Speaker: Julia F. Knight

Title: Intrinsic computing power of structures

Abstract: Most of the time, people in computability work with subsets of ω , and in computable structure theory, we usually limit ourselves to countable structures for a computable language. If the universe is a subset of ω , we identify the structure with its atomic diagram, which we code by a subset of ω . Using *Muchnik reducibility*, we can compare the ``intrinsic'' computing power of countable structures. We write $\mathfrak{A} \leq_w \mathfrak{B}$ if every copy of \mathfrak{B} (with universe a set of natural numbers) computes a copy of \mathfrak{A} . Like other mathematicians, people in computable structure theory are interested in uncountable structures such as \mathfrak{R} (the ordered field of reals). Noah Schweber extended Muchnik reducibility in a way that lets us compare the intrinsic computing power of structures of arbitrary cardinality. We write $\mathfrak{A} \leq_w^* \mathfrak{B}$ if, after a collapse of cardinals that makes both structures countable, every copy of \mathfrak{B} (with universe a set of natural numbers) computes a set of natural numbers) computes a copy of \mathfrak{A} . I will describe results (with various co-authors) using Schweber's notion of *generic Muchnik reducibility* to compare various structures related to \mathfrak{R} .