tricks popular among set theorists, and
extends them to a much larger category of spaces than the usual Polish spaces.

The definition of interpretation of a topological space is natural, but necessarily a little
verbose. It is reminiscent of the construction of Čech-Stone compactification. Just to
be explicit, a topological space is a pair 〈X, τ〉 where X is a set and τ is a collection
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of its “open" subsets which is closed under arbitrary unions and finite intersections. I
will always require the topological spaces in this paper to be T0 .

Definition 1.1 Suppose that M is a transitive model of set theory, M |= 〈X, τ〉 is
a topological space. A topological preinterpretation of X (over M ) is a topological
space 〈X̂, τ̂〉 together with a map π : X → X̂ and π : τ → τ̂ such that

(1) for every point x ∈ X and every set O ∈ τ , x ∈ O if and only if π(x) ∈ π(O);

(2) π commutes with finite intersections and arbitrary unions of open sets in the
model M : if M |= O =

⋃
i∈I Oi where O,Oi ∈ τ , then π(O) =

⋃
i∈I π(Oi);

(3) π(0) = 0 and π(X) = X̂ ;

(4) π′′τ is a basis of the topology τ̂ .

It is easy to observe that the two parts of the map π can be reconstructed from each
other if (1-3) hold, which justifies using the same letter for the map on points and on
open sets in the model M . There are many preinterpretations of a given topological
space and it is necessary to organize them.

Definition 1.2 Suppose that M |= 〈X, τ〉 is a topological space. Suppose that
π0 : X → X̂0 and π1 : X → X̂1 are two preinterpretations of X . Say that π0 ≤ π1 if there
is a reduction h : X̂0 → X̂1 ; this is a map such that π1 = h ◦π0 and h−1π1(O) = π0(O)
for every open set O ∈ τ . Say that π0, π1 are equivalent if there is a reduction h which
is at the same time a bijection of X̂0 and X̂1 .

It is not difficult to show that for preinterpretations π0, π1 , they are equivalent if
and only if each of them is reducible to the other. I will not distinguish between two
equivalent preinterpretations. The stage is now set for the definition of an interpretation
as the most complicated preinterpretation of a given space.

Definition 1.3 Suppose that M |= 〈X, τ〉 is a topological space. An interpretation of
X is the ≤-largest preinterpretation, if it exists.

Definition 1.4 Suppose that M |= X,Y are topological spaces and f : X → Y is a
continuous function. Suppose that π : X → X̂ and χ : Y → Ŷ are interpretations. An
interpretation f̂ of f is a continuous function from X̂ to Ŷ such that f̂ (π(x)) = χ(y)
whenever f (x) = y.
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The obvious question regarding the existence and uniqueness of interpretations is
answered in the affirmative in the very wide case of regular Hausdorff spaces. However,
one also has to consider the general expectation that the notion of interpretation will
commute with the most usual topological operations. To satisfy expectations of this
kind, it appears to be necessary to restrict attention to the category of interpretable
spaces: the regular Hausdorff continuous open images of Čech-complete spaces. In
this category, I develop a completely harmonious theory of interpretations, starting
with continuous functions, interpretations of Borel sets, subspaces, product etc. all the
way to interpretations of structures such as duals of Banach spaces etc. I supply a long
list of natural operations which commute with the interpretation functor, and a long list
of properties which are inherited by the interpretations from their original spaces and
structures.

To deal with the very large class of spaces which are not interpretable, I develop
the notion of an interpretable Borel space: this is a topological space with a Borel
structure which is a Borel subspace of an interpretable space. An interpretation of a
Borel interpretable space is required to commute not only with finite intersections and
arbitrary unions of open sets, but also with complements and countable unions and
intersections of Borel sets. Many expected commutativity properties do hold for the
interpretation functor on the class of Borel interpretable spaces.

In preexisting work, Fremlin [3] described a similar interpretation functor for topo-
logical spaces in the special case where V is a generic extension of M . The Fremlin
interpretation and interpretations of the current paper coincide on interpretable topo-
logical spaces and interpretable Borel spaces, and this is proved in Theorem 16.1.
The current treatment has the advantage of avoiding the forcing relation altogether.
As a result, the theory is easier to develop and understand, and there is a number of
central results with no counterpart in Fremlin’s work, such as Theorems 9.1 (interpre-
tation of an open continuous map is open continuous), 8.3 (the interpretation map is
Π1 -elementary embedding between topological structures), 13.1 (interpreting through
an intermediate model is the same as interpreting with one step), or 12.2 (regarding
interpretations of Banach spaces and their duals).

The terminology of the paper follows the set theoretic standard of [5]. A tree is a partial
ordering 〈T,≤〉 such that for every t ∈ T the set {s ∈ T : s ≥ t} is finite and linearly
ordered by ≤. All trees are assumed to have a largest element, denoted by 0. A branch
b through the tree T is an inclusion-maximal linearly ordered subset of T , and for
every n ∈ ω I will write b � n for the unique element t ∈ b (if it exists) such that
the set {s ∈ T : s ≥ t} has size n. One piece of parlance is used constantly. Suppose
that M is a model of set theory and M |= 〈X, τ〉 is a topological space. Suppose
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that 〈X̂, τ̂〉 is a topological space. If π : X → X̂ is a map, I say that π extends to an
interpretation if there is a way of defining π for all open sets such that the resulting
map is a topological interpretation of 〈X, τ〉 to 〈X̂, τ̂〉. The extension is unique as
described in Definition 5.12.

2 Breakdown of results

The paper is quite long and contains many results. To simplify navigation for the
reader, I include the list of main results in an instructive order in this section. The
starting point is the proof of existence of interpretations of topological spaces and of
continuous functions between them.

Theorem 2.1 (Theorem 4.1 simplified) Interpretations of regular Hausdorff spaces
exist, they are unique, and they are regular Hausdorff again. (Theorem 4.7 simplified)
Interpretations of continuous functions between regular Hausdorff spaces exist and
they are unique.

It should be stressed that for the general category of regular Hausdorff spaces, the
interpretation functor is fairly poorly behaved: injective functions may cease to be
injective, interpretations may fail to commute with product and so on. Many examples
of pathologies are provided throughout the paper. It is natural to immediately restrict
to various subcategories of interpretable spaces. It turns out that if a space has a certain
completeness feature then the feature typically survives the interpretation process.

Theorem 2.2 The following spaces are interpreted as spaces in the same category:

(1) (Corollary 5.3 simplified) compact Hausdorff spaces;

(2) (Corollary 5.5 simplified) completely metrizable spaces;

(3) (Corollary 5.8) complete uniform spaces as long as the uniformity consists of
countably many covers;

(4) (Corollary 5.10) Čech complete spaces;

(5) (Corollary 5.11) interpretable spaces.

The method of proof also provides for a testable criterion (Proposition 5.13) as to
whether a given map into a “complete” space extends to an interpretation or not. Next,
I spend a great deal of effort to show that the interpretation functor commutes with
natural operations on topological spaces.
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Theorem 2.3 In the category of interpretable spaces, the interpretation functor com-
mutes with the following operations:

(1) (Corollary 6.10 simplified) taking a closed or Gδ subspace;

(2) (Theorem 7.2 simplified) product of compact Hausdorff spaces of any size;

(3) (Theorem 7.4 simplified) product of countably many spaces;

(4) (Corollary 9.2 simplified) quotients modulo an open equivalence relation;

(5) (Corollary 9.6 simplified) quotients modulo a perfect equivalence relation;

(6) (Theorem 11.1 simplified) the C(X,Y) operation where X is compact Hausdorff,
Y is completely metrizable, and the topology is the compact-open one;

(7) (Theorem 10.1 simplified) the hyperspace operation on interpretable spaces.
Here, the hyperspace is understood to consist of nonempty compact sets and the
topology is Vietoris.

As soon as one steps out of the interpretable category, the commutativity features begin
failing. Thus, the commutation with product may fail for Baire space times the space
of wellfounded trees or the product of Sorgenfrey line with itself. The commutation
with uncountable product will fail for ωω1 .

It is interesting to see how the interpretation functor acts on various topological struc-
tures. One common circumstance is that various predicates on such structures are
Borel, and a theorem to the effect that they are interpreted faithfully is needed:

Theorem 2.4 (Theorem 6.1) Let M be a transitive model of set theory and M |= 〈X, τ〉
is an interpretable space, and B is the σ -algebra of Borel subsets of X . Let π : X → X̂
be an interpretation, and let B̂ be the σ -algebra of Borel subsets of X̂ . There is a
unique extension π : B → B̂ commuting with complements and countable unions and
intersections in the model M .

Now, define an interpretable structure to be a tuple X = 〈Xi : i ∈ I,Rj : j ∈ J, fk : k ∈
K〉 such that Xi are interpretable spaces, Rj are Borel relations between the various
spaces Xi for various finite arities, and fk are continuous functions between the various
spaces, with closed or Gδ domains and various finite arities. Interpretable structures
can be naturally interpreted between transitive models of set theory and its extensions
via the previous theorems. The main result in this direction is

Theorem 2.5 (Analytic absoluteness, Theorem 8.3) Suppose that M is a transitive
model of set theory and M |= X is an interpretable structure. Let π : X → X̂ be an
interpretation. Then π is a Σ1 -elementary embedding.
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In particular, structures such as topological groups and semigroups,their continuous
actions, Banach spaces, C∗ algebras are interpreted faithully as structures of the same
class, as long as their functions are continuous and their relations are Borel, the
axiomatization of their class consists of Σ1 and Π1 sentences, and their domains are
interpretable. I also prove a version of Shoenfield absoluteness, Theorem 8.6, which
shows that in many cases, if a Π1 formula defines a closed set C in a structure X, then
it defines the interpretation of the closed set C in the interpreted structure X̂.

The main source of topological structures is functional analysis. There, I prove for
example

Theorem 2.6 (Theorem 12.5 simplified) The interpretation of the unit ball in the dual
space of a normed Banach space X with weak∗ topology is the unit ball with the weak∗

topology of the dual space of the interpretation of X .

Theorem 2.7 (Theorem 12.2 simplified) The interpretation of the normed dual of a
uniformly convex Banach space X is the normed dual of the interpretation of X .

Question 2.8 Is an interpretation of a reflexive space always reflexive? Is the normed
dual of a reflexive space always interpreted as the normed dual of the interpretation?

Question 2.9 (Ilijas Farah) Is the interpretation of a simplex again a simplex?

An important feature of interpretations is that they behave in a predictable way if more
models of set theory are present:

Theorem 2.10 Suppose that M0 ⊂ M1 are transitive models of set theory, M0 |=
〈X0, τ0〉 is an interpretable space, M1 |= π0 : 〈X0, τ0〉 → 〈X1, τ1〉 is an interpretation
over M0 , and π1 : 〈X1, τ1〉 → 〈X2, τ2〉 is an interpretation over M1 . Then π1 ◦
π0 : 〈X0, τ0〉 → 〈M2, τ2〉 is an interpretation over M0 .

The conclusion of this theorem may fail for such spaces as ωω1 or RR .

Theorem 2.11 Suppose that X is an interpretable space, and M is an elementary
submodel of some large structure containing X as an element and some basis of X as
an element and a subset. Then the identity map from X ∩M to X can be extended to
an interpretation of XM to X .
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The conclusion fails for every non-Polish second countable space X and countable
model M .

As a final note, I list the regularity properties of topological spaces which are preserved
under interpretations.

Theorem 2.12 (Corollary 14.8) The following properties of interpretable spaces are
preserved under interpretations:

(1) local Lindelöfness;

(2) local connectedness;

(3) local paracompactness;

(4) local metacompactness.

In Section 15 I show how the interpretation functor can be canonically extended to
topological spaces which are not interpretable, such as Cp(R). Instead of viewing
them as pure topological spaces, equip them with a Borel structure and then ask for the
interpretations to respect the countable union and intersection operations on Borel sets.
The basic features of the theory of interpretations of Borel spaces are parallel to pure
topological spaces. I also show that in the class of proper bounding forcing extensions,
this notion essentially coincides with interpretations of pure topological spaces.

Theorem 2.13 (Theorem 15.7 simplified) Suppose that V is a proper bounding ex-
tension of V . Suppose M |= 〈X, τ,B〉 is a regular Hausdorff space with a Borel
σ -algebra. If π : 〈X, τ〉 → 〈X̂, τ̂〉 is a interpretation of the topological space then π

extends to an interpretation of the Borel space.

Finally, in Section 16 I prove that the interpretations introduced by Fremlin [3] coincide
with the interpretations introduced in the present paper in the special case when V is a
generic extension of M in the appropriate categories of spaces.

3 The category of interpretable spaces

The basic stepping stone for the interpretation theory developed in this paper is the
category of Čech complete spaces:

Definition 3.1 A topological space X is Čech complete if it is a Gδ subspace of a
compact Hausdorff space.



8 Jindřich Zapletal

Thus, every compact Hausdorff space is Čech complete. So is every locally compact
space (as its Alexandroff compactification is a Hausdorff space) and every completely
metrizable space (by Fact 3.3 below). A classical internal characterization of the class
of Čech complete spaces will be useful:

Definition 3.2 Let X be a topological space. A complete sequence of covers for X
is a sequence 〈Cn : n ∈ ω〉 of open covers such that for every collection F of closed
subsets of X which has the finite intersection property and for every n ∈ ω contains a
subset of cl(On) for some On ∈ Cn , the intersection

⋂
F is nonempty.

Fact 3.3 [2, Theorem 3.9.2] A regular Hausdorff space is Čech complete if and only
if it has a complete sequence of covers.

The category in which the interpretation functor is at its most natural is a slight extension
of the category of Čech complete spaces:

Definition 3.4 A topological space X is interpretable if it is regular Hausdorff and an
open continuous image of a Čech complete space.

Thus, every Čech complete space is interpretable. The class of interpretable spaces
was investigated under various names (sieve complete, λb ) in early 70’s [1, 11, 10] and
a useful internal characterization was provided:

Definition 3.5 Let X be a topological space. A sieve is a tuple 〈S,O(s) : s ∈ S〉 where
S is a tree with a largest node 0, O(0) = X , and for every s ∈ S , O(s) ⊂ X is an
open set and O(s) =

⋃
{O(t) : t ∈ S is an immediate successor of s}. A sieve S is

complete if for every infinite path b ⊂ S and every collection F of closed subsets of
X which has the finite intersection property and for every n ∈ ω contains a subset of
cl(O(b � n)) for some On ∈ Cn , the intersection

⋂
F is nonempty. The sieve is strong

if Ō(t) ⊂ O(s) whenever t is an immediate successor of s. The sieve is finitely additive
if for every s ∈ S , the set {O(t) : t is an immediate successor of s} is closed under
finite unions.

Fact 3.6 Let X be a regular Hausdorff space.

(1) [11] X is interpretable if and only if it has a complete sieve;

(2) [7, Lemma 2.3 and 2.4] X is interpretable if and only if it has a sieve which is
complete, strong, and finitely additive;
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(3) [7, Lemma 2.5] A strong sieve 〈S,O(s) : s ∈ S〉 is complete if and only if
whenever b ⊂ S is a branch then the set K =

⋂
n O(b(n)) is compact, and for

every open set O ⊂ X , if K ⊂ O then for some n ∈ ω O(b(n)) ⊂ O holds.

The extent of the class of interpretable spaces is best appreciated from the perspective
of the following theorem, which with the exception of the hyperspace operation is
contained in [7].

Theorem 3.7 The class of interpretable spaces is closed under the following opera-
tions:

(1) a closed subset;

(2) a Gδ subset;

(3) countable product;

(4) hyperspace of compact sets with the Vietoris topology;

(5) perfect and open continuous images as long as they are regular Hausdorff.

A space is locally interpretable if and only if it is locally interpretable.

Proof For the first two items, let X be a compact Hausdorff space, Y ⊂ X its Gδ

subset, and f : Y → Z be an open continuous surjection onto a regular Hausdorff space.
If C ⊂ Z is closed, then D = f−1C ⊂ X is a relatively closed set, f � D : D → C is
open, and D is a Gδ subset of its closure in the space X ; thus, C is interpretable. The
case of Gδ set C ⊂ Z is identical.

For (3), suppose that Xn for n ∈ ω are interpretable spaces, with a complete strong sieve
Sn = 〈Sn,On(s) : s ∈ Sn〉 on each. Consider the product sieve T = 〈T,P(t) : t ∈ T〉 on
the space Y =

∏
n Xn defined as follows. A node of the tree T is a tuple t = 〈sn : n ∈ m〉

for some m ∈ ω such that each sn is an element of m-th level of the tree Sn . The
ordering on the tree T is defined coordinatewise. t = 〈sn : n ∈ m〉 ∈ T define
P(t) = {y ∈ Y : ∀n ∈ m y(n) ∈ On(sn)}. Clearly, T is a strong sieve on Y ; I will use
Fact 3.6(3) to verify that T is complete.

Suppose that b ⊂ T is an infinite branch. Then, for each n ∈ ω , the nodes of Sn

mentioned in the nodes of b form an infinite branch bn ⊂ Sn . Let Kn =
⋂

m On(bn(m));
Kn ⊂ Xn is a compact set by the completeness of the sieve Sn . It is immediate that⋂

m P(b(m)) =
∏

n Kn ⊂ Y is compact. Now suppose that U ⊂ Y is an open set
containing

∏
n Kn . By a compactness argument, there is a number m ∈ ω and open

sets Un ⊂ Xn for n ∈ m such that
∏

n∈m Un ×
∏

n≥m Xn ⊂ U , and Un contains Kn for
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all n ∈ m. The completeness of the sieves Sn for n ∈ m shows that there is a number
k ∈ ω such that On(bn(k)) ⊂ On for all n ∈ m. Then, P(b(k)) ⊂ U as desired in
Fact 3.6(3).

For (4), if X is a topological space, write K(X) of the hyperspace of its nonempty
compact subsets with Vietoris topology. Suppose that X is interpretable, with a
complete finitely additive strong sieve S = 〈S,O(s) : s ∈ S〉 on it. Consider the strong
sieve T = 〈S,P(s) : s ∈ S〉 on K(X), where P(s) = {K ∈ K(X) : K ⊂ O(s)}; this is
indeed a sieve by the finite additivity of S and a compactness argument. I will use
Fact 3.6(3) to show that T is complete on K(X).

Suppose that b ⊂ S is an infinite branch. Write Y =
⋂

n O(b � n) ⊂ X ; by the
completeness of the sieve S , this is a compact subset of X . It is immediate to see that⋂

n P(b � n) = K(Y) ⊂ K(X) and so this set is compact. Suppose that U ⊂ K(X) is an
open set containing K(Y). A compactness argument shows that there must be an open
set O ⊂ X such that Y ⊂ O and {K ∈ K(X) : K ⊂ O} ⊂ U . The completeness of the
sieve S shows that there is an n ∈ ω such that O(b � n) ⊂ O. Then, P(b � n) ⊂ U
and the completeness of the sieve T follows by Fact 3.6(3).

For (5), the case of open images follows straight from the definitions. For the perfect
case, note that if f : X → Y is a perfect surjection then the set C = {K ∈ K(X) : f � K
is constant} is closed. Chase diagrams to show that the map g : C → Y defined by
g(K) =the unique element of f ′′K is continuous and open. Then, use (1, 3, 4) to
conclude that Y is an interpretable space.

For the last sentence, suppose that a space X is locally interpretable. For every point
x ∈ X find an open set Ox ⊂ X and a continuous open surjection fx : Yx → Ox from a
Čech complete space Yx onto Ox . Let Y be the topological sum of the spaces Yx and
f : Y → X be the sum of the mappings fx for x ∈ X . It is not difficult to check that
Y is Čech complete and the function f is a continuous open surjection from Y to X ,
confirming that X is interpretable.

Certain features of the category of interpretable spaces can be verified using the methods
of this paper even though they do not refer to any models of set theory at all:

Theorem 3.8 (1) Every interpretable space X is a continuous open image of a Gδ

subspace of a compact space Z such that the weight of Z is no larger than the
weight of X .

(2) Every second countable interpretable space is Polish.
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Proof Let X be an interpretable space, and fix a compact space Z′ , its Gδ subspace Y ′ ,
and a continuous open surjection f ′ : Y ′ → X . Let κ be the weight of X ; without loss
of generality κ is infinite. Let λ be a regular cardinal such that Hκ contains all objects
named so far. Let M ≺ Hλ be an elementary submodel of size κ which contains all
objects named so far, contains a basis of X as a subset, and a complete sieve on X
as an element. Let M̄ be the transitive collapse of the model M , and X̄, Ȳ ′, Z̄′, f̄ ′ the
images of X,Y ′,Z′, f ′ under the transitive collapse map. Note that the inverse of the
collapse map from X̄ to X is an interpretation of X̄ by Theorem 13.4. Now, let Y,Z ,
and f : Y → X be interpretations of Ȳ ′, Z̄′ and f̄ ′ respectively. Corollary 5.3 shows
that Z is compact; its weight is at most κ since the interpretations of open subsets of
Z̄′ in the model M̄ generate its topology. Y is a Gδ subset of Z by Corollary 6.10 and
the map f is a continuous open surjection by Theorem 9.1. This completes the proof
of (1).

For (2), let X be a second countable interpretable space. Use (1) to find a second
countable compact space Z , its Gδ subset Y , and a continuous open surjection f : Y →
Z . By the Urysohn metrization theorem, all three spaces are metrizable. In particular,
Z is compact Polish and Y as a Gδ subset of a Polish space is Polish as well. By a
theorem of Sierpinski, every metrizable continuous open image of a Polish space is
Polish, so X is Polish as desired.

Note that there are many interesting spaces which are not interpretable.

Example 3.9 The following spaces are not interpretable:

(1) any non-Gδ -subset of a Polish space;

(2) Cp(R), the space of continuous functions from R to R with the pointwise
convergence topology;

(3) RR with the pointwise convergence topology;

(4) the Sorgenfrey line.

Proof For (1), note that a subset of a Polish space is second countable, and so to be
interpretable, by Theorem 3.8(2) it must be Polish. It is well-known that a subset of a
Polish space is Polish in the subspace topology if and only if it is Gδ . For the other
items, the proof of non-interpretability can be in fact derived from some interpretation
pathologies that cannot occur in interpretable spaces. For (2), Example 15.11 shows
that whenever an unbounded real is added, the interpretation of Cp(R) in the generic
extension cannot be extended to the σ -algebra of Borel sets; this does not happen
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for interpretable spaces by Theorem 6.1. For (3), the space RR contains a closed
copy of ωω1 with the product topology. The space ωω1 is not interpretable since
there is a two-step forcing extension V ⊂ V[G] ⊂ V[H] such that interpreting first in
V[G] and then in V[H] does not yield the same result as interpreting ωω1 in V[H]–
Example 13.2; such a thing cannot happen for interpretable spaces by Theorem 13.1.
For (4), whenever a forcing extension adds a new real then the interpretation of the
product of two Sorgenfrey lines is not the product of two copies of the interpretation
of the Sorgenfrey line by Example 7.10; again, this does not occur for interpretable
spaces by Theorem 7.4.

There are important distinctions in the above examples. (2) is naturally viewed as a
Borel subspace of an interpretable space, and for such cases I will find a convenient
way of interpreting it as a Borel topological structure. (3) and (4) exhibit important
pathologies which most likely prevent any attempt at incorporating them in a general
interpretation theory. The third case may behave well if a certain common class of
models is considered; the fourth case is probably hopeless in all but the most trivial
circumstances.

4 The existence theorem

The first order of business is to show that topological and Borel-topological interpreta-
tions exist for a large class of spaces.

Theorem 4.1 Suppose that M is a model of set theory and M |= 〈X, τ〉 is a regular
Hausdorff space. Then the interpretation of 〈X, τ〉 exists, it is unique up to interpreta-
tion equivalence, and it is regular Hausdorff.

Proof First note that some preinterpretations indeed exist–the identity map on X is
one of them. Note also that the target spaces of topological preinterpretations of X
must be regular Hausdorff, since the property is expressible in terms of unions and
intersections of open sets: for every O ∈ τ , O =

⋃
i∈I Oi such that for every i ∈ I

cl(Oi) ⊂ O holds, and the last statement can be expressed as ∃Pi ∈ τ Oi ∩ Pi = 0 and
O ∪ Pi = X .

Consider the set Y of all sets A ⊂ τ such that A is a maximal ideal of open sets: it
contains no finite subcover and is maximal with respect to inclusion. Let χ : X → Y
be the map defined by χ(x) = {O ∈ τ : x /∈ O}. Equip the space Y with the topology
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generated by sets χ(O) = {A ∈ Y : O /∈ A} for O ∈ τ . The space Y is close to
the Wallman extension of X , and in fact equal to it in the trivial case when M = V .
The map χ is most likely not a preinterpretation, but it is nevertheless universal in the
following sense:

Claim 4.2 Suppose that π : 〈X, τ〉 → 〈X̂, τ̂〉 is a topological preinterpretation. Then
there is a unique map hπ : X̂ → Y such that χ = h ◦ π and for every O ∈ τ ,
h−1χ(O) = π(O) holds.

Proof Define a function hπ = h : X̂ → Y by h(x) = {O ∈ τ : x /∈ π(O)}. Use
the regular Hausdorff assumption to show that the value of function of h are in fact
elements of the space Y ; once this is done, the verification of the requested properties
of the map h is trivial.

Since π is a preinterpretation, the set h(x) ⊂ τ cannot contain any finite subcover of
X : such a subcover would be an element of M and its π -image would have to cover
all of X̂ . To show that h(x) is inclusion-maximal, for every O ∈ τ such that x ∈ π(O)
I must produce a set P ∈ h(x) such that O ∪ P = X .

By the regular Hausdorffness of the space X in the model M , M |= O =
⋃

i Oi where
the closure of each Oi is a subset of O, or in other words, there is Pi ∈ τ such that
Oi ∩ Pi = 0 and O ∪ Pi = X . Since π is a preinterpretation, there is an index i such
that x ∈ π(Oi). Then π(Pi) ∩ π(Oi) = 0, in particular Pi ∈ h(x) and Pi ∪ O = X as
desired.

Now, let X̂0 =
⋃
{rng(hπ) : π is a topological preinterpretation of X} ⊂ Y and equip

the set X̂0 with the topology inherited from Y . Let π0 : X → X̂0 be defined by π0(x) =

χ(x), and let π0 : τ → P(X̂0) be defined by π0(O) = χ(O) ∩ X̂0 =
⋃
{h′′ππ(O) : π

is a topological preinterpretation of X}. It is easy to verify that π0 is a topological
preinterpretation of X to which every preinterpretation π is reducible via the map hπ ;
i.e., π0 is the topological interpretation of X .

For the uniqueness of the interpretation, suppose for example that π : 〈X, τ〉 → 〈X̂, τ̂〉
is another topological interpretation. There must be a reduction h : X̂0 → X̂ of π0 to
π . It is easy to observe that hπ ◦ h must be the identity and therefore the reduction h
in fact witnesses the equivalence of the two interpretations.

Example 4.3 Suppose that X is a topological space and P is the poset of its nonempty
open sets ordered by inclusion. If G ⊂ P is a generic filter, in the generic extension
V[G] the map π : X → X ∪ {G} where points of X are mapped to themselves and
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ground model open sets O ⊂ X are mapped to O∪ {G} if G ∈ O and to O otherwise,
is a preinterpretation by a genericity argument. Thus, for every regular Hausdorff
space X which contains no isolated points there is a generic extension in which the
interpretation map of X is not a surjection.

This means that for example the space Q will have have rather counterintuitive inter-
pretations in generic extensions containing Cohen or even unbounded reals. Note that
the space Q does not belong to the interpretable category.

Example 4.4 Suppose that M |= 〈X, τ〉 is a space whose topology is generated by
a metric d . If π : X → X̂ is an interpretation, one can define a metric d̂ on X̂ by
setting d̂(x0, x1) ≤ ε if x0, x1 belong to π(O0), π(O1) respectively for some open sets
O0,O1 ∈ τ such that y0 ∈ O0 and y1 ∈ O1 imply d(y0, y0) < ε. It is not difficult to
see that d̂ is a metric generating the topology of X̂ , π′′X ⊂ X̂ is dense, and d̂ ◦ π = d .
This means that the interpretation of a metrizable space is again metrizable and for
example the interpretation of Q can be viewed as a set of reals.

Example 4.5 Suppose that M |= 〈X, τ〉 is a uniform space, with the topology gen-
erated by a uniform set Θ of covers. Let π : 〈X, τ〉 → 〈X̂, τ̂〉 be an interpretation.
The space X is then uniform, and Θ̂ = {π′′C : C ∈ Θ} is a uniform set of cov-
ers generating its topology. To see this, note that if C,D ∈ M are open covers
such that C is a star-refinement of D (for every O ∈ C there is P ∈ D such that
φ(O,P) =

⋃
{Q ∈ C : Q ∩ O 6= 0} ⊂ P holds) then π′′C is a star-refinement of π′′C

(since φ(O,P) is equivalent to φ(π(O), π(P))).

Intepretations of regular Hausdorff spaces commute with taking open or closed sub-
space. This is the contents of the following theorem.

Theorem 4.6 Suppose that M is a model of set theory and M |= 〈X, τ〉 is a regular
Hausdorff space and O ∈ τ is an open set. Let π : X → X̂ be an interpretation.

(1) π � O, the map from X � O to X � π(O), extends to an intepretation of the space
X � O.

(2) π � X \ O, the map from X \ O to X̂ \ π(O), extends to an intepretation of the
space X \ O

Proof I will work on (2), (1) is similar. Write Y = X \ O and Ŷ = X̂ \ π(O), both
equipped with the inherited topologies σ and σ̂ respectively. Define a map χ : Y → Ŷ
by χ(y) = π(y), and a map χ : σ → σ̂ by χ(P ∩ Y) = π(P) ∩ Ŷ for a set P ∈ τ . Note
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that this depends only on P ∩ Y and not on P, since if P0,P1 ∈ τ are sets with the
same intersection with Y , then P0∪O = P1∪O, so π(P0)∪π(O) = π(P0)∪π(O) and
so π(P0) and π(P1) have the same intersection with Ŷ . Since π is an interpretation of
X , χ is a preinterpretation of Y .

To show that in fact χ is an interpretation of Y , suppose that χ′ : Y → Ŷ ′ is another
preinterpretation of Y ; I must find a reduction of χ′ to χ. Consider the adjunction
space X̂′ which is the union of X∪ Ŷ ′ modulo the equivalence induced by the attaching
map χ′ : Y → Ŷ ′ , with the resulting topology τ̂ ′ . Consider the map π′ : X → X̂′ given
by π′(x) = [x], and the map π′ : τ → τ̂ ′ given by π′(O) = [O] ∪ χ′(O ∩ Y). It is not
difficult to check that π′ is a preinterpretation of the space X , and so is reducible to π
via some map h : X̂′ → X̂ . Clearly, the map h � Y ′ reduces χ′ to χ as desired.

Theorem 4.7 Suppose that M is a model of set theory and M |= 〈X, τ〉, 〈Y, σ〉 are
regular Hausdorff spaces and f : X → Y is a continuous function. Suppose that
π : X → X̂ and χ : Y → Ŷ are interpretations.

(1) There is a unique continuous function f̂ : X̂ → Ŷ which contains the set
{〈π(x), χ(y)〉 : x ∈ X, y ∈ Y, f (x) = y} as a subfunction.

(2) For the unique function f̂ , whenever O ∈ τ and P ∈ σ are open sets and
f−1P = O, then f̂−1χ(P) = π(O).

Proof First of all, every continuous function satisfying (1) has to satisfy (2) as well.
Suppose that P ∈ σ and O ∈ τ are sets such that f−1P = O. First, suppose for
contradiction that x ∈ π(O) and f̂ (x) /∈ χ(P). Since π is a preinterpretation, there
must be sets P̄ ∈ σ and Ō ∈ τ such that f−1P = O, cl(P̄) ⊂ P and x ∈ π(Ō). Then,
the f̂ -preimage of χ(X \cl(P̄)) contains x but no points in π′′Ō which are dense around
x , contradicting the continuity of the function f̂ at x . The contradiction in the case that
x /∈ π(O) and f (x) ∈ χ(P) is obtained in a similar way.

The existence and uniqueness of the function f̂ immediately follows from the following
claim.

Claim 4.8 For every x ∈ X̂ there is a unique y ∈ Ŷ such that whenever O ∈ τ and
P ∈ σ are open sets and f−1P = O, then x ∈ π(O)↔ y ∈ χ(P).

Proof The uniqueness of the point y is clear: whenever y0 6= y1 ∈ Ŷ are distinct
points then there are disjoint sets P0,P1 ∈ τ such that x0 ∈ χ(P0) and x1 ∈ χ(P1).
Let O0 = f−1P0 and O1 = f−1P1 . These are disjoint open subset of X , and so x can
belong to at most one of π(O0) and π(O1).
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For the existence of the point y, consider the space Z = Y ∪ {p} for some point p,
and define a map ξ : Y → Z by ξ(y) = y. Define also the map ξ : σ → P(Z) by
ξ(P) = P ∪ {p} if x ∈ π(f−1(P), and ξ(P) = P otherwise. It is easy to use the fact
that π is a preinterpretation to show that the map ξ commutes with finite intersections
and unions in the model M . Thus, equipping the set Z with the topology generated by
the range of ξ , the map ξ turns into a preinterpretation of the space Y . Since χ is an
interpretation, there is a reduction h : Z → Ŷ of ξ to χ. It is easy to check that the
point y = h(p) ∈ Ŷ works as desired.

Define the function f̂ : X̂ → Ŷ by letting f̂ (x) = y if x, y satisfy the statement of the
claim. It is clear that f̂ satisfies (2). Since the range of χ generates the topology on the
space Ŷ , it is clear that f̂ is continuous. This completes the proof of the theorem.

Corollary 4.9 Suppose that M |= X,Y,Z are regular Hausdorff spaces and f : X → Y
and g : Y → Z are continuous functions. Then the interpretation of g ◦ f equals the
composition of interpretations of f and g.

Proof The composition of the interpretations is continuous, and it contains the point-
wise image of g ◦ f under the interpretation maps as a subset. By the uniqueness part
of Theorem 4.7, it must be equal to the interpretation of g ◦ f .

Corollary 4.10 Suppose that M |= X,Y are regular Hausdorff spaces and f : X → Y
is a continuous function. Then y ∈ Y is in the range of f if and only if the interpretation
of y is in the range of the interpretation of f .

Proof Let π : X → X̂ and χ : Y → Ŷ and f̂ : X̂ → Ŷ be interpretations. If f (x) = y
then f̂ (π(x)) = χ(y) by the definition of f̂ , proving the left-to-right direction. For
the right-to-left direction, if y ∈ Y is a point which does not belong to rng(f ) then
X =

⋃
{f−1P : P ⊂ Y is open and y /∈ P}. The interpretations commute with the

union, f -preimage, and membership and so every element of X̂ is mapped into an open
set which does not contain π(y) as desired.

Corollary 4.11 Interpretation of a homeomorphism is a homeomorphism.

Example 4.12 An interpretation of a covering map between two regular Hausdorff
spaces is a covering map between the interpreted spaces. Suppose that M is a model
of set theory and M |= X,Y are regular Hausdorff spaces and f : X → Y is a covering
map. By the definition of covering, in the model M the set C = {O ⊂ Y : O
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is open and f−1O =
⋃

DO for some nonempty family DO consisting of pairwise
disjoint open subsets of X on which f is a homeomorphism with O} is an open
cover of Y . Let π : X → X̂ and χ : Y → Ŷ be Borel-topological interpretations.
χ′′C is still an open cover of the space Ŷ . Moreover, for each open set O ∈ C ,
f̂−1O = π(

⋃
DO) =

⋃
π′′DO . The family π′′DO still consists of pairwise disjoint

open subsets of X̂ . Moreover, for every set P ∈ DO , the function f � P is interpreted
as a homeomorphism between π(P) and χ(O). This completes the verification that
f̂ : X̂ → Ŷ is a covering map.

Example 4.13 An interpretation of an injection need not be an injection. Let X,Y be
two dense disjoint sets of Q with the inherited order topology and let X ∪ Y be their
topological sum. Let f : X ∪ Y → Q be the identity map. Pass to a generic extension
V[G] in which there is a Cohen real r ∈ R. The interpretation of X ∪ Y can be viewed
as a topological sum of two sets of reals, both of which contain r . The two copies of r
will be mapped by f̂ to the same value, namely r itself.

This pathology will not occur in the class of interpretable spaces by Corollary 7.7.

Example 4.14 The interpretation of a surjection need not be a surjection. Let f be the
surjective identity map from X =the reals with discrete topology to Y =the reals with
the usual Euclidean topology. Pass to any generic extension V[G] which contains new
reals. Easy computations exhibited elsewhere in the paper show that the interpretation
of X is just the space X̂ of ground model reals with the discrete topology, Ŷ is just the
space of all reals with the Euclidean topology, and f̂ is the identity map, which now is
not surjective anymore.

This feature can hardly be called a pathology as both spaces involved are interpretable
and very natural. Surjectivity of the interpreted surjections, if it occurs at all, is an
important issue. It is normally guaranteed by stronger properties of the maps, such as
openness or perfectness as in Theorems 9.4 and 9.1.

5 Interpretations of complete spaces

It turns out that interpretations of spaces in natural completeness categories have strong
uniqueness features which make it much easier to evaluate them.

Definition 5.1 Let 〈X, τ〉 be a topological space. A triple 〈U,≤, f 〉 is a completeness
system if U is a set, ≤ is a partial ordering on it, and f : A→ τ is a function so that
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(1) for every u ∈ U , f (u) ⊆
⋃
{f (v) : v < u} holds;

(2) for every strictly descending sequence 〈un : n ∈ ω〉 in the ordering ≤ and every
collection F of closed subsets of X with the finite intersection property such
that cl(f (un)) contains an element of F for every n ∈ ω , then

⋂
F 6= 0.

Theorem 5.2 Suppose that M is a transitive model of set theory and M |= X is a
regular Hausdorff space and 〈U,≤, f 〉 is a completeness system on X . There is a
unique preintepretation π : X → X̂ for which 〈U,≤, f̂ 〉 is a completeness system on X̂
and it is the interpretation.

Here, the symbol f̂ denotes the function defined by f̂ (u) = π(f (u)). Note that since
the interpretation is defined without regard to the completeness system, it follows that
every completeness system on X in the model M is interpreted as a completeness
system on X̂ .

Proof The uniqueness part is easy. Suppose that π : X → X̂ is a preinterpretation
such that 〈U,≤, f̂ 〉 is a completeness system; it will be enough to show that π is an
interpretation. To this end, suppose that χ : X → Y is another preinterpretation. For
every point y ∈ Y , use (1) to find a descending sequence 〈un : n ∈ ω〉 in U such
that y ∈

⋂
n χ(f (un)). Consider the collection Fy = {cl(π(O)) : O ∈ τ, y ∈ χ(O)}.

This is a filter of closed subsets of X̂ such that for every n ∈ ω cl(f (un)) ∈ F . By
the completeness assumption on the space X̂ ,

⋂
Fy 6= 0. It is not difficult to use

Hausdorffness of X̂ to show that the intersection can contain at most one point. Let
h : Y → X̂ be the map such that h(y) ∈

⋂
Fy for all y ∈ Y . It is immediate that h is a

reduction of χ to π .

The existence of the required preinterpretation is a little harder. Let X̂ be the set
of all collections A ⊂ τ which do not contain a finite subcover of X , are maximal
with respect to that condition, and such that there is an infinite descending sequence
〈un : n ∈ ω〉 such that for every n ∈ ω , X \

⋂
m∈n cl(f (um)) ∈ A. Equip X̂ with the

topology generated by the sets π(O) = {A ∈ X̂ : O /∈ A} for O ∈ τ . Let π : X → X̂ be
the map defined by π(x) = {O ∈ τ : x /∈ O}. I will show that π is a preinterpretation
and 〈U,≤, f̂ 〉 is a completeness system on X̂ .

To show that π is a preinterpretation, suppose that O =
⋃

i∈I Oi is a union of open sets
in the model M ; I must show that π(O) =

⋃
i π(Oi). The right-to-left inclusion is clear

from the definitions. For the left-to-right inclusion, suppose that A ∈ X̂ is a point and
A ∈ π(O), meaning that O /∈ A holds; I must find i ∈ I such that Oi /∈ A. Find a set
P ∈ τ such that P ∈ A and O ∪ P = X . In the model M , consider the tree T of all
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finite attempts to build a descending sequence 〈un : n ∈ ω〉 in U such that for every
n ∈ ω , for no finite set J ⊂ I it is the case that

⋂
m∈n cl(f (um)) ⊂

⋃
i∈J Oi∪P. The tree

T is well-founded in the model M since any descending sequence of this form would
yield a set F = {cl(f (n)) : n ∈ ω,X \Oi : i ∈ I,X \P} with finite intersection property.
The intersection

⋂
F would be nonempty by the completeness of the system on X ,

and any point in that intersection would have to belong to O \
⋃

i Oi ; a contradiction.
Since the model M is transitive, the tree T is well-founded even in the model V .
Use the definition of the set X̂ to find a descending sequence 〈un : n ∈ ω〉 such that
X \

⋂
m∈n cl(f (um)) ∈ A for every n ∈ ω . The sequence does not form an infinite

path through the tree T and so there must be n ∈ ω and a finite set J ⊂ I such that⋃
i∈J Oi ∪ P ∪

⋃
m∈n(X \ cl(f (m))) = X . This means that one of the sets Oi for i ∈ J

must fail to belong to A, in other words A ∈ π(Oi) as desired.

Corollary 5.3 Suppose M |= X is a compact Hausdorff space. Then X has a unique
compact topological preinterpretation which is also its topological interpretation.

Proof Note that a space X is compact if and only if ω with reverse ordering and
the function f defined by f (n) = X for every n ∈ ω together form a completeness
system.

Corollary 5.4 Interpretations of compact subsets of regular Hausdorff spaces are
compact.

Proof Suppose that M is a transitive model of set theory and M |= X is a regular
Hausdorff space and K ⊂ X is compact. Let π : X → X̂ be an interpretation of X .
Theorem 4.6 shows that π � K : K → π(K) is an interpretation. Corollary 5.3 then
implies that π(K) is compact.

Corollary 5.5 Every completely metrizable space X with a metric d in a transitive
model M is interpreted as a completely metrizable space. In fact, the interpretation is
just the completion of X with respect to d with the natural interpretation map.

Proof Work in the model M . Let U be the set of all open balls of finite d -radius and
let v < u if radius of v is smaller than half of the radius of u. The function f on U
is defined by f (u) = u. This is a completeness system on X . Let π : X → X̂ be an
interpretation. By Theorem 5.2, 〈U, <, f 〉 is interpreted as a completeness system on
the interpretation X̂ . Define a metric d̂ on X̂ by setting d̂(x, y) < ε+ 2−n just in case
x ∈ π(O) and y ∈ π(P) for some open balls O,P ⊂ X whose centers have distance
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< ε and whose radii are smaller than 2−n−1 . The metric d̂ generates the topology of
the space X̂ , rng(π) ⊂ X̂ is dense and d = d̂ ◦ π . The completeness of the interpreted
system implies that d̂ is complete. It follows that X̂ is (isomorphic to) the completion
of 〈X, d〉.

Example 5.6 The Baire space or the Hilbert cube in a transitive model M are inter-
preted as the Baire space or the Hilbert cube.

Example 5.7 The transitivity of the model M is necessary in the assumptions of
Corollary 5.5. Let M be a model of set theory containing an M -ordinal α which is
illfounded. In the model M , consider the space αω with the usual minimum differ-
ence metric. The completion of (αω)M is αω , which contains an infinite decreasing
sequence x . Now, by a wellfoundedness argument inside M , M |= αω =

⋃
{Ot : t is

a nondecreasing finite partial map from ω to α} where Ot = {y ∈ αω : t ⊂ y}. It is
clear that x does not belong to the natural interpretation of any of the sets Ot in the
union, and therefore αω is not the interpretation of (αω)M .

Corollary 5.8 Every complete uniform space with a countable complete uniform
sequence of covers in a transitive model M is interpreted as a complete uniform space.

Example 5.9 The countability cannot be removed from the assumptions of Corol-
lary 5.8. In a transitive model M , consider the space X = ωω1 with the (un-
countable) complete uniform collection of covers {Ca : a ⊂ ω1 is finite}, where
Ca = {Ot : t ∈ ωa} and Ot = {x ∈ X : t ⊂ x}. If the interpretation preserved the
completeness of this system of covers, it would have to be (equivalent to) the identity
map from X = (ωω1)M to (ωω1)V . However, Example 13.2 describes a situation where
the interpretation of X is different.

Corollary 5.10 Every Čech complete space in a transitive model M is interpreted as
a Čech complete space.

Corollary 5.11 Every interpretable space in a transitive model M is interpreted as an
interpretable space.

To conclude this section, I provide a testable criterion for a map π to be an interpretation;
this will be used in several situations later. Suppose that M is a model of set theory
and M |= 〈X, τ〉 is a regular Hausdorff space. Suppose that π : X → X̂, τ → τ̂ is a
topological preinterpretation. Then for every open set O ∈ τ , π(O) = X̂\cl(π′′(X\O)).
The left-to-right inclusion is clear since π(O) ⊂ X̂ is an open set disjoint from π′′(X\O).
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For the right-to left inclusion use the fact that the range π′′τ generates the topology τ̂ :
whenever x ∈ X̂ \ cl(π′′(X \O)) is a point, it has to have an open neighborhood disjoint
from π′′(X \ O), this neighborhood can be taken of the form π(P) for some P ∈ τ ,
and since π(P) contains no points in π′′(X \ O) it must be the case that P ⊂ O and so
x ∈ π(P) ⊂ π(O) as desired.

The previous paragraph shows that a given map π : X → X̂ can be completed into a
topological preinterpretation in at most one way. This justifies the following definition:

Definition 5.12 Suppose that M is a model of set theory, M |= 〈X, τ〉 is a regular
Hausdorff space, 〈X̂, τ̂〉 is a topological space, and π : X → X̂ is a function. The
canonical extension of π is the map π̄ : τ → τ̂ defined by π̄(O) = X̂ \ cl(π′′(X \ O)).

If the original map π from X to X̂ is arbitrary, then the canonical extension π̄ is easily
seen to preserve inclusion and finite intersections, but on other accounts it may be
very poorly behaved. Still, it is the only candidate for extending π into a topological
preinterpretation.

Proposition 5.13 Suppose that M is a transitive model of set theory, M |= 〈X, τ〉 is
an interpretable space, and π : X → X̂ is a map to a regular Hausdorff space 〈X̂, τ̂〉.
Let π̄ : τ → τ̂ be the canonical extension of π . Suppose that there is in the model M
a basis σ ⊂ τ closed under intersections, and a complete sieve 〈S,O(s) : s ∈ S〉 such
that

(1) for every x ∈ O ∈ σ it is the case that π(x) ∈ π̄(O);

(2) whenever Q ∈ σ and {Pj : j ∈ J} is a finite subset of σ and Q ⊂
⋃

j Pj then
π̄(Q) ⊂

⋃
j π̄(Pj);

(3) π̄′′σ generates the topology τ ;

(4) the sets on the sieve are in the basis τ and moreover 〈S, π̄(O(s)) : s ∈ S〉 is a
complete sieve for X̂ .

Then the map π̄ : τ → τ̂ is a topological interpretation.

Note that for a compact space X the last item reduces to the demand that X̂ is compact.

Proof By Theorem 5.2 and (4) it is only necessary to verify that π̄ is a topological
preinterpretation. It is clear from the definitions that the canonical extension π̄ on τ
preserves inclusion and commutes with finite intersections. The first item implies then
that for every x ∈ X and O ∈ τ , it is the case that x ∈ O ↔ π(x) ∈ π̄(O). The only
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thing left to verify is that the map π̄ commutes with arbitrary unions of open sets in
the model M .

Suppose then that M |= O =
⋃

i∈I Oi is a union of open sets and argue that π̄(O) =⋃
i π̄(Oi) must hold. The right-to-left inclusion follows from the fact that π̄ preserves

inclusion. For the left-to-right inclusion, assume for contradiction that the set π̄(O) \⋃
i π̄(Oi) is nonempty, containing some point x ∈ X̂ . By the third item, there is an

open set Q ∈ σ such that x ∈ π̄(Q) and the closure of π̄(Q) is a subset of π̄(O). It is
easy to argue from (1) and (3) that the closure of Q must be a subset of O in the space
X . In the model M , let {Pj : j ∈ J} ⊂ σ be a collection such that X \ cl(Q) =

⋃
j Pj .

Let b be any infinite branch of the tree S such that x ∈
⋂

n π̄(O(b(n))). Then, no set
π̄(O(b(n)) is covered by finitely many sets in the collection {π̄(Oi) : i ∈ I, π(Pj) : j ∈
J}. By (2) and a wellfoundedness argument with the model M , in the model M
there must be an infinite branch c such that no set O(c(n)) for n ∈ ω is covered by
finitely many sets in the collection {Oi : i ∈ I,Pj : j ∈ J}. By the completeness of the
sieve in the model M , the set X \ (

⋃
i Oi ∪

⋃
j Pj) must be nonempty. However, any

element of this set belongs to O and not to any Oi for i ∈ I , contradicting the initial
assumption.

6 Interpretations of Borel sets

The purpose of this section is to show that for interpretable spaces, it is possible to
extend interpretations to the σ -algebra of Borel sets so that the interpretation commutes
with the algebraic operations.

Theorem 6.1 Suppose that M is a transitive model of set theory and M |= 〈X, τ〉 is an
interpretable space with its Borel σ -algebra B . Suppose moreover that π : 〈X, τ〉 →
〈X̂, τ̂〉 is an interpretation and write B̂ for the Borel σ -algebra of the space X̂ . Then
there is a unique map π : B → B̂ such that it agrees with the action of π on τ , and
commutes with complements and countable unions and intersections in M .

Proof The uniqueness of the extension is clear as Borel sets are obtained from closed
and open sets by complements, countable unions and intersections. The existence of
the map is a much more complicated matter. The problem is that a Borel subset of
X in the model M can be obtained from open and closed sets by countable unions
and intersections in two different ways, and then the two different ways may yield
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different results when reinterpreted over the space X̂ . This does not happen due to the
wellfoundedness of the model M ; this is the contents of the present proof.

Work in M . Let S be a complete sieve for the space X . Select symbols ∪ and ∩ for
union and intersection. Define a Borel code by ∈ recursion in the following way. If
A ⊂ X is a closed or open set, then {A} is a Borel code and if B is a countable set
of Borel codes, then {∪,B}, {∩,B} are Borel codes. By induction on the rank of the
code c define a set Bc ⊂ X in the following way. If c = {A} for an open or closed set
A ⊂ X , then Bc = A; and if c = {∪,D}, resp. c = {∩,D} then Bc =

⋃
d∈D Bd , resp.

Bc =
⋂

d∈D Bd .

Still working in M , for every Borel code c associate a certain ordering Tc . Let P
be the set of all sequences of the form s = 〈si,Ei : i ∈ n〉 where si ’ s form a strictly
descending sequence of nodes in S , Ei ’s form a strictly descending sequence of closed
nonempty sets, and Ei ⊂ O(si); write E(s) = En−1 . The set P is naturally ordered
by extension. By ∈-recursion on the Borel code c, define orderings Tc . Elements of
Tc will always be finite tuples whose first coordinate is a play in P , and for each such
tuple p = 〈s, y0, y1 . . . 〉 I will write E(p) = E(s).

• if c = {A} for an open or closed set A ⊂ X , then Tc consists of all pairs 〈s, 0〉
where s ∈ P and E(s) ⊂ A. The ordering is that of strict extension in the first
coordinate;

• if c = {∪,D} for some countable set D of codes, then Tc consists of all pairs
〈s, d, u〉〉 such that s ∈ P , d ∈ D, u ∈ Td and E(s) ⊂ E(u). The ordering is
defined by 〈t, d, u〉 > 〈s, e, v〉 if t properly extends s, e = d , and u > v in Td ;

• if c = {∩,D} for some countable set D = {di : i ∈ ω} of codes with a fixed
enumeration, then Tc consists of all tuples 〈s, ui : i ∈ n〉 where s ∈ P has length
n, for every i ∈ n, ui ∈ Tdi , and E(s) ⊂ E(ui). The ordering is defined by
〈s, ui : i ∈ n〉 > 〈t, vi : i ∈ m〉 if t properly extends s and for each i ∈ n, ui > vi

in the ordering Tdi .

Claim 6.2 In the model M : If p is an infinite descending sequence in Tc then⋂
n E(p(n)) is a nonempty set which is a subset of Bc .

Proof This is proved by an elementary ∈-induction argument on the code c.

Now move out of the model M . Let π : X → X̂ be an interpretation. For every closed
set C ⊂ X in the model M , write π(C) = cl(π′′C) which is equal to X̂ \ π(X \C). For
every Borel code c ∈ M define a set B̂c ⊂ X̂ in the following way. If c = {A} for a
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closed or open set A ⊂ X , then B̂c = π(A); and if c = {∪,D}, resp.c = {∩,D} then
B̂c =

⋃
d∈D B̂d , resp. B̂c =

⋂
d∈D B̂d .

Claim 6.3 For every Borel code c ∈ M and every element x ∈ B̂c there is an infinite
descending sequence p in Tc such that x ∈

⋂
n π(E(p(n))).

Proof By induction on the rank of the code c. The only interesting case is that of
countable intersection, so c = 〈

⋂
,D〉 for some countable set D = {di : i ∈ ω} of

codes with a fixed enumeration in the model M .

Suppose that c = {∩,D} and x ∈ B̂c . By the induction hypothesis, for every i ∈ ω
there is an infinite descending sequence pi in Tdi such that x ∈

⋂
n π(E(pi(n))). By

induction on n ∈ ω build sequences tn ∈ P of length n such that t0 ⊂ p1 ⊂ . . . ,
x ∈ E(tn), and 〈tn, pi(n) : i ∈ n〉 ∈ Tc . Once this is done, the sequence p given by
pn = 〈tn, pi(n) : i ∈ n〉 is as required.

To perform the induction step, suppose that the sequence tn has been found, with last
pair s ∈ S and E ⊂ X closed. In the model M , A = {X \ E} ∪ {O(t) : t ∈ S is a one
step extension of s in S} is an open cover of the space X . As π is a preinterpretation,
π′′A is an open cover of X and so there must be a one step extension s′ ∈ S of s such
that x ∈ π(O). Let tn+1 = tan s′,

⋂
i∈n+1 E(pi(n + 1)) ∩ cl(O). The induction step has

been performed.

Claim 6.4 Suppose that c ∈ M is a Borel code. Then Bc = 0 if and only if B̂c = 0.

Proof The right-to-left implication is easier. By elementary ∈-induction on the code
c show that for every x ∈ X , x ∈ Bc ↔ x ∈ B̂c . Thus, if Bc 6= 0 and x ∈ Bc then
B̂c 6= 0 as well, since π(x) ∈ B̂c .

The left-to-right implication is harder, and it uses the wellfoundedness of the model M .
If B̂c 6= 0 then by Claim 6.3 there is an infinite descending sequence in the ordering Tc .
Since the model M is wellfounded, there must be such an infinite descending sequence
in the model M as well. By Claim 6.2, Bc 6= 0 as desired.

Claim 6.5 Suppose that c, d ∈ M are Borel codes. Then Bc ⊆ Bd if and only if
B̂c ⊆ B̂d .

Proof First, work in the model M . By ∈-recursion on the code c define a code ¬c.
If c = {A} for some open or closed set A ⊂ X then let ¬c = {X \ A}. If c = {∪,D}
then ¬c = {∩, {¬d : d ∈ D}} and if c = {∪,D} then ¬c = {∪, {¬d : d ∈ D}}. It
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is can be proved by an immediate ∈-induction on the code c that Bc = X \ B¬c and
B̂c = X \ B̂¬c .

Now suppose that c, d ∈ M are Borel codes. Consider the code e = {∩, {c,¬d}.
Then Bc ⊆ Bd = 0 if and only if Be = 0 if and only if (Claim 6.4) B̂e = 0 if and only
if B̂c ⊂ B̂d as desired.

Finally, we are ready to extend the preinterpretation π to Borel sets. Let B ∈ M
is a Borel set; define π(B) = B̂c for any Borel code c ∈ M such that B = Bc .
Claim 6.5 shows that this definition does not depend on the choice of the code c.
Now, suppose that M |= B =

⋃
n Bn is a countable union of Borel sets. There must

be a sequence 〈cn : n ∈ ω〉 ∈ M of Borel codes such that Bn = Bcn for every
n ∈ ω . Consider the Borel code d = {∪, {cn : n ∈ ω}}. Then clearly B = Bd , and
π(B) = B̂d =

⋃
n B̂cn =

⋃
n π(Bn) as desired. The countable intersection is handled in

the same way.

As a result, whenever I encounter an interpretation π : X → X̂ of an interpretable space
and a Borel set B ⊂ X , I will freely use the symbol π(B) to refer to the Borel subset of
X̂ which is the image of B under the unique extension of π to the σ -algebra of Borel
sets.

Example 6.6 The conclusion of the theorem may fail for the most common non-
interpretable spaces. Consider the space X = Q with the usual topology and a generic
extension V[G] containing a Cohen real r ∈ R. Let π : X → X̂ be an interpretation;
it cannot be extended to an interpretation of Borel sets. To see this, note that the
extension would have to assign π{x} = {π(x)} for every singleton x ∈ X , and since
X is a countable union of singletons, π(X) would have to be equal to π′′X . This
contradicts the conclusion of Example 4.3.

Example 6.7 The conclusion holds in general for some non-interpretable spaces. If
〈X, τ〉 is an interpretable space and σ is an alternative topology on it which extends τ ,
consists of only τ -Borel sets and is Lindelöf, then the interpretation of 〈X, τ〉 naturally
extends to an interpretation of 〈X, σ〉. Since every σ -Borel set is also τ -Borel, the
theorem provides for an extension of the interpretation to the algebra of σ -Borel
algebra. At the same time, the space 〈X, σ〉 may not be interpretable. A good example
of this behavior is the Sorgenfrey line as an extension of the usual Euclidean topology
on the real line. Sorgenfrey line is not interpretable by Example 7.10.
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Example 6.8 The conclusion of the theorem may fail for illfounded models M , even
if their ωM

1 is wellfounded. Suppose that M is a model of set theory and α its ordinal
which is illfounded in V in it. In M , consider the space α+ 1 with order topology and
the space X = (α + 1)ω in the model M . By Theorem 7.2 (which does not need the
assumption of wellfoundedness of the model M ), the interpretation of X is the natural
map to the space X̂ = (α̂ + 1)ω , where α̂ is the completion of the linear ordering on
α in V . For every n ∈ ω , let On = {x ∈ X : x(n) > x(n + 1)}; this is an open set in
the model M . Since M |= α is wellfounded, it is the case that M |=

⋂
n On = 0. On

the other hand, any infinite descending sequence in α is an element of
⋂

n π(On).

Corollary 6.9 Suppose that M is a transitive model of set theory, M |= 〈X, τ〉 is an
interpretable space and 〈Cn : n ∈ ω〉 is a development on X . Let π : X → X̂ be an
interpretation. Then 〈π′′Cn : n ∈ ω〉 is a development on X̂ . In particular, interpretable
Moore spaces are interpreted as Moore spaces.

Proof In the model M , consider an open set O ∈ τ . Let Pn(O) =
⋃
{Q ∈ Cn : Q 6⊂

O}. Since 〈Cn : n ∈ ω〉 is a development, O∩
⋂

n Pn = 0. Now, step out of the model
M . By Theorem 6.1, π(O) ∩

⋂
n π(Pn(O)) = 0 holds for every open set O ∈ τ , which

is to say that for every point x ∈ π(O) there is a number n ∈ ω such that x belongs
to no set in the cover π′′Cn which has nonempty intersection with the complement of
O. Since every open set in the space X̂ is a union of open sets in the range of the
interpretation π , it follows that 〈π′′Cn : n ∈ ω〉 is a development on X̂ as desired.

Corollary 6.10 Suppose that M is a transitive model of set theory and M |= 〈X, τ〉
is an interpretable space and Y ⊂ X its Gδ subset. Suppose that π : X → X̂ is an
interpretation. Then the function χ = π � Y , χ : Y → π(Y) extends to an interpretation
of the space Y .

Proof For every open set O ∈ τ , let χ(O ∩ Y) = π(O) ∩ π(Y). This depends only
on O ∩ Y and not on all of O by Theorem 6.1. The fact that π is an interpretation
immediately implies that χ is a preinterpretation. To show that χ is in fact an
interpretation, I will produce a complete sieve on Y whose χ-image remains complete
on π(Y) and then use Theorem 5.2.

Work in the model M . Let Y =
⋂

n Qn be a countable intersection of an inclusion-
decreasing sequence of open sets. It is easy to adjust an arbitrary strong complete
sieve 〈S,O(s) : s ∈ S〉 on the space X to one with the following property: (*) if
s ∈ S has length n then O(s) ∩ Qn =

⋃
{O(t) : t is an immediate successor of s

and cl(O(t)) ⊂ Qn}. Now let T = {s ∈ S: for every n ≤ dom(s) greater than 0,



Interpreter for topologists 27

O(t � n) ⊂ Qn−1}. It is clear that T is a tree. Let 〈T,P(t) : t ∈ T〉 be defined by
P(t) = Y ∩ O(t). It is immediate from (*) that 〈T,P(t) : t ∈ T〉 is a sieve on the space
Y . It is also complete by a repeated use of Fact 3.6: for every finitely branching tree
U ⊂ T , the set

⋂
n
⋃
{cl(O(t)) : t ∈ U, |t| = n} ⊂ X is compact, by (*) it is a subset

of Y , and so it is equal to
⋂

n
⋃
{clY (P(t)) : t ∈ U, |t| = n} ⊂ Y which must then be

compact.

Now, move out of the model M . The reasoning of the whole previous paragraph is trans-
ported by π without damage. The only notable point is that the sieve 〈S, π(O(s)) : s ∈ S〉
is complete on the space X̂ by Theorem 5.2. It follows that the sieve 〈T, χ(P(t)) : t ∈ T〉
is complete on the space π(Y). By Theorem 5.2 again, the map χ is an interpretation
as desired.

7 Products

In order to speak about relations and fnctions on topological spaces, it is necessary to
evaluate interpretations of products. The two theorems presented in this section both
rely on a basic feature of finite products:

Proposition 7.1 Suppose that {Yj : j ∈ J} is a finite collection of topological spaces,
and

∏
j Yj is covered by a finite collection of rectangular boxes {Bk : k ∈ K}. Then

there are finite open covers {Cj : j ∈ J} of the respective spaces Yj such that whenever
Oj ∈ Cj for j ∈ J is a selection, then there is k ∈ K such that

∏
j Oj ⊂ Bk .

Proof For every j ∈ J and every x ∈ Xj let Ox be the intersection of all open subsets
of Xj which serve as a side of some of the boxes Bk and contain the point x . Let
Cj = {Ox : x ∈ Xj}. It is easy to verify that these covers work.

Theorem 7.2 Suppose that M is a model of set theory and M |= Xi are compact
Hausdorff spaces for i ∈ I and write X =

∏
i Xi . Suppose that for every i ∈ I ,

πi : Xi → X̂i is an interpretation and write X̂ =
∏

i X̂i . Then

(1) the product map π =
∏

i πi : X → X̂ extends to an interpretation of the product;

(2) the coordinate projection functions are interpreted as the coordinate projection
functions.

Proof Define a basic function on X to be a function g on a finite set J ⊂ I such that
for every j ∈ J , g(j) ∈ τj . If g is a basic function then let O(g) = {x ∈ X : ∀j ∈ Jx(j) ∈
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g(j)}. Let σ = {O(g) : g is a basic function on X}; this is a basis for the space X .
Also, define O(πg) = {x ∈ X̂ : ∀j ∈ J x(j) ∈ π(g(j))} ⊂ X̂ . The set σ̂ = {O(πg) : g is
a basic function on X} is a basis for X̂ . The following claim records the relationship
between σ and σ̂ .

Claim 7.3 Let g be a basic function on X .

(1) For every x ∈ X , x ∈ O(g)↔ π(x) ∈ O(πg);

(2) if hk : k ∈ K is a finite set of basic functions and O(g) ⊂
⋃

k O(hk) then
O(πg) ⊂

⋃
k O(πhk).

The first item is proved by unraveling the definitions, and the second follows from
Proposition 7.1 applied in the model M . Now, let π̂ be the canonical extension of the
product map π to the topology of X as in Definition 5.12. Note that (̂O(g)) = O(π(g))
holds for every basic function g on X : for the right-to-left inclusion, observe that
O(πg) is an open set disjoint from π′′(X \ O(g)) by (1) of the claim. For the left-to-
right inclusion, if h is a basic function such that O(πh) is disjoint from π′′(X \ O(g))
then O(h) ⊂ O(g) by (1) of the claim, and O(πh) ⊂ O(πg) by (2) of the claim.

Finally, apply Proposition 5.13 to see that π̂ is an interpretation, using the fact that the
space X̂ is compact. (2) of the theorem is then immediate.

Theorem 7.4 Let M be a transitive model of set theory and M |= 〈Xi, τi〉 for i ∈ ω
are interpretable spaces. Let πi : Xi → X̂i be interpretations for every i ∈ ω .

(1) The product map π =
∏

i πi : X =
∏

i Xi → X̂ =
∏

i X̂i can be extended to an
interpretation of the product space;

(2) the coordinate projection functions are interpreted as the coordinate projection
functions.

Proof The proof follows the argument for Theorem 7.2 letter by letter except for the
last paragraph. To replace the compactness argument in the last paragraph, work in M .
For every i ∈ ω find complete sieves 〈Si,Oi(s) : s ∈ Si〉 on each space Xi in the model
M . Let 〈T,P(t) : t ∈ T〉 be the product sieve on the space X as desribed in the proof of
Theorem 3.7; it is complete and its open sets are rectangular boxes with finite support.
Step out of the model M . The sieves 〈Si, πi(Oi(s)) : s ∈ Si〉 are complete sieves for
each space X̂i by Theorem 5.2. Their product sieve is again complete on the space X̂ .
Thus, the canonical extension π̄ of π maps a complete sieve to a complete sieve, and
Proposition 5.13 is applicable again to show that π̄ is an interpretation.
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Corollary 7.5 Let M be a transitive model of set theory and M |= 〈X, τ〉, 〈Y, σ〉 are
interpretable spaces and f : X0 → X1 is a continuous function. Then f̂ is just the
interpretation of f viewed as a closed subset of X × Y .

Proof Let π : X → X̂ and χ : Y → Ŷ be interpretations. Then f̂ ⊂ X̂ × Ŷ is a closed
set containing the set g = {〈π(x), χ(f (x)〉 : x ∈ X}. The set (π × χ)(f ) ⊂ X × Y is
exactly the closure of the set g. Thus, it will be enough to show that every vertical
section of the set (π × χ)(f ) is nonempty. One illuminating way to see this is to note
that the projection function from X × Y to X , when restricted to the graph of f , is a
homeomorphism. Thus, it must be interpreted as a homeomorphism of (π×χ)(f ) and
X by Corollary 4.11.

Corollary 7.6 Suppose that M is a transitive model of set theory and M |= X,Y,Z
are interpretable spaces and f : X → Z and g : Y → Z are continuous functions. Let
π : X → X̂ , χ : Y → Ŷ , ξ : Z → Ẑ , and f̂ : X̂ → Ẑ and ĝ : Ŷ → Ẑ be interpretations.
If rng(f ) ∩ rng(g) = 0 then rng(f̂ ) ∩ rng(ĝ) = 0.

Proof In the model X , consider the product X × Y × Z and use the fact that rng(f ) ∩
rng(g) = 0 to see that it is the union of sets O×P×Q such that either f−1Q∩O = 0 or
g−1Q∩P = 0. By the theorem, the product of interpretations is again an interpretation
and thus the union of the corresponding open sets covers the whole product. This
means that rng(f̂ ) ∩ rng(ĝ) = 0 by Theorem 4.7(2).

Corollary 7.7 If M |= f : X → Y is a continuous injection between two interpretable
spaces, then f̂ is injection again.

Proof Immediate from Corollary 7.6.

I conclude this section with instructive examples of pathological behavior in products
for spaces that do not fall into the interpretable category.

Example 7.8 The product of interpretations the space of rational numbers in a Cohen
forcing extension does not extend to a preinterpretation of the product. To see this, Let
X,Y ⊂ Q be two disjoint dense sets of rationals with the inherited topology. Thus,
both are homeomorphic to the rationals. The collection C = {〈I× J〉 : I, J are disjoint
open intervals of rational numbers} is a cover of the space X × Y .

Now, let r ∈ R be a Cohen real and work in V[r]. Suppose that π : X → X̂ and
χ : Y → Ŷ are interpretations. The computation of the interpretation of the space of
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rational numbers shows that there are elements x ∈ X̂ and y ∈ Ŷ such that for every
open interval of rational numbers with rational endpoints, x ∈ π(I) if and only if r is
between the endpoints of I , and similarly for y. Clearly, the point 〈x, y〉 ∈ X̂× Ŷ does
not belong to the union of interpretations of the rectangles in the cover C .

The problem in the previous example is apparently caused by the fact that the interpre-
tation of Q does not respect the Borel structure on the space. The difficulty disappears
if one considers only interpretations of topological spaces with Borel structure as in
Section 15. The next less trivial counterexample will work even then:

Example 7.9 Let X be the space of all wellfounded trees on ω , with the topology
inherited from P(ω × ω). In every generic extension collapsing c to ℵ0 , the product
of interpretations of X and ωω may not extend to an interpretation of X × ωω . The
set of all wellfounded trees is viewed as a subspace of the space P(ω<ω) with its
usual Polish topology. Let V[G] be some generic extension collapsing c and work
in the model V[G]. It will be enough to find a Borel topological preinterpretation
π : X → X̂ such that X̂ contains an illfounded tree T ⊂ ω<ω . Consider the open sets
Ot = {〈S, y〉 ∈ X × ωω : t /∈ S ∧ t ⊂ ωω} ⊂ X × ωω for t ∈ ω<ω . It is immediate that
the sets Ot ⊂ X × ωω are open rectangles and

⋃
t Ot = X × ωω holds in V . However,

if y ∈ ωω is a branch through the illfounded tree T , the pair 〈T, y〉 is not covered by
any of the interpreted rectangles.

To find the space X̂ , consider the union B of all interpretations of ground model Borel
subsets of P(ω<ω) containing only illfounded trees. By the Shoenfield absoluteness,
the interpretations also contain only illfounded trees, and as there are only countably
many ground model Borel sets, the set B is Borel and contains only illfounded trees.
The set of wellfounded trees is not Borel, so there must be an illfounded tree T /∈ B. Let
X̂ = X ∪ {T}, let π : X → X̂ be the identity map, and for every Borel set B ⊂ P(ω<ω)
in the ground model, let π(C ∩ X) be the intersection of the interpretation of C with
X̂ . It is important to observe that this definition depends only on C ∩ X by the choice
of the tree T . In the ground model, if C,D ⊂ P(2<ω) are two Borel sets in the ground
model such that C ∩ X = D ∩ X , then C∆D is a Borel set consisting of illfounded
trees only. By the choice of the tree T , T belongs to the interpretation of C if and
only if it belongs to the interpretation of D. It is immediate now to check that π is a
preinterpretation of the space X .

Example 7.10 Let X be the Sorgenfrey line. In every generic extension adding a new
real, the product of topological interpretations of X cannot be extended to a topological
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preinterpretation of X×X . Write τ for the Sorgenfrey topology and σ for the Euclidean
topology on X and move to a generic extension V[G] containing a new real r ∈ R.

First, it is easy to evaluate the interpretation of 〈X, τ〉. Note that every Sorgenfrey
open set is an open set of reals together with countably many points, and moreover
a union of a collection of Sorgenfrey open sets is equal to a union of a countable
subcollection. Moreover, every open set of reals is Sorgenfrey open. This means that
every preinterpretation of σ can be uniquely extended to an preinterpretation of τ ,
and every preinterpretation of τ can be restricted to a preinterpretation of σ . It is
immediate to conclude that the interpretation of τ is just the space 〈X̂, τ̂〉 where X̂ is
the set of all reals and τ̂ is the topology on X̂ generated by closed-open intervals [r, s)
where r, s are ground model reals, together with the obvious map π .

I will now show that the product map π×π cannot be even defined as a preinterpretation
of the ground model Sorgenfrey plane. In the model M , consider the collection A of all
open sets of the form [r0, s0)× [r1, s1) such that either −s1 < s0 or else r0 = −r1 . The
union of the rectangles of the first kind covers the part of the plane below the negative
diagonal; the union of the rectangles of the second kind covers the diagonal an the part
of the plane above it. Thus, M |=

⋃
A = X × X . On the other hand, the union of the

products of interpretations of the intervals does not cover the plane R×R: if r ∈ R is
a real which is not in the ground model, then the point 〈r,−r〉 does not belong to the
union.

8 Interpretable structures

Most topological spaces in practice come equipped with useful structures. These
structures can be interpreted along with the spaces in question. It is natural to hope
that the properties of the interpreted structures will not be far from the properties of the
original structures. This section contains what I know about this problem at this point.

Definition 8.1 A interpretable structure is a tuple X = 〈Xi : i ∈ I,Rj : j ∈ J, fk : k ∈
K〉 where Xi are interpretable spaces–the constituent spaces of X, Rj are Borel finitary
relations between the various spaces and fk are finitary partial continuous functions
with closed or Gδ domain and range in one of the spaces.

There are many interpretable structures commonly considered in mathematics, includ-
ing topological groups, group actions, normed vector spaces with their duals and the
application functions and so on. They can be interpreted in an obvious way:
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Definition 8.2 Suppose that M is a transitive model of set theory and let M |= X =

〈Xi : i ∈ I,Rj : j ∈ J, fk : k ∈ K〉 is an interpretable structure on a space X . An
interpretation of X, written for short as π : X → X̂ is a structure X̂ = 〈X̂i : i ∈
I, R̂j : j ∈ J, f̂k : k ∈ K〉 with the same signature as X, and a tuple of constituent
interpretations πi : Xi → X̂i such that for each j ∈ J , the relation R̂j is interpreted as
the image of Rj under the appropriate product of the maps πi , and for each k ∈ K , the
function f̂k is interpreted as the image of fk under the appropriate product of the maps
πi .

The general expectation is that the interpreted structure will be at least in some ways
similar to the original structure in the model M . The following is the best general
theorem in this direction.

Theorem 8.3 (Analytic absoluteness) Suppose that M is a transitive model of set
theory and let M |= X is a Čech complete structure on a space X . Suppose that
π : X → X̂ is an interpretation of the space X . The map π is a Σ1 -elementary
embedding of the structure X to X̂.

Proof Assume for simplicity that X has a single constituent space X .

First, by an elementary induction on complexity of a quantifier free formula ψ(~x), show
that, writing n for arity of ψ , the set Bψ = {~x ∈ Xn : X |= ψ(~x)} ⊂ Xn is a Borel set in
the model M , and the interpretation (ψn)(Bψ) is exactly the set {~x ∈ X̂n : X̂ |= ψ(~x)}.

Now, let φ be a Σ1 formula, φ(~x) = ∃~y ψ(~x,~y) where ψ is quantifier free. Suppose ~x
is a finite string of elements of X . If X |= φ(~x) then there is ~y such that X |= ψ(~x,~y)
holds. Then, by the first paragraph, X̂ |= ψ(π(~x), π(~y)) and so X̂ |= φ(π(~x)) as desired.
If, on the other hand, X |= ¬φ(~x), then the Borel set B = {~y : X |= ψ(~x,~y)} is empty,
by the first paragraph it is interpreted as {~y : X̂ |= ψ(π(~x),~y)}, and at the same time
it is interpreted as the empty set. Thus, X |= ¬φ(π(~x) as desired and the proof is
complete.

Example 8.4 The interpretation of the ordered field R of a transitive model M is the
ordered field R. The axioms of ordered fields are Π1 . The real ordering is complete
without endpoints, and the field is Archimedean–these two features characterize the
real numbers. They also survive the interpretation process, the former by Corollary 5.3
and the latter by the fact that an interpretation commutes with unions of open sets, so
R =

⋃
n(−n, n) is preserved.
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Theorem 8.3 shows that if a structure X in the model M belongs to a class which
is axiomatizable with Σ1 and Π1 formulas, then its interpretation belongs to the
same class. As an example, the interpretation of a topological group is a topological
group, the interpretation of a continuous group action is a continuous group action,
the interpretation of a compatible metric is a compatible metric, similarly for Banach
spaces or Hilbert spaces etc.

A persistent problem in the interpretation theory is the following. Suppose that a Π1

(Σ1 etc.) formula defines a topologically simple set (closed, open, Borel etc.) One
would like to conclude that the same formula defines the interpretation of the set in the
interpreted structure. This is by no means an automatic matter. The following theorem
offers an affirmative answer to the absoluteness question which is easy to apply in
numerous cases.

Definition 8.5 Let X be an interpretable structure with a constituent space X . A
Π1 formula φ absolutely defines a closed set if for every poset P, P  whenever
π : X → X̂ is an interpretation then the formula φ in the structure X̂ defines a closed
subset of X .

While the definition may look awkward, in practice it is normally the case that there is
a ZFC proof that the formula φ defines a closed set in all structures similar to X, and
then φ absolutely defines a closed set in X.

Theorem 8.6 (Shoenfield absoluteness) Suppose that M is a transitive model of set
theory containing all ordinals. Suppose M |= X is an interpretable structure with a
constituent space X and φ is a Π1 formula that absolutely defines a closed set. Let
π : X→ X̂ be an interpretation. Then

π({x ∈ X : X |= φ(x)}) = {x ∈ X̂ : X̂ |= φ(x)}.

Proof It is easy to see that the statement can be reduced to the following. Suppose
that M |= X,Y are interpretable spaces and B ⊂ X × Y is a Borel set such that
the interpretation of B in all forcing extensions projects into an open subset of the
interpretation of X . Write O = p(B) ⊂ X , where p is the projection from X × Y to
X ; thus O ⊂ X is an open set. Let π0 : X,Y → X̂, Ŷ be an interpretation. I need to
conclude that π0(O) = p(π(B)).

To prove this statement, in the model M consider the Lévy collapse poset P collapsing
the size of bases of X and Y to ℵ0 . Let G ⊂ P be a generic filter over V . In the model
M[G], let χ0 : X,Y → X̂0, Ŷ0 be interpretations over the model M .
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Claim 8.7 M[G] |= χ0(O) = p(χ0(B)).

Proof Let χ̇ be a P-name for interpretations of X,Y respectively. By the homogeneity
of the poset P, the set A = {Q ∈ τ : ∃p ∈ P p  χ̇(Q) ⊂ p(χ̇(B))} is equal to
{Q ∈ τ : P  χ̇(Q) ⊂ p(χ̇(B))} and therefore is in the model M . By the assumption
on the Borel set B, the projection of χ̇(B) is forced to be open and therefore equal
to

⋃
χ̇′′A. By the analytic absoluteness 8.3, O =

⋃
A. Since χ̇ is forced to be an

interpretation, χ0(O) = χ0(
⋃

A) =
⋃
χ′′0A = p(χ0(B)) as desired.

In the model M[G], the underlying spaces X̂0, Ŷ0 are second countable, interpretable,
and therefore Polish. In the model V[G], let χ1 : X0,Y0 → X1,Y1 be an interpretation
over the model M[G]. By a standard Shoenfield absoluteness argument [5, Theorem
25.20] between the models M[G] and V[G] and the claim, χ1(χ0(O)) = p(χ1(χ0(B))).
Now, by faithfulness 13.1 applied to the chain M ⊂ M[G] ⊂ V[G] of models, χ1 ◦
χ0 : X,Y → X1,Y1 is an interpretation over the model M . By faithfulness 13.1
applied to the chain M ⊂ V ⊂ V[G] of models, there must be an interpretation
π1 : X̂, Ŷ → X1,Y1 over V such that π1 ◦ pi0 = χ1 ◦ χ0 . Let x ∈ X̂ be an arbitrary
point. By the analytic absoluteness 8.3 applied to the interpretation π1 , if x ∈ π0(O)
then π0(B)x 6= 0 and if x /∈ π0(O) then π0(B)x = 0. Thus, π0(O) = p(π0(B)) as
desired.

Theorem 8.6 makes a short work out of many fairly involved manual checks. However,
it has the disadvantage of needing the assumption that the model M contains all
ordinals, which is typically not necessary for the conclusion.

Example 8.8 Suppose that M is a transitive model of set theory containing all ordinals,
M |= f : G × X → X is a continuous minimal flow of an interpretable group on a
compact space. Let π : G,X → Ĝ, X̂ be an interpretation. Then the flow f is again
interpreted as a flow by analytic absoluteness 8.3. In fact, the interpreted flow f̂ will
be minimal again: the set C = {K ∈ K(X) : K is f -invariant} is defined by a Π1

formula, the formula will always define a closed subset of the hyperspace no matter
which extension of the model M one considers, and therefore π(C) = {K ∈ K(X̂) : K
is f̂ -invariant} by Shoenfield absoluteness 8.6. However, in M , the set C contains
just one element, namely X . Thus, π(C) contains also only one element X̂ and f̂ is
a minimal flow. It is possible to perform the whole computation by hand and thereby
show that the conclusion holds even for transitive models M which do not contain all
ordinals.
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Example 8.9 Suppose that M is a transitive model of set theory containing all ordinals
and M |= K is a compact convex set. Suppose that π : K → K̂ is an interpretation; by
analytic absoluteness, the convexity structure on K gives rise to a convexity structure
on K̂ . The space C(K,R) is interpreted as C(K̂,R) by Theorem 11.1. Now, the closed
set of convex functions in C(K,R) is defined by a Π1 formula which absolutely defines
a closed set. The conclusion of Shoenfield absoluteness 8.6 is that its interpretation
is the set of convex functions in C(K̂,R). A manual computation can remove the
assumption that M contains all ordinals.

Example 8.10 Suppose that M is a transitive model of set theory, M |= X is a locally
convex topological vector space with interpretable topology, K ⊂ X a compact convex
set such that the set L ⊂ K of all extreme points of K is compact. Suppose that
π : X → X̂ is an interpretation. Note that the set of extreme points of K is defined
by a Π1 formula: L = {x ∈ K : ∀y0, y1 ∈ K ∀r ∈ [0, 1] x = ry0 + (1 − r)y1 →
x = y0 ∨ x = y1} in the structure including X , [0, 1], multiplication, addition, and the
predicate for K . Note also that it is not possible to apply Shoenfield absoluteness 8.6
to argue that π(L) is the set of all extreme points of π(K) as it is not clear whether the
set of all extreme points of π(K) must be compact. Instead, it is necessary to resort to
an interesting manual computation:

Work in the model M for a moment. By the Krein–Milman theorem [9, Theorem
3.23], K is the topological closure of the algebraic convex closure of L . That is,
K = cl(

⋃
n Kn) where for each number n ∈ ω write In ⊂ [0, 1]n for the compact set

of all n-tuples whose sum is 1, and each Kn is the image of Ln × In under the map
f (~x,~r) =

∑
i rixi . Note that each set Kn ⊂ X is compact.

Step out of the model M . Each π(Kn) is the image of π(Ln) × π(In) under the map
π(f ). In other words,

⋃
n πn(Kn) is the algebraic convex closure of π(L). But then,

π(K) = cl(
⋃

n π(Kn)) is the topological closure of the algebraic convex closure of π(L).
The set π(L) ⊂ X̂ is compact by Corollary 5.4. By Milman’s theorem [9, Theorem
3.25], all extreme points of π(K) belong to the set π(L). Also, the set π(L) consists
only of extreme points of π(K) by the analytic absoluteness. In conclusion, π(L) is
exactly the set of all extremities of π(K) as desired.

Example 8.11 The demand that M contain all ordinals cannot be removed from the
assumptions of Theorem 8.6. To show this, use the fact that the statement “x ∈ ωω is
constructible” is Σ1

2(x) [5, Theorem 25.26] to find an effectively closed set C ⊂ (ωω)3

such that for every x ∈ ωω , x is constructible if and only if the projection of Cx into
the second coordinate is not all of ωω . Now, suppose that V = L and M is a countable
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transitive model which contains a point x ∈ ωω such that M |= x is not constructible.
Then M |=the formula ∀z 〈x, y, z〉 /∈ C with a free variable y absolutely defines a
closed subset of ωω , namely the empty set. However, it defines a nonempty set in V .

9 Quotients

In this section, I will show that certain commonly encountered types of quotient spaces
are interpreted in the expected way. This is connected to the evaluation of interpretations
of certain types of surjective maps. As the first case, recall that a function f : X → Y
is open if images of open sets are open.

Theorem 9.1 (Open mapping theorem) Let M be a transitive model of set theory and
M |= 〈X, τ〉, 〈Y, σ〉 is an interpretable space and f : X → Y is an open continuous
function. Let π : X → X̂ and χ : Y → Ŷ be interpretations. Then

(1) f̂ is an open continuous function from X̂ to Ŷ ;

(2) whenever O ∈ τ and P ∈ σ are open sets such that f ′′O = P, then f̂ ′′π(O) =

χ(P).

In particular, a continuous open surjection is interpreted as continuous open surjection.

Proof It is enough to verify that if the function f is surjective then its interpretation
f̂ is surjective, as both (1) and (2) then follow by applying this result to the restricted
functions f � O. Suppose that y ∈ Ŷ is a point and work to find x ∈ X̂ such that
f̂ (x) = y. Define a collection F of closed subsets of X̂ by F = {cl(f̂−1π(P)) : P ∈ σ
and y ∈ χ(P)}. It will be enough to show that

⋂
F 6= 0, since every point in the

intersection must be mapped to y by Theorem 4.7.

To this end, in the model M find a complete sieve 〈S,O(s) : s ∈ S〉 on X . By induction
on n ∈ ω build an inclusion-descending sequence 〈sn : n ∈ ω〉 of elements of the tree
S such that y ∈ χ(f ′′O(tn)). This is easy to do. Start with s0 = 0 and once sn is
found, let Dn = {O(t) : t is a one-step extension of sn}, note that

⋃
Dn = On and use

the fact that
⋃
π′′Dn = χ(f ′′O(sn)) to find a one-step extension sn+1 of sn such that

y ∈ χ(f ′′O(sn)). This concludes the induction step.

Now, let E = F ∪ {cl(O(sn)) : n ∈ ω}. Observe that the collection E has finite
intersection property. To see this, suppose that n ∈ ω is a number and P ∈ σ is an
open set such that y ∈ χ(P). The set χ(f ′′O(sn)) ∩ χ(P) is an open subset of the
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space Ŷ containing y, therefore nonempty, and as χ is an interpretation, the open
set f ′′O(sn) ∩ P ⊂ Y must be nonempty. Thus, there must be a point x ∈ On such
that f (x) ∈ P, and then π(x) ∈ π(O(sn)) ∩ f̂−1χ(Pn) and the latter set is nonempty as
desired.

The sieve 〈S, π(O(s)) : s ∈ S〉 on the space X̂ is complete by Theorem 5.2, and so⋂
E 6= 0, showing that

⋂
F 6= 0 as desired.

Corollary 9.2 Suppose that M is a transitive model of set theory and M |= 〈X, τ〉 is
an interpretable space and E is a closed equivalence relation on it such that saturations
of open sets are open, and such that the quotient X/E is a regular Hausdorff space. Let
π : X → X̂ be an interpretation.

(1) The map [x]E 7→ [π(x)]π(E) extends to an interpretation of X/E in the space
X̂/π(E);

(2) The interpretation of the quotient map f : X → X/E is the quotient map f̂ : X̂ →
X̂/π(E).

Proof The quotient map f is open in the model M by the assumptions on the equiva-
lence relation E . By Theorem 9.1, it is interpreted as an open map f̂ : X̂ → Y where
Y is the interpretation of the space X/E . Every open map is a quotient map, and so it
is enough to show that the equivalence relation F on X̂ given by x0 F x1 is equal to
π(E).

Note that F is closed and it contains π′′E which is dense in the closed equivalence
relation π(E); so it is enough to show that if O,P ∈ τ are open sets such that
(O× P) ∩ E = 0 then (π(O)× π(P)) ∩ F = 0. To see this, note that (O× P) ∩ E = 0
is equivalent to f ′′O∩ f ′′P = 0, which implies f̂ ′′π(O)∩ f̂ ′′π(P) = 0 by Corollary 7.6,
which by the definition of F indeed means that (π(O)× π(P))∩F = 0 as desired.

Example 9.3 The corollary shows that the coset spaces for closed subgroups are
interpreted in the expected way. Suppose that M is a transitive model of set theory and
M |= 〈G, τ, ·〉 is an interpretable topological group and H ⊂ G is a closed subgroup.
Let E be the closed equivalence relation on X defined by x0 E x1 if x0 · x−1

1 ∈ H .
This is a closed equivalence relation such that saturations of open sets are open. Now
let π : G → Ĝ be an interpretation. It is not difficult to verify that π(·) is a group
operation, π(H) is a closed subgroup, π(E) is an equivalence relation connecting x0, x1

just in case x0 ·x−1
1 ∈ π(H). Corollary 9.2 then shows that the interpretable coset space

G/H is interpreted as Ĝ/π(H).
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Now, recall that a function f : X → Y is perfect if it is continuous, surjective, images
of closed sets are closed and preimages of singletons are compact.

Theorem 9.4 (Perfect mapping theorem) Suppose that M is a transitive model of set
theory and M |= 〈X, τ〉 is an interpretable space, 〈Y, σ〉 is a regular Hausdorff space
and f : X → Y is a perfect mapping. Let π : X → X̂ and χ : Y → Ŷ be interpretations,
and f̂ : X̂ → Ŷ the interpreted map. Then

(1) f̂ is a perfect mapping;

(2) whenever O ∈ τ , P ∈ σ are open sets such that f ′′X \ O = Y \ P then
f̂ (X̂ \ π(O)) = Ŷ \ χ(P).

Proof I will start with a small claim.

Claim 9.5 In the model M : if O =
⋃

i∈I Oi is a union of open sets, then Y\f ′′(X\O) =⋃
{D ∈ σ : f−1D is covered by finitely many sets Oi}.

Proof The right-to-left inclusion follows from the definitions. For the left-to-right
inclusion, suppose that y ∈ Y \ f ′′(X \ O) is a point. The set f−1{y} is a compact
subset of O and so there is a finite set J ⊂ I such that f−1{y} ⊂

⋃
i∈J Oi . Let

D = Y \ f ′′(X \
⋃

i∈J Oi), note that y ∈ D and D belongs to the union on the right hand
side.

Suppose that y ∈ Ŷ is an arbitrary point; I will argue that f̂−1{y} ⊂ X̂ is nonempty
and compact.

To this end, in the model M let 〈S,O(s) : s ∈ S〉 be a complete, finitely additive
strong sieve on the space X . By induction on n ∈ ω build a descending sequence
〈sn : n ∈ ω〉 of nodes in S such that y ∈ χ(Y \ f ′′(X \ O(sn)). To do this, start with
s0 = 0 and in the induction step use the claim, the finite additivity of the sieve and
the fact that χ is an interpretation. After the induction has been performed, note
that the π -image of the sieve 〈S,O(s) : s ∈ S〉 is a complete sieve on the space X̂
by Theorem 5.2. Thus, the set K =

⋂
n cl(π(O(sn)) ⊂ X̂ is compact. No finite

subcollection of E = {π(f−1(P)) : P ∈ σ and y /∈ χ(P)} can cover the set K , and
therefore K\

⋃
E is a nonempty compact subset of K . The definitions and Theorem 4.7

imply that f̂−1{y} = K \
⋃

E .

Thus, we conclude that f̂ is a surjective function such that preimages of singletons are
compact. (2) now immediately follows by the application of this fact to the perfect
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mapping f � (X \ O) : X \ O→ Y \ P. To conclude the proof, it remains to show that
f̂ is a closed mapping. Suppose that C ⊂ X is a closed set and y ∈ Y is a point not in
f̂ ′′C ; I must find an open set P ∈ σ such that y ∈ χ(P) and f̂ ′′C ∩ χ(P) = 0. To find
the set P, use the compactness of K = f̂−1{y} to find an open set O ∈ τ such that
K ⊂ π(O) and π(O) ∩ C = 0. Let P ∈ σ be the open set equal to Y \ f ′′(X \ O). By
(2), f̂ ′′C ⊂ f̂ ′′(X \ O) = Ŷ \ χ(P). Thus, the set P ∈ σ works as required.

Corollary 9.6 Suppose that M is a transitive model of set theory and M |= 〈X, τ〉 is
an interpretable space and E is a closed equivalence relation on it such that saturations
of closed sets are closed, equivalence classes are compact, and such that the quotient
X/E is a regular Hausdorff space. Let π : X → X̂ be an interpretation.

(1) The map [x]E 7→ [π(x)]π(E) extends to an interpretation of X/E in the space
X̂/π(E);

(2) The interpretation of the quotient map f : X → X/E is the quotient map f̂ : X̂ →
X̂/π(E).

Proof The quotient map f is perfect in the model M by the assumptions on the
equivalence relation E . By Theorem 9.1, it is interpreted as a perfect map f̂ : X̂ → Y
where Y is the interpretation of the space X/E . Every perfect map is a quotient map,
and so it is enough to show that the equivalence relation F on X̂ given by x0 F x1

is equal to π(E). This follows letter by letter the second paragraph of the proof of
Corollary 9.2.

Example 9.7 The corollary shows that gluing in interpretable spaces is interpreted
in the expected way. Suppose that M is a transitive model of set theory and X is the
closed unit square in it, and E is the equivalence relation on X connecting 〈0, x〉 with
〈1, 1−x〉 and leaves all other points equivalent only to themselves. The quotient X/E is
the Möbius strip. The equivalence relation E satisfies the assumptions of Corollary 9.6
and so the interpretation of X/E is the Möbius strip again.

Example 9.8 Suppose that M is a transitive model of set theory and M |= H is a
Hilbert space with a norm φ. Let S ⊂ H be the unit sphere, and E the equivalence
of linear dependence on S . The relation E satisfies the assumptions of Corollary 9.6.
The quotient S/E is the projective Hilbert space of H . Thus, the interpretation of the
projective Hilbert space in M is a projective Hilbert space.
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10 Hyperspaces

Recall that if X is a topological space then K(X) denotes the space of its nonempty
compact subsets, equipped with Vietoris topology, generated by sets {K ∈ K(X) : K ⊆
O} and {K ∈ K(X) : K ∩ O = 0} as O varies over all open subsets of X .

Theorem 10.1 Suppose that M is a model of set theory and M |= 〈X, τ〉 is an
interpretable space. Suppose that π : X → X̂ is an interpretation. Let K(X) be the
hyperspace of X as evaluated in M , and let K(X̂) be the hyperspace of X̂ .

(1) The map π : K(X)→ K(X̂) can be extended to an interpretation of the hyperspace
K(X);

(2) Whenever O ∈ τ is an open set, π({K ∈ K(X) : K ⊂ O}) = {K ∈ K(X̂) : K ⊂
π(O)} and π({K ∈ K(X) : K ∩ O 6= 0}) = {K ∈ K(X̂) : K ∩ π(O) 6= 0}.

The interpretation π maps compact subsets of X in M to compact subsets of X̂ by
Corollary 5.4, so the map π : K(X)→ K(X̂) is well-defined.

Proof Whenever A,B ⊂ τ are finite sets, let U(A,B) ⊂ K(X) be the set of all
K ∈ K(X) such that for every O ∈ A K ⊂ O holds, and for every O ∈ B K ∩ O 6= 0
holds. A similar definition will be used to generate open sets of the space K(X̂). Note
that σ = {U(A,B) : A,B ⊂ τ finite} is a basis of the space K(X) in the model M and
σ̂ = {U(π′′A, π′′B) : A,B ⊂ τ finite} is a basis of the space K(X̂). The following
claim captures the conversation between the bases σ and σ̂ .

Claim 10.2 Let A,B ⊂ τ be finite sets.

(1) for every K ∈ K(X), K ∈ U(A,B)↔ π(K) ∈ U(π′′A, π′′B);

(2) if Ai,Bi ⊂ τ for i ∈ I are finite sets and I is finite and U(A,B) ⊂
⋃

i U(Ai,Bi),
then U(π′′A, π′′B) ⊂

⋃
i U(π′′Ai, π

′′Bi).

Proof For (1), just unravel the definition of the set U(A,B) and use the fact that
π : X → X̂ is an interpretation. For (2), suppose that the conclusion fails, as witnessed
by some set L ∈ K(X̂), L ∈ U(π′′A, π′′B) \

⋃
i U(π′′Ai, π

′′Bi). Then, there is a
partition I = I0 ∪ I1 and sets Oi ∈ Ai for i ∈ I0 and Oj ∈ Bj for j ∈ I1 such that if
i ∈ I0 then L 6⊂ π(Oi) and if j ∈ I1 then L ∩ π(Oj) = 0. This means that for every
i ∈ I0 , the set (

⋂
π′′A \

⋃
j∈I1

π(Oj)) \ Oi is nonempty, and for every P ∈ B, the set
π(P)∩

⋂
π′′A\

⋃
j∈I1

π(Oj) is nonempty. As π : X → X̂ is an interpretation, this in turn
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means that the sets (
⋂

A \
⋃

j∈I1
Oj) \ Oi is nonempty for every i ∈ I0 , and for every

P ∈ B, the set P ∩
⋂

A \
⋃

j∈I1
Oj is nonempty. The finitely many points from these

nonempty open sets can be collected to form a finite set K ∈ U(A,B) \
⋃

i U(Ai,Bi) in
the model M . (2) follows.

Now, I will argue that Proposition 5.13 can be applied with the basis σ to show that the
canonical extension π̄ of the map π : K 7→ π(K) from K(X) to K(X̂) of Definition 5.12
is in fact an interpretation.

To this end, first observe that π̄(U(A,B)) = U(π′′A, π′′B). For the right-to-left inclu-
sion, note that U(π′′A, π′′B) ⊂ K(X̂) is an open set disjoint from π′′(K(X) \ U(A,B))
by (1) of the claim. For the left-to-right inclusion, note that if U(π′′C, π′′D) ⊂ K(X̂)
is an open set disjoint from π′′(K(X) \ U(A,B)), then U(C,D) ⊂ U(A,B) and by (2)
of the claim, U(π′′C, π′′D) ⊂ U(π′′A, π′′D).

Work in the model M and find a complete finitely additive sieve 〈S,O(s) : s ∈ S〉 on
the space X . As in the proof of Theorem 3.7 observe that 〈S,U(O(s), 0) : s ∈ S〉 is a
complete sieve on the space K(X). Step out of the model M , and use Theorem 5.2 to
argue that 〈S, π(O(s)) : s ∈ S〉 is a complete sieve on the space X and Theorem 3.7 to
argue that 〈S,U(π(O(s)), 0) : s ∈ S〉 is a complete sieve on the space K(X̂). Thus, the
canonical extension π̂ moves a complete sieve on K(X) to a complete sieve on K(X̂).
Proposition 5.13 now completes the proof of the theorem.

11 The compact-open topology

The most usual spaces of continuous functions are interpreted in the expected way:

Theorem 11.1 Let M be a transitive model of set theory and M |= 〈X0, τ0〉, 〈X1, τ1〉
are a compact Hausdorff space and a completely metrizable metric space respec-
tively. Let C(X0,X1) the the space of continuous functions from X0 to X1 with the
compact-open topology as evaluated in M . Let π0 : X0 → X̂0 and π1 : X1 → X̂1 be
interpretations. Let C(X̂0, X̂1) be the space of continuous functions from X̂0 to X̂1 with
the compact-open topology. Then

(1) the map π : f 7→ (π0 × π1)(f ) extends to an interpretation of C(X0,X1) to
C(X̂0, X̂1);

(2) the evaluation function (x, f ) 7→ f (x) from X0 × C(X0,X1) to X1 is interpreted
as the evaluation function from X̂0 × C(X̂0, X̂1) to X̂1 .
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Proof Let d ∈ M be any complete metric on the space X1 ; this turns C(X0,X1) into a
complete metric space with the metric e(f , g) = sup{d(f (x), g(x)) : x ∈ X0}. The metric
d is interpreted by π1 as a complete metric on the space X̂1 by Theorem 5.5. Let ê be
the complete metric on C(X̂0, X̂1) defined by ê(f , g) = sup{π1(d)(f (x), g(x)) : x ∈ X̂0}.

The first observation is that the map π is an isometric embedding from 〈C(X0,X1), e〉
to 〈C(X̂0, X̂1), ê〉. To see this, suppose that f , g ∈ C(X0,X1) are functions. The set
{d(f (x), g(x)) : x ∈ X0} is dense in {π1(d)(π(f ), π(g)) : x ∈ X̂0}, so these sets have the
same supremum and e(f , g) = ê(π(f ), π(g)) must hold.

The second point is that the range of π is dense in the space C(X̂0, X̂1). For this,
suppose that f ∈ C(X̂0, X̂1) is a function and ε > 0 be a positive rational number.

Claim 11.2 There is a sequence y = 〈O0(n, i) ∈ τ0,O1(n, i) ∈ τ1 : i ∈ In, n ∈ ω〉
such that for each number n ∈ ω ,

(1) In is a finite set,
⋃

i O0(n, i) = X0 , and all the vertical sections of the set⋃
i cl(O0(n, i))× cl(O1(n, i)) have d -diameter at most 2−nε;

(2)
⋃

i cl(O0(n + 1, i))× cl(O1(n + 1, i)) ⊂
⋃

i O0(n, i)× O1(n, i);

(3) f ⊂
⋃

i π0(O0(n, i))× π(O1(n, i)).

Proof This is a straightforward compactness argument with the space X̂0 . Note that
f ⊂ X̂0 × X̂1 , as a continuous image of the compact space X̂0 , is compact.

By a wellfoundedness argument with the transitive model M , there is an infinite
sequence z = 〈O0(n, i) ∈ τ0,O1(n, i) ∈ τ1 : i ∈ In, n ∈ ω〉 in the model M satis-
fying the first two items from the claim, and such that z starts with the same tuple
〈O0(0, i),O1(0, i) : i ∈ I0〉 as the sequence y obtained in V by an application of the
claim. Let g ⊂ X0 × X1 be defined as

⋂
n
⋃

i∈In
〈cl(O0(n, i) × cl(O1(n, i))〉. It is not

difficult to verify that g ∈ C(X0,X1) is a continuous function and ê(π(g), π(f )) < ε.
This proves that the range of π is dense in the metric space 〈C(X̂0, X̂1), ê〉.

Now, by Theorem 5.5, the map π extends to an interpretation of C(X0,X1) in C(X̂0, X̂1)
so that π(e) = ê. The proof of item (2) is left to the reader.

The interpretation of spaces of continuous functions opens the door to the interpretation
of regular Borel measures.
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Theorem 11.3 Suppose that M is a transitive model of set theory and M |= 〈X, τ,B〉
is a locally compact Hausdorff space with Borel structure and µ is a regular Borel
measure on X . Suppose that π : X → X̂ is an interpretation. Then there is a unique
regular Borel measure µ̂ on X̂ such that for every set B ∈ B , µ(B) = µ̂(π(B)).

Proof I will need an easy general claim.

Claim 11.4 Whenever K ⊂ O are a compact and open subset of X respectively then
there is an open set P ∈ τ such that K ⊂ π(cl(P)) ⊂ O.

Proof Since π : X → X̂ is an interpretation, for every point x ∈ K there are sets
Ox,Px ∈ τ such that x ∈ Ox and π(Ox) ⊂ O and cl(Px) ⊂ Ox . By a compactness
argument, find an open set L ⊂ K such that K ⊂

⋃
x∈L π(Px) and let P =

⋃
x∈L Px .

The set P ∈ τ works.

First, handle the case of a compact space X . In this case, the measure µ must be
finite by regularity. In the model M , let F : C(X,R) → R be the continuous linear
operator of Lebesgue integration: F(f ) =

∫
f dµ. By Theorem 11.1, the space

C(X,R) is interpreted as C(X̂,R) via a a map which I will call π again. By analytic
absoluteness 8.3, π(F) is a continuous linear operator on C(X̂,R). By the Riesz
representation theorem, there is a regular Borel measure µ̂ on X̂ such that π(F) is the
integration with respect to µ̂. I claim that µ̂ works.

First, prove that for every open set O ∈ τ , µ(O) = µ̂(π(O)). For the ≤ inequivalence, if
q < µ(O) is a rational number, then by the regularity of µ there is a compact set K ∈ M
such that K ⊂ O and µ(K) > q. By the Hausdorffness of the space X in the model M ,
there is a continuous function f ∈ C(X, [0, 1]) such that f � K = 1 and f � (X\O) = 0.
Then by analytic absoluteness supp(π(f )) ⊂ π(O) and so µ̂(π(O)) > π(F)(π(f ) =

F(f ) > q as required. For the ≥ inequivalence, if q < µ̂(π(O)) is a rational number,
then by the regularity of µ̂ there is a compact set K ⊂ π(O) such that K ⊂ π(O)
and µ̂(K) > q. By Claim 11.4, there is an open set P ∈ τ such that cl(P) ⊂ O and
K ⊂ π(P). There is a continuous function f ∈ C(X, [0, 1]) such that f � cl(P) = 1
and f � (X \ O) = 0. Then µ(O) ≥ F(f ) = π(F)(π(f )) ≥ µ̂(cl(π(P))) ≥ µ̂(K) > q as
desired.

Now, it follows that for every compact set K ⊂ X in the model M , µ(K) = µ̂(π(K))
since µ(K) = µ(X) − µ(X \ K) = µ̂(X̂) − µ̂(π(X \ K)) = µ̂(π(K)) by the work on
open sets. By regularity of the measure µ, it also follows that for every set B ∈ B ,
µ(B) = µ̂(π(B)) as desired.
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For the uniqueness of the regular Borel measure µ̂, by the inner regularity of µ̂ and
Claim 11.4, for every open set O ⊂ X , µ̂(O) = sup{µ̂(π(P) : P ∈ τ, π(P) ⊂ O} and
so the values of µ̂ on open sets are uniquely determined by the demand on agreement
with µ. The values of µ̂ on other Borel sets are uniquely determined by the outer
regularity demand on µ̂.

For the general case of a locally compact space X and a (possibly infinite) regular Borel
measure µ on X , for every open set O ∈ τ such that cl(O) is compact write µO for
the restriction of the measure µ to cl(O), µ̂O for the unique measure on the compact
set cl(π(O)) ⊂ X̂ obtained from µO by the work on the compact case, and let µ̂ be
the measure on X̂ defined by µ̂(B) = sup{µ̂O(B ∩ cl(π(O))) : O ∈ τ and cl(O) ⊂ X is
compact}. The verification of the required properties of the measure µ̂ is routine and
left to the reader.

Example 11.5 Suppose that M is a transitive model of set theory and M |= G is a
topological group with locally compact Hausdorff topology. Let µ be the left invariant
Haar measure on G in the model M . Let π : G→ Ĝ be an interpretation. Then µ̂ is a
left invariant Haar measure on the group Ĝ. For the sake of brevity, I deal with the case
of a compact group G; the slightly more involved general case is left to the interested
reader. Note that the µ-integration linear operator F on C(G,R) in the model M is
invariant under left shifts by elements of G. By analytic absoluteness 8.3, this is also
true of the interpretation F̂ of F , and so the measure µ̂ obtained from F̂ must be
left-invariant as well.

12 Banach spaces

In this section, I provide several theorems on the interpretation of the usual operations
and concepts surrounding Banach spaces.

Theorem 12.1 Topological vector space over R (if interpretable) is interpreted as a
topological vector space over R. A normed Banach space is interpreted as a normed
Banach space. The following properties of Banach spaces are preserved by the inter-
pretation functor:

(1) local convexity;

(2) uniform convexity.
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Proof These are all elementary consequences of analytic absoluteness 8.3. Suppose
that M is a transitive model of set theory and M |= X is a topological vector space.
First of all, the axioms of topological vector space are all Π1 , and therefore they
survive the interpretation process. Now suppose that φ is a complete norm on X ; then
d(x, y) = φ(x − y) is a complete metric on X . Let π : X → X̂ be an interpretation.
The interpretation π(φ) satisies the triangle inequality by analytic absoluteness, since
the triangle inequality is a Π1 statement. By Theorem 5.5, X̂ is just the completion
of π′′X under the metric π(d). In particular, π(d) is a complete metric on X̂ , by
analytic absoluteness (π(d))(x, y) = π(φ)(x − y) and so π(φ) is a complete norm on
X̂ . Therefore, a Banach space is interpreted as a Banach space, and its complete norms
are interpreted as complete norms.

The local convexity is the statement that every (basic) open neighborhood in X is a
union of convex open sets. Now, if an open set O ⊂ X in τ is convex, then π(O)
is convex again, since convexity is a Π1 property of the set. Also, interpretations
commute with arbitrary unions and so if O =

⋃
i Oi is a union of convex open sets in

the model M , then π(O) =
⋃

i π(Oi) is a union of open convex sets as desired.

The uniform convexity is a Π1 statement and therefore survives the interpretation
process again.

Now, I am ready to show that various operations on Banach spaces commute with
the interpretation functor. The most popular operation on Banach spaces is certainly
taking a dual, either with the weak∗ topology, or with the topology obtained from the
dual norm. For a normed Banach space X with norm φ, write X∗ for its normed dual
with the dual norm φ∗ . The bracket 〈〉X denotes the evaluation map from X × X∗ to
R: 〈x, x∗〉 = x∗(x).

Theorem 12.2 Suppose that M is a transitive model of set theory and X |= M is a
Banach space with norm φ, with dual X∗ and dual norm φ∗ . Let π : X → X̂ be an
interpretation. π(φ) is a complete norm on X̂ ; write (X̂)∗ for the dual of X̂ with the
dual norm π(φ)∗ . Then

(1) X∗ is interpreted as a closed subset of (X̂)∗ ;

(2) the norm φ∗ is interpreted as the restriction of the norm π(φ)∗ ;

(3) the bracket 〈〉X is interpreted as the restriction of the bracket 〈〉X̂ ;

(4) if M |= X is uniformly convex then the normed dual of X is interpreted as all of
X̂∗ .
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Proof Let x∗ be a continuous linear functional from X to R in the model M . By
Theorem 4.7, π(x∗) is a continuous function from X̂ to R; by analytic absoluteness 8.3,
the function π(x∗) is linear and so an element of (X̂)∗ .

Let B ⊂ X be the φ-unit ball; so π(B) ⊂ X̂ is the π(φ)-unit ball. Since π′′(x∗) ⊂ π(x∗)
and π′′B ⊂ π(B) are dense sets, it is the case that (x∗)′′(B) is a dense subset of
(π(x∗))′′π(B), and so φ∗(x∗) = (π(φ)∗)(π(x∗)). It follows that the map x∗ 7→ π(x∗) is
a norm and metric preserving embedding from 〈X∗, φ∗〉 to 〈(X̂)∗, π(φ)∗〉 which also
commutes with the brackets.

Let χ : X∗ → Y be an interpretation of the dual space X∗ . By Theorem 5.5, the space
Y is just the completion of χ′′X∗ under the norm χ(φ∗). As a result, there is a unique
isometric embedding h : 〈Y, χ(φ∗)〉 → 〈(X̂)∗, π(φ)∗〉 such that h(χ(x∗)) = π(x∗).
Clearly, (h ◦ χ)′′(〈〉X) is a subset of the bracket 〈〉X̂ and (h ◦ χ)′′φ∗ is a subset of the
norm (π(φ))∗ on (X̂)∗ . Since in both cases the functions in question are continuous,
it follows that (h ◦ χ)(〈〉X) is equal to the restriction of the bracket 〈〉X̂ to X̂ × rng(h)
and the (h ◦ χ)(φ∗) is just the restriction of (π(φ))∗ to rng(h). This completes the
verification of the first three items.

For the last item, I will use the following general claim of independent interest:

Claim 12.3 The set {π(x∗) : x∗ ∈ X∗} ⊂ (X̂)∗ is dense in the weak∗ topology.

Proof Recall that the weak∗ topology is just the topology of pointwise convergence of
linear functionals in (X̂)∗ . Thus, it will be enough, given a linear functional x∗ ∈ (X̂)∗ ,
points xi ∈ X̂ and open sets Oi ⊂ R for i ∈ n, such that for all i ∈ n x∗(xi) ∈ Oi holds,
to produce a linear functional x∗∗ ∈ X∗ such that for all i ∈ n, π(x∗∗)(xi) ∈ Oi holds.

Suppose for simpicity that the points xi ∈ X̂ are linearly independent. Find a real
number ε > 0 such that for all i ∈ ω , the interval (x∗(xi)− ε, x∗(xi) + ε) is a subset of
Oi . Find a natural number r such that π(φ)(x∗) ≤ r . Find points yi ∈ X such that

• {yi : i ∈ n} is a linearly independent collection;

• φ(yi) ≥ φ∗(xi);

• φ∗(xi − π(yi)) < ε/2r .

This is easy using the fact that π′′X ⊂ X̂ is dense. Find rational numbers ti for
i ∈ ω such that φ(xi) − ε/2 < ti < φ(xi) for each i ∈ n. In the model M , use the
Hahn–Banach theorem to find a linear functional φ(x∗∗) ≤ r and x∗∗(yi) = ti for each
i ∈ n. Then, for each i ∈ n, it is clear that π(x∗∗)(xi) = π(x∗∗)(yi) + π(x∗∗)(xi − yi) ∈
(t − ε/2, t + ε/2) ⊂ Oi , which completes the proof of the claim.
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For the conclusion of last item, it is enough to show that the interpretation of X∗ is
dense in (X̂)∗ in the sense of the dual norm π(φ)∗ : since these are both complete metric
spaces, the density necessitates the conclusion that the interpretation of X∗ is in fact
equal to (X̂)∗ . Since the interpretation of X∗ is a convex subset of (X̂)∗ , it is enough to
show that it is dense in the sense of the weak topology of (X̂)∗ by [9, Theorem 3.12].
Now (the key step in the proof), since M |= X is uniformly convex, then so is X̂ by
Theorem 12.1, so X̂ is reflexive by Milman–Pettis theorem [8] and the weak topology
on (X̂)∗ coincides with the weak∗ topology. Thus, the desired conclusion follows from
Claim 12.3.

Example 12.4 In a transitive model M of set theory, consider the spaces X = `1 and
Y = `∞ with their usual norms. The space X , being separable, is interpreted as `1 . On
the other hand, whenever a ⊂ ω is a set which is not in M , the characteristic function
of a is an element of `∞ which is not in the closure of Y . Thus, the interpretation of
Y will be a proper closed subset of the normed dual of the interpretation of X .

Theorem 12.5 Suppose that M is a transitive model of set theory and M |= 〈X, τ〉 is
a Banach space and Y the unit ball of its dual with the weak∗ topology. Suppose that
π : X → X̂ is an interpretation and write Ŷ for the unit ball of the dual of X̂ with the
weak∗ topology.

(1) The map π : Y → Ŷ extends to an interpretation;

(2) the bracket on X × Y is interpreted as the bracket on X × Y .

Proof The weak∗ topology is just the pointwise convergence topology. Thus, define
basic functions on X as the functions g whose domain is a finite subset of X and
whose values are real intervals with rational endpoints. For each basic function g
define a basic open set U(g) ⊂ Y as the set of all points y ∈ Y such that for every
x ∈ dom(g), y(x) ∈ g(x). Let σ = {U(g) ⊂ Y : g is a basic function on X}; this is
a basis of the topology on the space Y . Similarly, define basic functions g on X̂ and
their corresponding open sets U(g) on the space Ŷ . Let σ̂ = {U(π′′g) ⊂ Ŷ : g is a
basic function on X}.

Claim 12.6 σ̂ is a basis for the topology on Ŷ .

Proof Suppose that h is a basic function on X̂ and y ∈ Ŷ belongs to U(h). Write
h = {〈xi, qi〉i ∈ I} and let ε > 0 be a rational number such that for every i ∈ I ,
(y(xi) − ε, y(xi) + ε) ⊂ qi . Use the density of π′′X in X̂ to find points x′i ∈ Xi and
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intervals q′i with rational endpoints so that the norm of xi−π(x′i) is less than < ε/8 and
(y(xi)−ε/4, y(xi)+ε/4) ⊂ q′i ⊂ (y(xi)−ε/2, y(xi)+ε/2). Let g = {〈x′i, q′i〉 : i ∈ I} and
use the linearity and bounded norm of operators in Y to conclude that x ∈ U(π′′g) ⊂
U(h).

Claim 12.7 Suppose that g is a basic function on X .

(1) whenever y ∈ Y then y ∈ U(g) if and only if π(y) ∈ U(π′′g);

(2) if hi for i ∈ I and some finite set I are basic functions on X and U(g) ⊂
⋃

i U(hi),
then U(π′′g) ⊂

⋃
i U(π′′h).

Proof For the first item, just unravel the definition of the set U(g) and of the map
π on operators. For the second item, suppose that the conclusion fails and y ∈ Ŷ
is an operator in U(π′′g) \

⋃
i U(π′′hi). Let X0 ⊂ X be the finite-dimensional space

generated by dom(g) ∪
⋃

i dom(hi). By analytic absoluteness 8.3, there must be an
operator z0 ∈ M on X0 of norm ≤ 1 which is in U(g)\

⋃
i U(hi). By the Hahn-Banach

theorem in the model M , z0 can be extended to an operator z on all of X of norm ≤ 1.
Then z ∈ U(g) \

⋃
i U(hi) as desired.

Now, let π̄ be the canonical extension of the map π : Y → Ŷ as described in Defini-
tion 5.12. First argue that π̄(U(g)) = U(π′′g). For the right-to-left inclusion note that
U(π′′g) ⊂ Ŷ is an open set disjoint from π′′(Y \ U(g)) by (1) of the claim. For the
left-to-right inclusion, if h is a basic function on X and U(π′′h) ⊂ Ŷ is disjoint from
π′′(Y \ U(g)) then U(h) ⊂ U(g) by (1) of the claim, and so U(π′′h) ⊂ U(π′′g) by (2)
of the claim. Now, the canonical extension π̄ must be an interpretation of Y in Ŷ by
Proposition 5.13, since the space Ŷ is compact.

13 Faithfulness

It is interesting to see how the interpretations behave when there are more models
around. The behavior in the category of interpretable spaces is the expected one.
Outside of the category, there is an instructive counterexample.

Theorem 13.1 Suppose that M0 ⊂ M1 are transitive models of set theory, M0 |=
〈X0, τ0〉 is an interpretable space, M1 |= π0 : 〈X0, τ0〉 → 〈X1, τ1〉 is an interpretation
over M0 , and π1 : 〈X1, τ1〉 → 〈X2, τ2〉 is an interpretation over M1 . Then π1 ◦
π0 : 〈X0, τ0〉 → 〈X2, τ2〉 is an interpretation over M0 .
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Proof The composition map is clearly a preinterpretation, and this would hold of any
topological space X0 . If 〈S,O(s) : s ∈ S〉 is a complete sieve on X0 in the model M0 ,
then by a repeated use of Theorem 5.2 the pair 〈S, π0(O(s)) : s ∈ S〉 is a complete sieve
on X1 in the model M1 , the pair 〈S, π1(π0(O(s))) : s ∈ S〉 is a complete sieve on X2 ,
and therefore the composition π1 ◦ π0 is an interpretation as desired.

Example 13.2 The conclusion of Theorem 13.1 fails for X = ωω1 . To see, this I
will first prove a characterization theorem for interpretations of the space X in generic
extensions in the presence of the continuum hypothesis.

Claim 13.3 (with Justin Moore) Assume the Continuum Hypothesis. Let P be a
partial ordering. The following are equivalent:

(1) P  the interpretation of XV is XV[G] with the identity map;

(2) P adds no reals and preserves the statement “T has no uncountable branches”
for every tree T of size ℵ1 .

Here, by XV[G] I mean the product ωω
V
1 as evaluated in V[G].

Proof It is not difficult to show that to prove (1), one has to prove the following. Let F
be a collection of finite partial functions from ω1 to ω such that ∀x ∈ X ∃f ∈ F f ⊂ x;
then P  ∀x ∈ XV[G] ∃f ∈ F f ⊂ x . To this end, look at the tree T of all functions
whose domain is some countable ordinal, range is a subset of natural numbers, and
t ∈ T implies that for no f ∈ F , f ⊂ t . The assumptions imply that T has no cofinal
branches. Suppose now that (2) holds. Let ẋ be a P-name for a new element of X .
Since P adds no new reals, all initial segments of ẋ are forced to be in the ground
model. And since P  ẋ is not a branch through Ť , there must be an initial segment of
ẋ which is not in T and therefore contains some f ∈ F as a subset. Thus, (1) holds.

Now, suppose that (2) fails. There are two distinct cases. Suppose first that P adds a
new real. Use the CH assumption to find an enumeration 〈zα : ω ≤ α < ω1〉 of all
elements of ωω . For every ω ≤ α < ω1 , consider the open set Oα = {x ∈ X : x �
x(α) = zα � x(α)}. Note that

⋃
α Oα = X since for every element x ∈ X there is an

ordinal α such that x � ω = zα and then x ∈ Oα . However, if ẋ is a P-name for
any function from ω1 to ω such that ẋ � ω /∈ V and for every ω ≤ α < ω1 ẋ(α) is
a number so large that zα and ẋ � ω differ below ẋ(α), then P  ẋ does not belong
to the natural interpretation of the set Oα for any ordinal α . In other words, an open
cover of XV does not cover XV[G] and (1) fails.
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Suppose now that P adds no new reals and instead adds an uncountable branch through
some tree T of size ℵ1 which has no uncountable branches in the ground model. One
can assume that every countable increasing sequence in T has a unique supremum,
every terminal node of T is on a limit level, and nonterminal nodes split into exactly
two immediate successors. For every t ∈ T let Xt be the set {s ∈ T : s ≤ t} equipped
with discrete topology. The product Y =

∏
t Xt is naturally homeomorphic to a closed

subspace of X , so it will be enough to show that there is an open cover of YV which is not
a cover of YV[G] . Consider the following open subsets of Y : Ot = {y ∈ Y : y(t) = t}
for terminal nodes t ∈ T , Qt = {y ∈ Y : if y(t) = t then for neither of the two immediate
successors s of t , y(s) = s} for nonterminal nodes t ∈ T , and Pst = {y ∈ Y : y(s)
is not compatible with y(t)} and Rst = {y ∈ Y : y(t) < y(s) ≤ t} for any two nodes
s, t ∈ T .

On one hand, in the P extension, the product YV[G] is not covered by the union of
(the natural interpretations of) these open sets: if b ⊂ T is a cofinal branch in V[G]
then the point y ∈ YV[G] defined by y(t) =largest element of b which is ≤ t does not
belong to any of the open sets. On the other hand, in the ground model the product Y
is covered by the union of these open sets: if y ∈ Y fell out of all of them then define
b = rng(y) and observe that

• b is a linearly ordered subset of T by the definition of Pst ;

• b is countable as T has no cofinal branches in the ground model;

• b does not have a maximum. Such a maximum t would have to have y(t) = t
by the definition of the sets R(s, t), but then if t is nonterminal then y ∈ Qt and
if t is terminal then y ∈ Ot ;

• b does not have a limit ordertype, since for the supremum t , y(t) < t would
have to hold and y would belong to one of the sets Rst .

Since the last two items cover all possibilities, a contradiction is reached showing that
YV is covered by the open sets indicated and (1) again fails.

It is now a routine matter to start with a model of CH and construct generic extensions
V ⊂ V[G] ⊂ V[H] such that both V[G] and V[H] are σ -closed extensions of V and
V[G] contains a branchless tree T of size ℵ1 which does have branches in V[H]. For
example, to obtain V[G] just add an ω1 -tree T with countable approximations (it will
be a Suslin tree by [5, Theorem 15.23]) and then add a generic branch through it to form
V[H]. It is well known that V[H] is a σ -closed extension of V . Once this is done, the
claims show that the interpretation of XV in V[H] over V is XV[H] , the interpretation
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in V[G] is XV[G] , and the interpretation of XV[G] is not XV[H] , in violation of the
conclusion of Theorem 13.1.

Theorem 13.4 Suppose that X̂ is an interpretable space and M is an elementary
submodel of a large structure containing X̂ as an element and some basis of X̂ as an
element and a subset. Let π : M̄ → M be the inverse of the transitive collapse of M
and X = π−1(X̂). Then π : X → X̂ is an interpretation of the space X over the model
M̄ .

Proof The map π commutes with finite intersections and arbitrary unions in the model
M̄ simply because π is an elementary embedding. Moreover, the range of π generates
the topology of the space X̂ since it contains a basis by the assumptions. Thus, the
map π is a preinterpretation, and this would be true for any topological space X . To
prove that π is an interpretation, find a basis σ of X̂ which is an element and a subset
of the model M . Given a complete sieve 〈S,O(s) : s ∈ S〉 for the space X , refining and
thinning out if necessary it is possible to amend it so that it uses only sets from the basis
σ and so that if t ∈ S and s0, s1 are immediate successors of t then O(s0) 6= O(s1).
Such a sieve has size ≤ |σ| and one such a sieve must belong to the model M by
elementarity; it is then even a subset of M . Then, the interpretation of the complete
sieve π−1(〈S,O(s) : s ∈ S〉) on X is the complete sieve 〈S,O(s) : s ∈ S〉 on X̂ and
therefore π : X → X̂ is an interpretation by Theorem 5.2.

Example 13.5 Whenever X is a second countable space which is not Polish and M is
a countable elementary submodel of a large structure containing X , then the conclusion
of the theorem fails since interpretations of spaces over countable M must be Polish.

14 Preservation theorems

In this section I will show that certain properties of topological spaces survive the
interpretation process. This is to say, if M is a transitive model of set theory and
M |= X is a topological space with property φ and π : X → X̂ is a topological
interpretation, then X̂ has property φ. There are very many open questions.

In the category of compact Hausdorff spaces, many topological properties are preserved
simply because every open cover of the interpretation has a finite refinement whose
elements are in the range of the interpretation map. This immediately gives the
following:
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Proposition 14.1 Suppose that M is a model of set theory and M |= X is a compact
Hausdorff space and f : X → X is a continuous map. Suppose that π : X → X̂ and
f̂ : X̂ → X̂ are interpretations.

(1) if M |= X is connected then X̂ is connected;

(2) if M |= X is totally disconnected then X̂ is totally disconnected;

(3) the Lebesgue covering dimension of X as computed in M is equal to that of X̂ ;

(4) the topological entropy of f as computed in M is equal to that of f̂ .

I do not know if such categories as Lyusternik–Schnirelman category, small inductive
dimension or large inductive dimension are necessarily preserved by interpretations of
compact Hausdorff spaces. In the broader category of interpretable spaces, much more
complicated behavior is possible. I include just one preservation schema which yields
many results.

Definition 14.2 A property φ of open covers of topological spaces is good if

(1) it is upwards absolute: suppose that M is a transitive model of set theory and
M |= X is an interpretable space and C is an open cover of X with φ(C). If
π : X → X̂ is an interpretation, then φ(π′′C) holds;

(2) it is diagonalizable: if X is an interpretable space, C is an open cover with φ(C)
and for every O ∈ C , DO is an open cover of some open set containing cl(O) as
a subset such that φ(DO) holds, then there is a refinement of

⋃
O DO which has

property φ;

(3) if a finite cover fails to have φ then so do all of its refinements.

Say that X is φ-compact if every open cover has a refinement which satisfies φ, and X
is locally φ-compact if for every point x ∈ X and every neighborhood x ∈ O there is
an open set x ∈ P ⊂ O such that P is φ-compact.

Several traditional properties of topological spaces can be expressed as local φ-
compactness for a good φ:

Example 14.3 Local metacompactness. Consider the property φ of open covers C
saying “every point is contained in only finitely many elements of C”, or in standard
terminology “C is pointwise finite”. Then φ is good: φ(C) says that the intersection⋂

n On is empty, where On is the open set of points contained in more than n many
elements of the cover C . This statements is absolute by Theorem 6.1. For the
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diagonalization, if C is a pointwise finite cover of X and for each O ∈ C there is an
pointwise finite open cover DO of some open set containing cl(O), then the collection
{P ∩ O : P ∈ DO} is a pointwise finite refinement of

⋃
O DO .

Example 14.4 Local paracompactness. Consider the property φ of open covers C
saying “every point has a neighborhood which has nonempty intersection with only
finitely many elements of C”, or in standard terminology “C is locally finite”. Then φ
is good: φ(C) says that the set {O ⊂ X : O is an open set with nonempty intersection
with only finitely many elements of C} is a cover of X , and this is preserved by
interpretations. For the diagonalization, if C is a locally finite cover of X and for each
O ∈ C there is a locally finite open cover DO of some open set containing cl(O), then
the collection {P ∩ O : P ∈ DO} is a locally finite refinement of

⋃
O DO .

Example 14.5 Local Lindelöfness. Consider the property φ of open covers C saying
that

⋃
C is covered by countably many elements of C .

Example 14.6 Local connectedness. Consider the property φ of open covers saying
C that for every two sets P,Q ∈ C there are sets {Oi : i ∈ n} in C such that
O0 = P,On−1 = Q, and Oi ∩ Oi+1 6= 0 for every i ∈ n− 1.

Many properties such as (local) complete normality are not expressible in this way.

Theorem 14.7 Suppose that φ is a good property of covers. Suppose that M is
a transitive model of set theory M |= 〈X, τ〉 is a locally φ-compact interpretable
space. Let π : X → X̂ be an interpretation. Then X̂ is locally φ-compact; in fact, if
M |= O ∈ τ is φ-compact then π(O) is φ-compact.

Proof Suppose for contradiction that P ∈ τ is a φ-compact set, and C is an open cover
on π(P) which shows that π(P) fails to be φ-compact–thus, P has no refinement with
property φ. Refining if necessary, I may assume that C ⊂ π′′τ . Let 〈S,O(s) : s ∈ S〉
be a complete sieve on the space X in the model M . By induction on n ∈ ω build
nodes sn ∈ S and sets Pn ∈ τ so that

• s0 = 0 and sn+1 is an immediate successor of sn ;

• P = P0 ⊃ P1 ⊃ . . . are φ-compact sets in the model M ;

• C � π(Pn), the cover of π(Pn) consisting of intersections of elements of C with
π(Pn), has no refinement with property φ;

• cl(Pn) ⊂ Pn ∩ O(sn).
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This is not difficult to do. At the induction step, work in the model M and write
Pn =

⋃
D where Q ∈ D implies that Q is a φ-compact open set and Q̄ ⊂ Pn ∩ O(t)

for some immediate successor t of sn . This is possible as the space X is locally
φ-compact. I claim that there must be O ∈ D such that C � π(O) has no refinement
with property φ which makes the induction step immediately possible. Suppose for
contradiction that this fails. Use the φ-compactness of Pn in the model M to find a
refinement D′ of D with the property φ such that the closure of every element of D′ is
a subset of some element of D. Step out of the model M . By the upward absoluteness,
π′′D′ is a cover of π(Pn) with the property φ. For every O ∈ D there is a cover DO of
π(O) which is a refinement of C � π(O) and has the property φ by the contradictory
assumption. By the diagonalizability, there is is a refinement of

⋃
O DO which is a

cover of π(Pn) with the property φ. However, this contradicts the third item of the
induction hypothesis.

Once the induction process is complete, let F be the collection {cl(π(Pn)) : n ∈
ω} ∪ {X̂ \ O : O ∈ C} of closed subsets of the space X̂ . The collection F has the
finite intersection property since no set Pn can be covered by finitely many sets O
such that π(O) is an element of C : such a finite cover E would have to be in the
model M , π′′E would be a refinement of C � Pn , so it would fail φ, thus M |= ¬φ(E)
by the absoluteness clause of Definition 14.2, and M |= E witnesses the failure of
φ-compactness of the set Pn by the third clause of Definition 14.2. This would violate
the second item of the induction hypothesis at n. Now, since the π -image of the sieve
is complete by Theorem 5.2, the collection F has a nonempty intersection, containing
some element x ∈ X̂ . Then x /∈

⋃
C , contradicting the assumption that C was a

cover.

Corollary 14.8 The following properties of interpretable spaces are preserved by
interpretations over transitive models of set theory:

(1) local paracompactness;

(2) local metacompactness;

(3) local Lindelöfness;

(4) local connectedness.

The corollary can be sharpened in certain more special circumstances. For example,
by a theorem of Frolı́k [4], a regular Hausdorff space X is paracompact Čech complete
if and only if there is a perfect map f : X → Y onto a completely metrizable space
Y . Thus, if M |= X is Čech complete and paracompact, then the interpretation of
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X is again Čech complete and paracompact since the perfect map is interpreted as a
perfect map again by Theorem 9.4 and the completely metrizable space is interpreted
as completely metrizable again.

15 Interpretable Borel spaces

There are important spaces which are not interpretable, including Q or Cp(R). In
general, the interpretation of such spaces exhibits various pathologies. In a good class
of examples though, one can adjust the notion of interpretation so that the resulting
functor commutes with many natural operations on such spaces.

Definition 15.1 A Borel space is a triple 〈X, τ,B〉 where X is a set, τ is a topology,
and B is the σ -algebra of Borel sets.

Borel spaces have a natural notion of interpretation between transitive models of set
theory:

Definition 15.2 Suppose that M is a transitive model of set theory and M |= 〈X, τ,B〉
is a Borel space. A preinterpretation of the Borel space is a map π : X → X̂ , π : τ → τ̂

and π : B → B̂ where 〈X̂, τ̂ , B̂〉 is a Borel space and

(1) for every x ∈ X and every O ∈ τ , x ∈ O↔ π(x) ∈ π(O);

(2) π � τ commutes with finite intersections and arbitrary unions in the model M ,
π(0) = 0 and π(X) = X̂ ;

(3) π′′τ generates the topology τ̂ ;

(4) π � B extends π � τ and it commutes with complements, countable unions and
intersections in the model M .

An interpretation is the largest preinterpretation in the sense of reducibility if it exists.

Thus, Theorem 6.1 says that the notion of interpretation of Borel spaces essentially
coincides with interpretations of topological spaces in the category of interpretable
topological spaces. The development of the theory of interpretations of Borel spaces
closely follows the topological case.

Theorem 15.3 If M is a transitive model of set theory and M |= 〈X, τ,B〉 is a Borel
space whose topology is regular Hausdorff, then its preinterpretation exists, it is unique
up to equivalence of preinterpretations, and its topology is regular Hausdorff again.
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Theorem 15.4 The interpretation functor on interpretable Borel spaces commutes
with the operation of taking a Borel subset.

Definition 15.5 An interpretable Borel space is one isomorphic to a Borel subset of
an interpretable topological space, with the inherited Borel structure.

Theorem 15.6 The interpretation functor on interpretable Borel spaces commutes
with the operation of countable product.

As a final note, I will show that in a very common case, that of proper bounding forcing
extensions, the notions of interpretation of topological and Borel topological spaces
essentially coincide.

Theorem 15.7 Suppose that M is a transitive model of set theory such that

(1) every countable subset of M is covered by a set in M which is countable in M ;

(2) every function in ωω is pointwise dominated by some function in ωω ∩M .

Suppose M |= 〈X, τ,B〉 is a regular Hausdorff space with a Borel σ -algebra. If
π : 〈X, τ〉 → 〈X̂, τ̂〉 is a interpretation of the topological space then π extends to an
interpretation of the Borel space.

Proof It will be enough to show that if π is a topological preinterpretation the it can
be extended to a Borel-topological interpretation, since then the direct limits used to
compute the topological and Borel-topological interpretations coincide. The argument
follows closely the proof of Theorem 6.1. Work in the model M . By induction on the
complexity of a Borel code c ∈ M , define an ordering Tc . An element p ∈ Tc will be
a tuple whose first element will be a nonempty closed subset of X denoted as E(p).

• if c = {A} for a nonempty closed or open set A ⊂ X , then Tc is an ordering of
all pairs p = 〈E, n〉 such that E ⊂ A is closed and nonempty and n ∈ ω . The
ordering is defined by 〈E, n〉 > 〈F,m〉 if F ⊆ E and n < m;

• if c = {
⋃
,D} for some countable set D of codes, Tc is the ordering of all triples

〈E, d, u〉 where E ⊂ X is a nonempty closed set, d ∈ D, u ∈ Td , and E ⊆ E(u).
I set 〈E, d, u〉 > 〈F, e, v〉 if F ⊆ E , d = e and v < u;

• if c = {
⋂
,D} for some countable set D = {di : i ∈ ω} of codes with a fixed

enumeration, let Tc be the set of all tuples 〈E, ui : i ∈ n〉 where E ⊂ X is a
nonempty closed set, ui ∈ Tdi for all i ∈ n, and E ⊆

⋂
i ∈ nE(ui). The ordering

is defined by 〈E, ui : i ∈ n〉 > 〈F, vi : i ∈ m〉 if F ⊆ E , m > n, and for all i ∈ n
ui > vi in Tdi .
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Claim 15.8 In the model M , if p is an infinite descending sequence in Tc then⋂
n E(p(n)) ⊂ Bc .

Claim 15.9 In V , if x ∈ B̂c is a point then there is an infinite descending sequence p
in Tc such that x ∈

⋂
n π(E(p(n)).

Now, as in the proof of Theorem 6.1, it is just enough to show that if c ∈ M is a Borel
code and B̂c 6= 0 then Bc 6= 0. Suppose then that B̂c 6= 0. Let T be the tree of all finite
attempts tobuild an infinite descending sequence in Tc ; so T ∈ M . Use Claim 15.9 to
find an infinite branch p in T such that

⋂
n π(E(p(n))) 6= 0. Use the assumptions (1)

and (2) of the theorem to find a finitely branching tree S ⊂ T in the model M such
that b ⊂ S . For every number n ∈ ω let Cn =

⋃
{t(n) : t ∈ S}. The set Cn ⊂ X

is a finite union of closed sets and as such it is closed. The set
⋂

n π(Cn) ⊂ X̂ is
nonempty, containing the point x , and since the map π is a topological interpretation,
the set

⋂
n Cn ⊂ X must be nonempty. Let y ∈ X be a point in this intersection. A

compactness argument with the finitely branching tree S shows that there must be an
infinite branch c ⊂ S such that y ∈

⋂
n c(n). Claim 15.8 then shows that y ∈ Bc as

desired.

Neither of the assumptions of Theorem 15.7 can be removed as the following two
examples show.

Example 15.10 Let κ be an uncountable regular cardinal and let 〈X, τ,B〉 be the
subspace of 2κ consisting of characteristic functions of finite sets with a Borel structure.

(1) The interpretation of the Borel space X in every extension is X itself with the
identity function;

(2) In every extension of V in which cofinality of κ is countable, the interpretation
of the topological space X icontains a characteristic function of an infinite set.

Thus, for example if the Continuum Hypothesis holds and the Namba forcing cofi-
nalizes κ = ωV

2 to ω the extension contains no new reals but still in the topological
interpretation of the space X it is impossible to faithfully define interpretations of Borel
sets.

Proof Observe that the space X is an Fσ subset of the space 2κ . (1) then follows
immediately from Theorems 7.2 and 4.6. (2) is more difficult. Pass to an extension in
which there is a set a ⊂ κ of ordertype ω which is cofinal in κ. Let g ∈ 2κ be the
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characteristic function of the set a. It will be enough to show that the identity map π
from X to X ∪ {g} extends to a topological interpretation of X . To see why the map
π commutes with unions of open sets, suppose that in V , O =

⋃
i∈I Oi is a union of

open subsets of the space X . Suppose for simplicity that O = X and the set Oi are
obtained as intersections of basic open subsets of 2κ with X ; I must prove that there
is i ∈ ω such that g ∈ Oi . To this end, work in V and define the function h : κ → κ

by h(β) =the least ordinal α such that for every finite set b ⊂ α , the characteristic
function of b belongs to some open set Oi such that the support of Oi is a subset of α .
Since the cardinal κ is regular, the function g is well defined. Comparing ordertypes,
it is easy to conclude that there must be an ordinal α ∈ κ such that the ordinal interval
[α, f (α)] contains no elements of the set a. Then, there is an index i ∈ I such that the
characteristic function of a ∩ α is in the open set Oi , and the support of Oi is a subset
of f (α). Since the map g is coincides with the characteristic function of a ∩ α below
f (α), it follows that g ∈ Oi as desired.

Example 15.11 Let 〈X, τ,B〉 be the Borel space of continuous functions from [0, 1]
to [0, 1] with pointwise convergence.

(1) The interpretation of the Borel space X in every extension is the space of contin-
uous functions from [0, 1] to [0, 1] with the topology of pointwise convergence
on [0, 1] ∩ V ;

(2) In every extension in which there is an unbounded real, the interpretation of the
topological space X contains a discontinuous function and it does not extend to
a Borel-topological interpretation.

Proof Note that the space X is a Borel subset of Y = [0, 1][0,1] with the product
topology, consisting of uniformly continuous functions. To see how it is expressed as a
Borel set, for positive rationals ε, δ > 0 let Cεδ = {f ∈ Y : ∀x0, x1 ∈ [0, 1] |x0− x1| ≤
ε→ |y0 − y1| ≤ δ} and observe that Cεδ ⊂ Y is a closed set. Then X =

⋂
ε

⋃
δ Cεδ .

For (1), apply Theorems 7.2 and 4.6 to see that the interpretation of the Borel space
X in any extension is just the space X̂ of all uniformly continuous functions from
[0, 1] ∩ V to [0, 1]. Every f ∈ X̂ has a unique extension to a continuous function on
[0, 1], and the extension map will be a homeomorphism between X̂ and the space of
all continuous functions from [0, 1] to [0, 1] with pointwise convergence on the set
[0, 1] ∩ V .

For (2), for every n ∈ ω let fn : [0, 1] → R be a continuous function such that
supp(fn) ⊂ (2−n−1, 2−n) and fn(2−n − 2−n−2) = 1. In the extension, let a ⊂ ω be a
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set such that for every increasing function h ∈ ωω ∩ V there is m ∈ ω such that the
interval [m, h(m)] contains no numbers in a; such a set a exists as the extension is
assumed to contain an unbounded real. Let g : [0, 1]∩ V → R be the function defined
as g =

∑
n∈a fn . I will show that the identity map π : X → X ∪ {g} extends to a

topological preinterpretation of X .

Indeed, suppose that O =
⋃

i Oi is a union of basic open sets in V . Suppose for
simplicity that O = X and the sets Oi are basic open. It will be enough to show that
there is an index i ∈ I such that g ∈ Oi . Work in V . For every finite set b ⊂ ω let
kb =

∑
n∈b fn . This is a function in X , therefore it belongs to one of the sets Oi . Let

h ∈ ωω be a function such that for every m ∈ ω and every b ⊂ m there is i ∈ I such
that kb ∈ Oi and supp(Oi) ∩ (0, 2−h(m)) = 0. Now, the choice of the set a implies
that there is m ∈ ω such that there are no elements of a between m and h(m). Let
b = a∩m, and let i ∈ I be an index such that kb ∈ Oi and supp(Oi)∩ (0, 2−h(m)) = 0.
Since outside of the interval (0, 2−h(m)) the functions g and kb are equal, it follows
that g ∈ Oi as desired.

Now, the map π does not extend to a Borel-topological preinterpretation of X , since
the Fσδ set {f ∈ X : f (0) = 0 ∧ ∀m∃n > m f (2−n − 2−n−2) = 1} is empty in V
while the only candidate for its interpretation in the space X ∪ {g} is the nonempty set
{g}. It follows that the topological interpretation of X (which must contain a copy of
X ∪ {g}) cannot be extended to a Borel-topological interpretation of X .

16 Comparison with Fremlin’s work

In [3], Fremlin defines an interpretation functor for topological spaces in the special
case in which V is a generic extension of M . Here, I will show that the Fremlin
interpretation and the interpretations introduced in the current paper coincide on the
categories of interpretable topological spaces and interpretable Borel spaces.

First, it is necessary to identify the definition of the Fremlin interpretation. In [3, 2Aa],
for a topological space 〈X, τ〉 in M a space 〈X̃, τ̃〉 is defined together with a map
A 7→ Ã for all subsets A ⊂ X in the model M . I will call the map π : X → X̃ given
by {π(x)} = ˜{x} together with the map π : τ → τ̃ given by π(O) = Õ the Fremlin
interpretation of the topological space X . Given a function φ : X → Y between
topological spaces in the model M , a map φ̃ : X̃ → Ỹ is defined in [3, 2Ca]. I will call
φ̃ the Fremlin interpretation of the map φ.

Note that Fremlin interpretations are defined as specific sets. This is in contradistinction
with the treatment of the present paper, where interpretations are defined up to a certain
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commutative diagram. However, up to this insignificant notational detail, the Fremlin
interpretations and the interpretations of the present paper coincide on the categories
of interpretable topological spaces and interpretable Borel spaces. This is the contents
of the following theorem.

Theorem 16.1 Let V be a generic extension of M .

(1) The Fremlin interpretation of an interpretable topological space is an interpreta-
tion in the sense of Definition 1.3;

(2) the Fremlin interpretation of a continuous function between interpretable topo-
logical spaces is an interpretation in the sense of Definition 1.4;

(3) the Fremlin interpretation of an interpretable Borel space is an interpretation in
the sense of Definition 15.2.

Proof To shorten the expressions in this proof, the word “interpretation” without
“Fremlin” in front of it will always mean an interpretation in the sense of Definitions 1.3,
1.4, and 15.2 of the current paper. I will show in turn that a Fremlin interpretation is
a preinterpretation, and that it is an interpretation in the case of a compact Hausdorff
space, a Gδ subset of a compact Hausdorff space, and a continuous open image of a
Gδ subset of a compact Hausdorff space. This will prove (1).

To see that the Fremlin interpretation π : 〈X, τ〉 → 〈X̃, τ̃〉 is a preinterpretation, consult
[3, 2Ab(iv)] to see that the the map preserves finite intersections and consult [3, 2Ab(vi)]
to see the preservation of arbitrary unions of open sets. Finally, the topology τ̃ is
generated by π′′τ essentially by its definition; cf. [3, 2Ac].

Now, the target space of a Fremlin interpretation π of a compact Hausdorff space
X ∈ M is again compact Hausdorff by [3, 4A]. Corollary 5.3 shows that any prein-
terpretation of X with a compact Hausdorff target space is an interpretation and so π
is an interpretation. If Y ⊂ X is a universally Baire (in particular, Gδ ) subset of a
topological space then the Fremlin interpretation of Y is (up to an obvious commutative
diagram) equal to the restriction of the Fremlin interpretation of X to Y by [3, 2Ce,
2Cg ff.]. By Corollary 6.10, the Fremlin interpretation of a Čech complete space (as a
Gδ subset of a compact Hausdorff space) is an interpretation.

Now, suppose that 〈X, τ〉 is a Čech-complete space, 〈Y, σ〉 is a regular Hausdorff
space, and f : X → Y is a continuous open surjective map, all in the model M . Let
π : 〈X, τ〉 → 〈X̃, τ̃〉, χ : 〈Y, σ〉 → 〈Ỹ, σ̃〉, and f̃ : X̃ → Ỹ be Fremlin interpretations
of these objects. Let ν : 〈Y, σ〉 → 〈Ŷ, σ̂〉 be an interpretation. I must prove that ν is
reducible to χ.
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Since χ is a preinterpretation of Y by the second paragraph of the present proof,
there is a map h : Ỹ → Ŷ which reduces the preinterpretation χ to the interpretation
ν . It follows from [3, 2Cc] and the uniqueness part of Theorem 4.7 that h ◦ f̃ is an
interpretation of the function f . By Theorem 9.1, the map h ◦ f̃ is onto Ŷ , and this can
happen only if h is a bijection. Then h−1 reduces ν to χ as desired.

(2) now follows immediately from [3, 2Cc] and the uniqueness part of Theorem 4.7. (3)
follows from (1), [3, 2Ce, 2Cg ff.] and Theorem 15.4; both Fremlin interpretations and
interpretations of Borel spaces introduced in the current paper commute with taking a
Borel subset of an interpretable topological space.
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čech complete spaces and p-spaces. Fundamenta Mathematicae, 84:107–119, 1974.

[2] Ryszard Engelking. General topology. Polish Scientific Publishers, Warszawa, 1977.

[3] David H. Fremlin. Topological spaces after forcing. version of 6/16/2011,
https://www.essex.ac.uk/maths/people/fremlin/n05622.pdf.
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