
Canonical models for fragments of the axiom of

choice∗

Paul Larson †

Miami University
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Abstract

We develop a technology for investigation of natural forcing extensions
of the model L(R) which satisfy such statements as “there is an ultrafil-
ter” or “there is a total selector for the Vitali equivalence relation”. The
technology reduces many questions about ZF implications between con-
sequences of the axiom of choice to natural ZFC forcing problems.

1 Introduction

In this paper, we develop a technology for obtaining certain type of consistency
results in choiceless set theory, showing that various consequences of the axiom
of choice are independent of each other. We will consider the consequences of a
certain syntactical form.

Definition 1.1. A Σ2
1 sentence Φ is tame if it is of the form ∃A ⊂ ωω (∀~x ∈

ωω ∃~y ∈ A φ(~x, ~y))∧ (∀~x ∈ A ψ(~x)), where φ, ψ are formulas which contain only
numerical quantifiers and do not refer to A anymore, and may refer to a fixed
analytic subset of 2ω as a predicate. The formula ψ are called the resolvent of
the sentence.

This is a syntactical class familiar from the general treatment of cardinal invari-
ants in [11, Section 6.1]. It is clear that many consequences of Axiom of Choice
are of this form:

Example 1.2. The following statements are tame consequences of the axiom
of choice:

1. there is a nonprincipal ultrafilter on ω. The resolvent formula is “
⋂

rng(x)
is infinite”;
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2. there is an infinite maximal almost disjoint family of subsets of ω. The
resolvent formula is “x0 ∩ x1 is finite”;

3. there is a maximal selector on a fixed Borel equivalence relation;

4. there is a Hamel basis for the space of real numbers;

5. there is an ω1 sequence of distinct reals;

6. a fixed Borel hypergraph of finite arity has countable chromatic number.

A typical tame Σ2
1 sentence with resolvent ψ is often associated with a natural

partial order Pψ of countable approximations. Let Pψ be the poset of countable
sets a ⊂ ωω satisfying ∀x ∈ a ψ(x) ordered by reverse inclusion. By definitions,
the poset Pψ is σ-closed and (as a union of the generic filter) adds a subset
A ⊂ ωω. For a typical tame sentence Φ it is the case that Pψ forces the generic
set A to be a witness for Φ. Note that the poset Pψ often forces a stronger
property of the generic set A for which witnesses may no longer provably exist
in ZFC. A generic ultrafilter forced with countable approximations is a Ramsey
ultrafilter, a generic injection from ω1 to 2ω is a surjection etc. Also, note that
the poset Pψ depends only on the resolvent of the tame Σ2

1 sentence.
In the presence of large cardinals, it becomes natural to investigate the model

L(R)[A] to see how large fraction of the axiom of choice holds in it. The present
paper provides a technology for doing this. We show that the questions about
the theory of the model L(R)[A] frequently reduce to rather interesting ZFC
forcing problems. As a result, we prove many consistency theorems regarding
non-implications between the tame consequences of the axiom of choice, which
are always verified by the rather canonical models of the form L(R)[A].

Theorem 1.3. (ZFC+LC) Let U be a Ramsey utrafilter on ω. In the model
L(R)[U ]

1. there are no infinite MAD families;

2. the quotient space 2ω/E0 is linearly orderable, but the quotients 2ω/E2 and
(2ω)ω/ =+ are not linearly orderable;

3. there are no Hamel bases for R and no transcendence bases for C.

Theorem 1.4. (ZFC+LC) Let E be a pinned Borel equivalence relation on a
Polish space X, and let S ⊂ X be a generic total selector for E. In the model
L(R)[S],

1. there are no ω1 sequences of reals;

2. there are no infinite MAD families;

3. there are no nonatomic measures on ω;

4. there are no Hamel bases for R.
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Theorem 1.5. (ZFC+LC) Let A be a generic improved maximal almost disjoint
family. In the model L(R)[A],

1. there are no ω1 sequences of reals;

2. there are no nonatomic measures on ω;

3. there are no total selectors for E0.

The terminology used in the paper follows the set theoretic standard of [5].
The letters LC denote a “suitable large cardinal assumption”; in all cases a
proper class of Woodin cardinals is sufficient. A hypergraph on a set X is
a subset of Xn for some n ≤ ω. A coloring of a hypergraph Z ⊂ Xn is a
map c : X → Y whose fibers do not contain any edges of Z. The hypergraph
has countable chromatic number if there is a coloring c : X → ω. We use the
nomenclature of [3] concerning equivalence relations; that is, E0 is the modulo
finite equality on 2ω, E1 is the modulo finite equality on (2ω)ω, and =+ is
the equivalence relation on (2ω)ω connecting two points if they have the same
range. A selector for an equivalence relation E on X is a set which meets
every equivalence class in at most one point; a selector is total if it meets every
equivalence class in exactly one point. The E quotient space is the set of all E-
equivalence classes. In several places we consider the set of finite binary strings
2<ω with coordinatewise binary addition as a group, which naturally acts on
2ω by coordinatewise binary addition, and the action extends to an action on
subsets of 2ω as well.

2 Independence

The key to the technology is the following definition.

Definition 2.1. Let Φ0,Φ1 are tame Σ2
1 sentences with respective resolvents

ψ0, ψ1. Say that witnesses for Φ1 are independent of witnesses for Φ0 if for wit-
nesses A0, A1 ⊂ ωω for Φ0 and Φ1 respectively, for every poset Q collapsing 2c to
ℵ0 and for all Q-names τ0, τ1 for witnesses to Φ0 and Φ1 extending A0, A1 there
is a number n ∈ ω and (in some generic extension) filters Gi ⊂ Q generic over
V for each i ∈ n so that ∀~x ∈

⋃
i τ0/Gi ψ0(~x) holds and ∀~x ∈

⋃
i∈n τ1/Gi ψ1(~x)

fails. Similarly we define a notion of independence of a witness A0 from A1.

The definition of independence may appear awkward, but most of its in-
stances are interesting ZFC problems which typically can be answered in ZFC.
The answers can be applied to evaluate the theory of various choiceless generic
extensions of the model L(R) via the following central theorem.

Theorem 2.2. (ZFC+LC) Suppose that Φ0,Φ1 are tame Σ2
1 sentences with

respective resolvents ψ0, ψ1. Let A0 ⊂ ωω be a Pψ0
-generic instance of Φ0. In

V [A0], if witnesses for Φ1 are independent of A0, then L(R)[A0] |= ¬Φ1.
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The conclusion of the theorem remains in force in the rather undesirable case
when Pψ0

does not force the generic set to be a witness to Φ0. Such a situation
will never appear in this paper.

Proof. Work in the model V [A0]. Suppose for contradiction that L(R)[A0] does
contain a witness A1 ⊂ ωω for Φ1. In such a case, there must be a name
η ∈ L(R) such that A1 = η/A0. The name η can be easily coded as a set of
reals. Let T,U be some trees such that T projects into η and in all forcing
extensions the trees T and U project into complements–such trees exist by the
large cardinal assumption and [6, Theorems 3.3.9 and 3.3.14]. There must be
some condition in Pφ0 forcing that η is a witness for Φ1; for definiteness assume
that every condition in Pφ0 forces this.

By the assumptions, A1 is independent of A0. Let δ be a Woodin cardinal
greater than the size of P and let Q be the countably based stationary tower
at δ which certainly collapses 2c. Let j : V [H0] → M be the Q-name for the
usual generic elementary embedding, let τ = j(A0) and σ = j(A1). In some
generic extension V [A0][G], let Gi ⊂ Q : i ∈ n be generic filters such that
∀~x ∈

⋃
i τ/Gi ψ0(~x) holds while ∀~x ∈

⋃
i σ/Gi ψ1(~x) fails.

Now, the model 〈L(R),∈, p(T )〉 of V [A0][G] is elementarily equivalent to all
the models 〈L(R),∈, p(jT )〉 of the various models M/Gi–[6, Theorem 3.3.17].
The condition

⋃
i τ/Gi belongs to Pψ0

, and it forces
⋃
i σ/Gi to be a subset

of jσ. This is impossible though since there is ~x ∈
⋃
i σ/Gi such that ψ1(~x)

fails.

3 Adding a Ramsey ultrafilter

The most commonly encountered model of the form L(R)[A] is the one obtained
by forcing an ultrafilter with countable approximations. It is not difficult to see
that the poset used is equivalent to the quotient algebra P(ω) modulo finite.
The model L(R)[U ] has been studied in [4, 2], where the authors show that an
ultrafilter U is generic over L(R) if and only if it is Ramsey and that the model
satisfies the perfect set theorem for all sets. It is also known that a number of
compact groups have the automatic continuity property there. On the other
hand, any nonprincipal ultrafilter immediately yields nonmeasurable sets and
sets without the Baire property, so such sets will exist in L(R)[U ]. To illustrate
the amount of our ignorance about the properties of the model, we state a bold
open question:

Question 3.1. Does the model L(R)[U ] collapse any cardinalities of L(R)? I.e.
if X,Y ∈ L(R) are sets such that there is no injection of X to Y in L(R), does
the same hold in L(R)[U ]?

The question is particularly acute for the quotient spaces of countable Borel
equivalence relations, as the usual techniques for discerning them in L(R) cannot
work in L(R)[U ] due to the existence of a nonmeasurable set there.
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In order to apply the technology outlined above to the study of the model
L(R)[U ], we first need information about how ultrafilters are preserved under
multiple generic extensions.

Theorem 3.2. Let U be a nonprincipal ultrafilter. Suppose that n ∈ ω and
Pi are posets in V , Ki ⊂ Pi are generic filters over V , and U still generates
an ultrafilter in V [Ki] for all i ∈ n. Suppose that Qi ∈ V [Ki] are posets and
τi ∈ V [Ki] are Qi-names for an ultrafilter extending U . Whenever Hi ⊂ Q for
i ∈ n are filters mutually generic over V [Ki : i ∈ n], then

⋃
i τ/Hi generates a

nonprincipal filter.

Proof. By a genericity argument, it will be enough for every m ∈ ω, every tuple
〈qi : i ∈ n〉 ∈

∏
iQi and every tuple 〈ηi : i ∈ n〉 of Q-names in the respective

models V [Ki] such that qi  ηi ∈ τi, to find a number k > m and conditions
q′i ≤ qi so that q′i  ǩ ∈ ηi for each i ∈ n. To do this, for each i ∈ n let
ai = {k ∈ ω : ∃r ≤ qi r  k ∈ ηi} ⊂ ω. The set ai is in the model V [Ki] and
must belong to the ultrafilter U , since it is forced to be a superset of ηi, ηi ∈ τ
and τ is an ultrafilter extending U . Thus, the set

⋂
i ai must contain an element

k greater than m. Pick conditions q′i ≤ qi witnessing the fact that k ∈ ai; this
completes the proof.

The crudest features of the model L(R)[U ] can now be easily derived from
Theorem 2.2.

Theorem 3.3. (ZFC+LC) Let U be a Ramsey ultrafilter. In the model L(R)[U ],

1. there is no infinite MAD family;

2. there is no ω1 sequence of distict reals.

Much stronger statement than (2) was proved in [4]: L(R)[U ] and L(R) in
fact have the same sets of ordinals. We include a simple proof of (2) in order to
use the same idea later.

Proof. To prove (1), we will show that infinite MAD families are independent
of ultrafilters and then quote Theorem 2.2. The key feature of MAD families is
they are not preserved by mutually generic extensions the way ultrafilters are.

Claim 3.4. If A ⊂ P(ω) is an infinite MAD family, Q is any poset collapsing
2c, τ is a Q-name for a MAD family extending A, and Gi ⊂ Q for i ∈ 2 are
mutually generic filters over V , the set τ/G0 ∪ τ/G1 is not an AD family.

Proof. Let U be a nonprincipal ultrafilter on ω with empty intersection with
A, let P be the usual c.c.c. poset adding a set ẋgen ⊂ ω which has finite
intersection with every set not in U . The poset P regularly embeds into Q and
ẋgen becomes a Q-name under the fixed embedding. There is a Q-name ẏ such
that Q  ẏ∩ ẋgen is infinite and ẏ ∈ τ . Note that by the choice of the ultrafilter
U , ẏ is forced not to be in V .
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Let G0, G1 ⊂ Q be mutually generic filters. It will be enough to show that
ẏ/G0 ∈ τ/G0 has infinite intersection with ẏ/G1 ∈ τ/G1. To show this, go back
to V and suppose that q0, q1 ∈ Q are conditions and n ∈ ω is a number. By a
genericity argument, it is enough to find q′0 ≤ q0, q′1 ≤ q1 and m > n such that
q′0, q

′
1 both force m̌ ∈ ẏ. For this, consider the sets a0 = {m ∈ ω : ∃q ≤ q0 q 

m̌ ∈ ẏ} and a1 = {m ∈ ω : ∃q ≤ q1 q  m̌ ∈ ẏ}. Since ẏ is forced to have an
infinite intersection with the set ẋgen which has a finite intersection with every
set not in U , both sets a0 and a1 must be in U and so there is a number m > n
in their intersection. The proposition follows.

(1) now follows from Theorem 3.2 in the case V [K0] = V [K1] = V and Theo-
rem 2.2.

The main point in (2) is that injections from ω1 to 2ω do not survive almost
any simultaneous generic extensions at all.

Claim 3.5. If Q0, Q1 are posets collapsing 2c, τ0, τ1 are Q0, Q1-names for an
injection from ω1 to 2ω, then there are conditions q0 ∈ Q0 and q1 ∈ Q1 such
that for any pair G0 ⊂ Q0, G1 ⊂ Q1 of filters separately generic over V and
containing the conditions q0, q1 respectively, the set τ/G0 ∪ τ/G1 is not a func-
tion.

Proof. Note that the set of the ground model reals is forced to be countable
and so it is possible to find an ordinal α ∈ 2c, a number n ∈ ω, and conditions
q00 , q

1
0 ∈ Q0 such that q00  τ0(α)(n) = 0 and q10  τ0(α)(n) = 1. Let q1 ∈ Q1 be

a condition deciding the value of τ1(α)(n); say that the value is forced to be 1.
The conditions q0 = q00 ∈ Q0 and q1 ∈ Q1 obviously work as desired.

Theorem 3.2 in the case V [K0] = V [K1] = V now implies that ω1 sequences of
distinct reals are independent of ultrafilters. (2) then follows immediately from
Theorem 2.2.

A great deal of more sophisticated information about the model L(R)[U ] can
be extracted from the evaluation of chromatic numbers of Borel hypergraphs.
This will be done using the following general theorem:

Theorem 3.6. (ZFC+LC) Suppose that X is a Polish space, n ≤ ω, and
Z ⊂ Xn is a Borel hypergraph. Suppose that there is a poset P of size ≤ c and
a P -name ẋ for an element of X such that

1. P preserves Ramsey ultrafilters;

2. for every p ∈ P , in some generic extension there are filters Ki ⊂ P for
i ∈ n which are separately generic over V , contain the condition p, and
〈ẋ/Ki : i ∈ n〉 ∈ Z is a sequence of distinct points.

Let U be a Ramsey ultrafilter on ω. Then in L(R)[U ], the hypergraph Z has
uncountable chromatic number.

6



Proof. We will show that the colorings of the hypergraph Z by ω colors are
independent of Ramsey ultrafilters and then use Theorem 2.2. Suppose that
U is a Ramsey ultrafilter, Q is a forcing collapsing 2c, τ is a Q-name for an
ultrafilter extending U , and σ is a Q-name for a coloring of the graph Z with
colors in ω. Note that P regularly embeds into Q, so ẋ becomes Q-names via
some fixed embedding of P .

Suppose that q ∈ Q is an arbitrary condition. Strengthening q if necessary,
we may assume that q decides the value σ([ẋ]E) to be some specific number
m ∈ ω. Let p ∈ P be a condition stronger than the projection of q into P . Use
(1) to find filters Ki ⊂ P for i ∈ n separately generic over V such that p ∈ Ki

and 〈ẋ/Ki : i ∈ n〉 ∈ Z is a sequence of distinct points. Let Hi ⊂ Q/Ki for
i ∈ n be mutually generic filters over the model V [K] containing the condition
q/Ki. Let Gi = Ki ∗ Hi ⊂ Q. These are generic filters over V ; we claim that
they work as desired.

First of all, it is clear that
⋃
i σ/Gi is not a coloring of the hypergraph Z: its

domain contains the points ẋgen/Ki for i ∈ n which form a Z-edge but they are
still assigned the same color. Second, the set

⋃
i τ/Gi generates a nonprincipal

filter. To see this, go to the model V [K], note that U generates an ultrafilter in
the models V [Ki] by (1), and use Proposition 3.2 in V [K].

The first observation about chromatic numbers in the model L(R)[U ] is that
many simple graphs have uncountable chromatic number in L(R) and countable
one in L(R)[U ]. The simplest example is the graph Z on 2ω connecting binary
sequences x, y if they differ in exactly one entry.

Observation 3.7. (ZF+DC) If there is a nonprincipal ultrafilter on ω the the
graph Z has chromatic number 2.

Proof. This is well known. Let U be a nonprincipal ultrafilter on ω. For every
x ∈ 2ω and every n ∈ ω let x[n] be the parity of the number |{m ∈ n : x(m) =
1}|. Let f(x) = 0 if the set {n ∈ ω : x[n] = 0} is in U , and f(x) = 1 otherwise.
It is not difficult to see that no two elements of 2ω connected by a graph edge
have the same f -value.

Many other Borel graphs remain uncountably chromatic in the model L(R)[U ]
though. This leads to a number of interesting results.

Theorem 3.8. ([2], ZFC+LC) In L(R)[U ], there is no total selector on E0.

Proof. Let Z be the graph on 2ω connecting points x, y if they are E0-related
and distinct. It is easy to observe in ZF+DC that if there is an E0 selector then
the graph Z has countable chromatic number. Thus, it is enough to show that
the graph Z has uncountable chromatic number in L(R)[U ], and for this it is
enough to produce a suitable partial ordering P and use Theorem 3.6.

Let P be the quotient partial ordering of Borel subsets of 2ω positive with
respect to the σ-ideal I generated by Borel E0-selectors, with the inclusion
ordering. Let ẋgen ∈ 2ω be the P -name for its canonical generic point. The
poset has been studied for example in [11, Section 4.7.1], where its combinatorial
form is provided and several properties isolated.
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Claim 3.9. Every Ramsey ultrafilter generates an ultrafilter in the P -extension.

Proof. The poset P is proper and bounding by the results of [11, Section 4.7.1].
It does not add independent real by [10, Proposition 4.5]. The ideal I is Π1

1

on Σ1
1. The claim abstractly follows from these properties by [11, Theorem

3.4.1].

Claim 3.10. For every condition p ∈ P there are filters H0, H1 ⊂ P separately
generic over V , containing the condition p such that ẋgen/K0 Z ẋgen/K1.

Proof. Let p ∈ P be a condition. There must be a nonempty finite binary string
s ∈ 2<ω such that (s ·p)∩p /∈ I since otherwise p ∈ I would hold. Note that the
map q 7→ s · q is an automorphism of the partial ordering P . Thus, if K0 ⊂ P
is a filter generic over V , containing the condition (s · p) ∩ p, then the filter
K1 = s ·K0 is also a filter generic over V and it contains the condition p. Also,
ẋgen/K0 = s · ẋgen/K1 and so the two generic points obtained from the two
filters are E0-related and distinct as required.

A reference to Theorem 3.6 now concludes the proof.

Corollary 3.11. (ZFC+LC) There is no Hamel basis for R or a transcendental
basis for C in the model L(R)[U ].

Proof. This is easiest to show using the following observations of independent
interest:

Observation 3.12. (ZFC+DC) The following are equivalent:

1. there is a nonsmooth hyperfinite Borel equivalence relation with a total
selector;

2. every hyperfinite Borel equivalence relation has a total selector.

Proof. Only (1)→(2) requires a proof. Suppose that E is a nonsmooth hyper-
finite Borel equivalence relation on a Polish space X with a total selector S.
Since there is a Borel relation on X which orders each E-equivalence class in
ordertype embeddable into Z, one can use the selector S to produce a function
f : X → ω which is injective on every E-class. Now, let F be any hyperfinite
equivalence relation on a Polish space Y . There is a Borel injective function
h : Y → X which reduces F to E. Now let T = {y ∈ Y : f(h(y)) is the smallest
number in f ◦ h′′[y]F } and observe that T is a selector for F .

Observation 3.13. (Simon Thomas)(ZF+DC) If there is a Hamel basis for R
or a transcendental basis for C, then there is a total E0 selector.

Proof. To treat the case of Hamel basis, we will show that its existence implies
existence of a total selector for the Vitali equivalence relation on R; this will
complete the proof by Observation 3.12. Let B ⊂ R be such a basis. For
every nonzero r ∈ R there is a unique set br ⊂ B such that there is a linear
combination of reals in br with nonzero coefficients whose result belongs to the
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Vitali class of r. There is a unique such a combination cr whose coefficients are
all integers, and the coefficient at the smallest number in br is positive and in
absolute value smallest possible. The choice of br and cr does not depend on
r itself but only on the Vitali class of r. Therefore, the results of the linear
combinations cr for nonzero values of r ∈ R together form a selector for the
Vitali equivalence relation.

To treat the case of a transcendental basis for C, first write K for the al-
gebraic closure of Q in C. Let E be the equivalence relation on C connecting
x and y if x − y ∈ K. Note that this is a nonsmooth hyperfinite equivalence
relation as it is an orbit equivalence of a continuous action of the abelian group
〈K,+〉 on C. We will show that the existence of a transcendental basis implies
the existence of an E-selector. Assume that B ⊂ C is a transcendental basis.
For every r ∈ C there is an inclusion smallest set br ⊂ R such that r belongs to
the algebraic closure of br. In some fixed enumeration of terms for the agebraic
closure, there must be a first term which, when applied to br, yields an element
crof [rE ]. As before, the definition of cr does not depend on r itself but only on
its E-class, and therefore the set {cr : r ∈ R} is an E-selector as desired.

The proof is now concluded by the reference to Theorem 3.8.

An interesting attempt to discern between Borel equivalence relations in the
model L(R)[U ] is to discuss the linear orderability of their associated quotient
spaces. In L(R), the quotient space 2ω/E0 fails to be linearly orderable, and
so the linear orderability of the quotient space fails for every Borel nonsmooth
equivalence relation in L(R). In the model L(R)[U ], the situation is more nu-
anced:

Observation 3.14. (ZF+DC) If there is a nonprincipal ultrafilter on ω then the
class of equivalence relations for which the quotient space is linearly orderable
is closed under countable increasing unions.

Proof. Let U be a nonprincipal ultrafilter on ω. Let E =
⋃
nEn be an increasing

union of equivalence relations on a Polish spaceX, and suppose that the quotient
space of the relations En is linearly orderable for each n ∈ ω. Let ≤n be a linear
preordering on X such that the induced equivalence relation is exactly En. The
sequence of linear orders can be found as we assume DC. Let ≤ be a preordering
on X defined by x ≤ y if {n ∈ ω : x ≤n y} ∈ U . It is not difficult to verify that
≤ induces a linear ordering of E-classes.

For example, for equivalence relations such as E0 and E1 the quotient space is
linearly orderable in L(R)[U ] while no such linear orderings exist in L(R).

To show that various quotient spaces cannot be linearly ordered in the model
L(R)[U ], we will start with the summable equivalence relation E2. Recall that
this is an equivalence relation on 2ω connecting binary sequences x, y ∈ 2ω if∑
{ 1
n+1 : x(n) 6= y(n)} <∞.

Theorem 3.15. (ZFC+LC) In L(R)[U ], the E2 quotient space cannot be lin-
early ordered.
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Proof. Consider the graph Z on 2ω connecting points x, y if x E2 1− y.

Observation 3.16. (ZF) If the E2 quotient space is linearly orderable then the
graph Z has chromatic number two.

Proof. Let ≤ be a linear order on the E2 quotient space. Define the coloring c
on X by letting c(x) = 0 if for every y ∈ X such that x Z y, y < x holds; and
c(x) = 1 otherwise. It is not difficult to see that c is a coloring of Z.

Thus, it will be enough to use Theorem 3.6 to show that the chromatic number
of Z is uncountable in the model L(R)[U ]. For this, we need a suitable partial
ordering P .

Let ω =
⋃
n In be a partition of ω into successive intervals. Write Xn = 2In

for every n ∈ ω and let X =
∏
nXn; the space X is naturally identified with 2ω

via the bijection π : x 7→
⋃
x from X to 2ω. Let dn be the metric on Xn given by

dn(u, v) = { 1
m+1 : u(m) 6= v(m)}. Let µn be the normalized counting measure

on Xn multiplied by n + 1. The concentration of measure computations as in
[9, Theorem 4.3.19] show that the sequence 〈In : n ∈ ω〉 can be chosen in such
a way that for every n > 0 and every a, b ⊂ Xn of µn-mass at least 1 there are
binary strings u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n.

Let pini be the tree of all finite sequences t such that for all n ∈ dom(t),
t(n) ∈ Xn. Finally, let P be the poset all all trees p ⊂ pini such that the
numbers {µ|s|({u ∈ X|s| : s

au ∈ p}) : s ∈ p} converge to ∞. The ordering is
that of inclusion.

The forcing P is of the fat tree kind studied for example in [1, Section 7.3.B]
or [11, Section 4.4.3]. It adds a generic point ẋgen ∈ 2ω which is the union of
the trunks of the trees in the generic filter. The following two claims are key.

Claim 3.17. The poset P preserves Ramsey ultrafilters.

Proof. The forcing properties of posets similar to P are investigated in [11,
Section 4.4.3]. [11, Theorem 4.4.8] shows that P is proper, bounding, and does
not add independent reals. The associated σ-ideal is Π1

1 on Σ1
1 by [11, Theorem

3.8.9]. Posets with these properties preserve Ramsey ultrafilters by [11, Theorem
3.4.1].

Claim 3.18. For every condition p ∈ P , in some forcing extension there are
filters K0,K1 ⊂ P which are separately generic over the ground model, p ∈
K0 ∩K1, and ẋgen/K0 E2 1− ẋgen/K1.

Proof. Let V [H] be a forcing extension in which P(P(ω))V is a countable set.
The usual fusion arguments for the forcing P as in [1, Section 7.3.B] show that
in V [H], there is a condition p′ ⊂ p in PV [H] such that all its branches yield
P -generic filters over the ground model. Let s0 ∈ p′ be a node such that all
nodes of S extending s0 have the set of immediate successors in S of submeasure
at least 1. For simplicity of notation assme that s0 = 0. By induction on n ∈ ω
build nodes sn, tn ∈ p′ so that

10



• t0 = s0 = 0, tn+1 is an immediate successor of tn and sn+1 is an immediate
successor of sn;

• writing un, vn ∈ Xn for the binary strings such that san un = sn+1 and
tan vn = tn+1, it is the case that dn(un, 1− vn) ≤ 2−n.

Once this is done, let K0 ⊂ P be the filter associated with
⋃
n sn and let K1 be

the filter associated with
⋃
n tn. These are branches through the tree p′, so the

filters K0,K1 are generic over the ground model. The second item immediately
implies that ẋgen/K0 E2 1− ẋgen/K1 as desired.

The induction step of the construction above is obtained as follows. Suppose
that tn, sn ∈ S have been found. Let a = {u ∈ Xn : sun ∈ p′} and b = {v ∈
Xn : tan (1 − v) ∈ S}. Then, µn(a), µ(b) are both numbers greater than 1,
and therefore there are u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n. Setting

sn+1 = san u and tan+1(1− v) completes the induction step.

Now, in view of Theorem 3.6, colorings of the graph Z with countably many
colors are independent of Ramsey ultrafilters. In view of Theorem 2.2, the graph
Z has uncountable chromatic number in L(R)[U ] and so the E2 quotient space
cannot be linearly ordered inthis model.

Our next example is the equivalence relation =+ on (2ω)ω connecting points
x, y just in case rng(x) = rng(y).

Theorem 3.19. (ZFC+LC) In L(R)[U ], the =+ quotient space cannot be lin-
early ordered.

Proof. Consider the graph Z on X = (2ω)ω connecting x, y if {x(n) : n ∈ ω} =
{1− y(n) : n ∈ ω} and x =+ y fails.

Observation 3.20. (ZF) If the =+ quotient space is linearly orderable then the
graph Z has chromatic number two.

Proof. Let ≤ be a linear order on the =+ quotient space. Define the coloring c
on X by letting c(x) = 0 if for every y ∈ X such that x Z y, y < x holds; and
c(x) = 1 otherwise. It is not difficult to see that c is a coloring of Z.

Thus, it will be enough to use Theorem 3.6 to show that the chromatic
number of the graph Z is uncountable in L(R)[U ]. For this, we need to find
a suitable partial order. Let P be the countable support product of ω1 many
Sacks reals, yielding an ω1-sequence ẋgen . The following two claims are key:

Claim 3.21. Any Ramsey ultrafilter generates an ultrafilter in the P -extension.

Proof. The product of countably many copies Sacks forcing does not add an
independent real by [7]. It is also well-known to be proper, bounding and
definable, and so by [11, Theorem 3.4.1] every Ramsey ultrafilter generates a
Ramsey ultrafilter in the countable product extension. Every subset of ω in the
uncountable product extension comes from a countable product extension by a
properness argument, proving the claim.
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Claim 3.22. For every condition p ∈ P , in some generic extension there are
filters K0,K1 ⊂ P generic over over V , containing the condition p, such that
rng(ẋgen/K1) = {1− z : z ∈ rng(ẋgen/K0)}.

Proof. First note that the involution z 7→ 1 − z on 2ω generates an automor-
phism on the Sacks poset, sending every condition s (viewed as an uncount-
able Borel set) to the set 1 − s of complements of points in s. Any involution
π : ω1 → ω1 generates an automorphism of the poset P , sending any condition
p to a condition π(p) whose domain is π′′dom(p) and for every α ∈ dom(p),
π(p)(π(α)) = 1− p(α). Finally, note that for this automorphism, if K ⊂ P is a
generic filter then rng(ẋgen/π

′′K) = {1− z : z ∈ rng(ẋgen/K)}.
Now, suppose p ∈ P is a condition. Write a = dom(p) ⊂ ω1; this is a

countable set. Let π be any involution of ω1 such that a ∩ π′′a = 0. The
conditions p and π(p) are then compatible, with a lower bound q. Let K0 ⊂ P
be a filter generic over V , containing the condition q. Let K1 = π′′K0 and check
that the filters K0,K1 work as desired.

Note that the poset P does not literally add an element of the =+-quotient
space but only a code for an =+-class in a Coll(ω, ω1) extension. This does
not change anything in the proof of Theorem 3.6 and we can conclude that the
colorings of the graph Z with countably many colors are independent of Ramsey
ultrafilters. By Theorem 2.2, it follows that in the model L(R)[U ] the graph Z
has uncountable chromatic number and so the quotient space cannot be linearly
ordered.

We conclude this section with a natural question. [8] showed that there is
a simple Borel graph which is of uncountable chromatic number in L(R) and
minimal in the sense that it can be continuously homomorphically embedded
into any other uncountably chromatic graph in L(R). Does this situation repeat
in L(R)[U ]?

Question 3.23. Is there a Borel graph Z0 such that it has an uncountable
chromatic number in L(R)[U ], and it can be continuously homomorphically
embedded into every other Borel graph of uncountable chromatic number in
L(R)[U ]?

4 Adding selectors to equivalence relations

In this section, we investigate the model L(R)[S] where S ⊂ X is a total selector
on a fixed equivalence relation E on a Polish space X, which is added generically
by countable approximations. To prevent all of the axiom of choice from creeping
into the model, we will restrict our attention to the class isolated by Kanovei:

Definition 4.1. An analytic equivalence relation E on a Polish space X is
pinned if for mutually generic filters G,H, if C is an equivalence class repre-
sented in both V [G] and V [H] then it is represented in V .
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The restriction on the complexity of the equivalence relation E is necessary. The
standard example of an unpinned equivalence relation is =+, the equivalence
on (2ω)ω connecting x and y if rng(x) = rng(y). We have the following simple
observation:

Observation 4.2. (ZF) If there is an injection from the =+ quotient space into
the 2ω, then there is an injection from ω1 into 2ω. If S ⊂ (2ω)ω is a generic
total =+-selector, then the model L(R)[S] satisfies the Axiom of Choice and the
Continuum Hypothesis.

Proof. For the first sentence, let h be an injection from the =+ quotient space to
2ω; we may assume that its range is not all of 2ω, missing some point y ∈ 2ω. By
transfinite recursion on α ∈ ω1 define points yα ∈ 2ω by y0 = y and yα = h(x)
for some (every) point x ∈ (2ω)ω such that rng(x) = {yβ : β ∈ α}. It is not
difficult to verify that the sequence 〈yα : α ∈ ω1〉 is injective.

For the second sentence, first pick a Borel function g : (2ω)ω → 2ω such
that for the g-image of any uncountable =+ class is equal to 2ω. Let P be the
poset of partial countable =+-selectors–a moment of thought will show that for
example the function g defined by g(x)(n) = x(n + 1)(m), where m ∈ ω is the
least number such that x(0)(m) 6= x(1)(m) if such exists and m = 0 otherwise,
satisfies this property. Pick a P -name ḟ ∈ L(R) for an injective ω1 sequence
of elements of 2ω in the P -extension. A simple genericity argument shows that
the map ė : ω1 → 2ω defined by e(α) = g(z), where z is the unique point in the
generic selector enumerating the set {ḟ(β) : β ∈ α}, is forced to be a surjection,
proving the second sentence.

As in the previous section, the most important tool for the study of the model
L(R)[S] is a proposition showing how the selectors survive multiple forcing ex-
tensions.

Theorem 4.3. Suppose that E is a pinned analytic equivalence relation on a
Polish space X, S ⊂ X is a total E-selector, Q is a poset and τ is a Q-name for
an E-selector extending S. Whenever n ≤ ω and Gi ⊂ Q are pairwise mutually
generic filters over V for each i ∈ n, then

⋃
i τ/Gi is an E-selector.

Proof. This is essentially immediate from the definition of a pinned equivalence
relation, since there is no single E-equivalence class from which the different
selectors τ/Gi could pick distinct elements.

The crudest features of the model L(R)[S] immediately follow:

Corollary 4.4. (ZFC+LC) Let E be a pinned equivalence relation on a Polish
space X and S ⊂ X a generic total E-selector. In the model L(R)[S],

1. there are no infinite MAD families;

2. there are no injective ω1-sequences of reals.

Proof. For (1), use Claim 3.4 and Theorem 2.2. For (2), use Claim 3.5 and
Theorem 2.2.
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As in the previous section, the finer properties of the model L(R)[S] follow
from the investigation of the chromatic numbers of Borel hypergraphs there.
This time, chromatic numbers of many graphs will be countable, and to make
progress we need to reach for hypergraphs of higher finite dimension.

Theorem 4.5. (ZFC+LC) Suppose that

1. E is a pinned Borel equivalence relation on a Polish space X;

2. n ∈ ω is a natural number, Y is a Polish space and Z ⊂ Y n is a Borel
hypergraph;

3. there is a poset P of size ≤ c and a P -name ẏ for an element of Y such
that for every condition p ∈ P , in some generic extension there are filters
Ki ⊂ P for i ∈ n containing p, pairwise mutually generic over V , and
such that 〈ẏ/Ki : i ∈ n〉 ∈ Z.

Then in the model L(R)[S], where S is the generic selector for E, the chromatic
number of Z is uncountable.

Proof. We will first prove that colorings of Z with countably many colors are
independent of total E-selectors and then apply Theorem 2.2. Thus, let S ⊂ X
be a total E-selector, Q a poset collapsing 2c to ℵ0, σ a Q-name for a total E-
selector extending S, and τ a Q-name for a map from Y to ω which is a coloring
of the hypergraph Z. Note that P is regularly embedded into Q and therefore ẏ
becomes a Q-name via this fixed embedding. Let q ∈ Q be a condition deciding
the value of τ(ẏ) to be some specific number m ∈ ω. Let p ∈ P be a condition
below the projection of q into P . Use the assumptions to find, in some generic
extension, filters Ki ⊂ P for i ∈ n containing p, pairwise mutually generic
over V , and such that 〈ẏ/Ki : i ∈ n〉 ∈ Z. Let Hi ⊂ Q/Ki be filters mutually
generic over the model V [Ki : i ∈ n], each containing the condition q. Write
Gi = Ki ∗ Hi ⊂ Q for i ∈ n, and note that these filters are pairwise generic
over the ground model and contain the condition Q. We claim that they work
as desired.

First of all, the map
⋃
i∈n τ/Gi is not a partial coloring of the hypergraph Z,

since its m-th color contains the edge 〈ẏ/Gi : i ∈ n〉. Second, the set
⋃
i∈n σ/Gi

is a partial E-selector by Proposition 4.3. This completes the proof.

Theorem 4.6. (ZFC+LC) There are no nonatomic finitely additive probability
measures on ω in the model L(R)[S].

Proof. Consider the hypergraph Z on (P(ω))10 consisting of tuples ~y such that
every number in ω (with finitely many exceptions) belongs to at least one of the
sets ~y(i) for i ∈ 3 and at most two of the sets ~y(i) for 3 ≤ i < 10.

Observation 4.7. (ZF+DC) If there is a nonatomic probability measure on ω
then the hypergraph Z has chromatic number two.
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Proof. Let µ be the measure and consider the coloring c assigning a set a ⊂ ω
color 0 if µ(a) < 1/3 and color 1 otherwise. No edge in the hypergraph Z can
contain only points of color 0 since the first three sets on the edge have co-finite
union which has to have µ-mass 1. At the same time, no edge on the hypergraph
Z can contain only points of color 1 since the last seven sets on the edge would
contradict the Fubini theorem between µ and the evenly distributed probability
measure on the set 10 \ 3.

Thus, it is enough to show that the hypergraph Z has uncountable chromatic
number in the model L(R)[S]. To this end, consider the poset P = 2<ω ordered
by reverse extension and let ẏ be the P -name for the set of all n ∈ ω such
that for some condition p in the generic filter, p(n) = 1. Let p ∈ P be an
arbitrary condition. Pass to a generic extension in which c is countable; we will
produce filters Ki ⊂ P for i ∈ 10 such that 〈ẏ/Ki : i ∈ 10〉 ∈ Z and then apply
Theorem 4.5. Let Dk : k ∈ ω be an enumeration of the open dense subsets of
P × P in the ground model. Let π : ω → ω3 be a surjection. By induction on
n ∈ ω build numbers mn ∈ ω and maps qn : 10×mn → 2 so that

1. m0 = dom(p) and q0(i, j) = p(j) for every i ∈ 10;

2. m0 ≤ m1 ≤ m2 ≤ . . . and q0 ⊂ q1 ⊂ q2 ⊂ . . . ;

3. for every k ∈ mn+1 \mn, q(i, k) = 1 for at least on i ∈ 3 and at most two
i ∈ 10 \ 3;

4. if π(n) = 〈k, i, j〉 for some k ∈ ω and i 6= j ∈ 10, then qn+1 restricted to
the i-th and j-th column belongs to Dk.

The induction process is immediate. In the end, for every i ∈ 10 let Ki ⊂ P be
the filter generated by the maps qn(i, ·) for n ∈ ω and observe that these filters
work as required.

Theorem 4.8. (ZFC+LC) There are no Hamel bases for R in the model L(R)[S].

Proof. Consider the hypergraph Z on R3 consisting of triples 〈y0, y1, y2〉 of pair-
wise distinct real numbers such that y0 + y1 + q = y2 for some rational number
q ∈ Q.

Observation 4.9. (ZF+DC) If a Hamel basis for R exists then the hypergraph
Z has countable chromatic number.

Proof. Let B be a Hamel basis; rescaling, we may assume that it contains
number 1. Each number y ∈ R can be expressed in a unique way as y = q +∑
i∈n qiri for some rational numbers q, qi 6= 0 and irrational numbers r0 < r1 <

. . . in B. Let f be a function on R defined by f(y) = 〈q, q0, p0, q1, p1, . . . qn−1〉
where q, qi are copied from the unique decomposition of y, and pi is the least
rational number (in some fixed enumeration) between the reals ri and ri+1. It
is immediate that no edge in the graph can consist of three numbers with the
same value of f .
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Thus, it is enough to show that the hypergraph Z has uncountable chromatic
number in the model L(R)[S]. Towards this, we will find a suitable poset P and
apply Theorem 4.5. Let P be the poset of nonempty open subsets of R, ordered
by inclusion; this is the Cohen poset with its associated name for a generic point
ẏ ∈ R. The following claim is immediate:

Claim 4.10. If y0, y1 ∈ R are mutually generic points for P and q ∈ Q is a
rational number, then the triple y0, y1, y0 + y1 + q is pairwise mutually generic
for P .

Now, let p ∈ P be an arbitrary condition. Find pairwise generic filters
K0,K1 ⊂ P containing the condition p, find a rational number q ∈ Q such that
y2 = ẏ/K0 + ẏ/K1 + q ∈ p, and let K2 ⊂ P be the filter of all open subsets of R
containing the number y2. It is clear that the filters K0,K1,K2 ⊂ P satisfy the
assumptions of Theorem 4.5 and so the application of the theorem will complete
the proof.

An obvious question may be whether it is possible to discern between the
existence of selectors for various equivalence relations. In general, it is not clear
for which pairs E,F of Borel equivalence relations it is the case that in ZF+DC,
the existence of a total selector for E implies the existence of a total selector
for F . Already the case E = E0 and F = E1 appears to be open. We will prove
one result in this direction concerning trim equivalence relations:

Definition 4.11. An analytic equivalence relation E on a Polish space X is trim
if for in every forcing extension, whenever V [G0], V [G1] are forcing extensions
of the ground model such that V [G0] ∩ V [G1] = V and x0 ∈ V [G0] ∩ X and
x1 ∈ V [G1] ∩ X are E-related points, then there is a point x ∈ V which is
E-related to both.

There is a rich supply of trim equivalence relations as exhibited in [12]; one
interesting example is the equivalence relation E on 2Q connecting points x, y
if {q ∈ Q : x(q) 6= y(q)} is nowhere dense.

Theorem 4.12. Suppose that E is a Borel trim equivalence relation on a Polish
space X and F is an orbit equivalence relation of a generically turbulent group
action on a Polish space Y . The total F -selectors are independent of total E-
selectors.

Proof. The key forcing consideration is the following. Let Gy Y be the group
action generating the equivalence relation E. Let PY be the Cohen poset of
nonempty open subsets of Y ordered by inclusion, adding a generic element
ẏgen ∈ Ẏ . Let PG be the Cohen poset of nonempty open subsets of G ordered

by inclusion, adding a generic element ġgen ∈ Ẏ . The following is an alternative
characterization of the turbulence of the action Gy Y :

Claim 4.13. [12] PG × PY  V [ẏgen ] ∩ V [ġgen · ẏgen ] = V .
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Let S be a total E-selector, Q a poset collapsing 2c to ℵ0, let τ be a Q-name
for an E-selector extending S, and let σ be a Q-name for a total F -selector. The
poset PY regularly embeds into the poset Q and so ẏgen becomes a Q-name.
Use Claim 4.13 to find filters K0,K1 ⊂ PY such that V [K0] ∩ V [K1] = V and
ẏgen/K0 F ẏgen/K1. Let H0 ⊂ Q/K0 and H1 ⊂ Q/K1 be filters mutually
generic over the model V [K0,K1] and let G0 = K0 ∗ H0 and G1 = K1 ∗ H1.
It is immediate that G0, G1 ⊂ Q are filters separately generic over V , with
V [G0] ∩ V [G1] = V . We claim that these filters work as required.

First of all, the set σ/G0∪σ/G1 is not an F -selector: σ/G0 contains some el-
ement of the class [ẏgen/G0]F and σ/G1 contains some element of this same class
as well, these two elements belong to the models V [G0] and V [G1] respectively
and so they cannot be equal. If they were equal, they would have to belong to
the ground model, which contradicts the fact that the class [ẏgen/K0]F has no
ground model elements.

On the other hand, the set τ/G0 ∪ τ/G1 is an E-selector: all E-equivalence
classes represented in both V [G0] and V [G1] are represented already in V by
the trimness of the equivalence relation E, and so already the common part S of
τ/G0 and τ/G1 selected an element from this class and the two selectors cannot
disagree on it.

Corollary 4.14. (ZFC+LC) Suppose that E is a Borel trim equivalence relation
on a Polish space X and F is an orbit equivalence relation of a generically
turbulent group action on a Polish space Y . Let S be a generic total E-selector.
Then in L(R)[S], the equivalence relation F has no total selector.

5 Adding MAD families

From Claim 3.4, it appears to be difficult to preserve MAD families with the
multiple generic extensions. We do not know how to handle the model L(R)[A],
where A ⊂ P(ω) is a generic MAD family added with infinitely countable ap-
proximations. We have to resort to adding a more specific type of MAD family,
which curiously enough has connections to the d < a problem.

Definition 5.1. An improved AD family is a pair 〈A,B〉 such that

1. A is an infinite AD family in P(ω);

2. B is a set consisting of pairs 〈s, a〉 such that s is a partition of ω into finite
sets and a ⊂ A is a countable set;

3. for every pair 〈s, a〉 ∈ B and every finite set b ⊂ A \ a, there are infinitely
many sets c ∈ s such that

⋃
b ∩ c = 0.

An improved AD family 〈A,B〉 is maximal if A is a MAD family and for every
partition s there is a with 〈s, a〉 ∈ B.
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The improved MAD families are naturally added by a poset of countable
improved AD families ordered by coordinatewise inclusion. It is easy to verify
that if G is a generic filter on the poset of countable improved AD families, then
the coordinatewise union of conditions in G is an improved MAD family. More-
over, the second coordinate can be recovered from the first one by a genericity
argument.

Proposition 5.2. If the continuum hypothesis holds, then there is an improved
MAD family. If d < a, then there is no improved MAD family.

Proof. If the continuum hypothesis holds, it is easy to produce a filter on the
poset of countable improved AD families which meets all the c = ℵ1 open dense
sets necessary to turn its union into an improved MAD family.

Towards the proof of the second sentence, it is enough to show that if 〈A,B〉
is an improved MAD family then |A| ≤ d. To this end, let {sα : α ∈ d} be
a collection of partitions of ω into finite sets such that for every other such
partition t there is α ∈ d such that every element of sα contains an element
of t as a subset. For every ordinal α ∈ d pick a countable set aα ⊂ A such
that 〈sα, aα〉 ∈ B and use (3) in the definition of an improved MAD family to
conclude that A =

⋃
α∈d aα. Thus, |A| ≤ d as desired.

As in the previous sections, we must show how improved MAD families
survive multiple forcing extensions. The following theorem will be sufficient for
all of our purposes.

Theorem 5.3. Suppose that 〈A,B〉 is an improved MAD family, n ∈ ω, and
V [Gi] for i ∈ n are bounding extensions of V . Suppose that Pi ∈ V [Gi] are posets
and 〈Ȧi, Ḃi〉 ∈ V [Gi] are Pi-names for an improved MAD family extending
〈A,B〉. Then, in some forcing extension, there are filters Hi ⊂ Pi, each generic
over V [Gi], such that 〈

⋃
i∈n Ȧi/Hi,

⋃
i∈n Ḃi/Hi〉 is an improved AD family.

Proof. We will start with a key technical claim:

Claim 5.4. For every i ∈ n, in the model V [Gi] the following holds. If p ∈ Pi is
a condition and σj : j ∈ m are names for elements of Ȧi such that p  σj /∈ V ,
then there is k ∈ ω such that for every larger l ∈ ω there is a condition q ≤ p
such that q 

⋃
j∈m σj ∩ [k, l) = 0.

Proof. Suppose that the claim fails for some i ∈ n, condition p ∈ Pi and names
σj for j ∈ m. Then, in the model V [Gi] there is a partition s of ω into finite
sets such that p 

⋃
j∈m σj ∩ b 6= 0 for every b ∈ s. Since V [Gi] is a bounding

extension of V , there is a partition t ∈ V such that every c ∈ t contains some
element of s as a subset. Since p  {σj : j ∈ m} ∩ V = 0, there must be c ∈ t
and a condition q ≤ p such that q 

⋃
j∈m σj ∩ č = 0. If b ∈ s is an element of s

which is a subset of c, then q 
⋃
j∈m σj ∩ b̌ = 0, and this contradicts the choice

of the partition s.
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Let V [G] be a forcing extension containing all the filters Gi for i ∈ n. Let
V [G][H] be a further generic extension collapsing a sufficiently large cardinal
and work in V [G][H]. An inductive application of the claim makes it possible
to find filters Hi ⊂ Pi, each generic over V [Gi] for i ∈ m, and a partition
ω =

⋃
i∈n,j∈ω aij of ω into finite sets such that

• for every i ∈ ω and every x ∈ τi/Hi, either x ∈ A or x ⊂
⋃
j aij up to

finitely many exceptions;

• for every i ∈ ω and every collection {bk : k ∈ ω} ∈ V [Gi][Hi] of pairwise
disjoint finite subsets of ω, there are j, k ∈ ω such that bk ⊂ aij .

We claim that the filters work as required. Let A′ =
⋃
i Ȧi/Hi and B′ =⋃

i Ḃi/Hi; we must argue that 〈A′, B′〉 is an improved AD family.
First, prove that A′ is an almost disjoint family. To this end, suppose that

x, y ∈ A′ are distinct points; we must show that they have finite intersection.
The critical case is when there are numbers i, j both in n such that x ∈ Ȧi/Gi\A
and y ∈ Ȧj/Gj \A. But then, x ⊂

⋃
k aik and y ⊂

⋃
k ajk with possibly finitely

many exceptions, the sets
⋃
k aik and

⋃
k ajk are disjoint, and so x ∩ y must be

finite.
Second, suppose that 〈s, a〉 ∈ B′ and b ⊂ A′ \ a is a finite set; we must find

infinitely many sets c ∈ s such that
⋃
b∩ c = 0. Let i ∈ n be an index such that

〈s, a〉 ∈ Ḃi/Hi. There are infinitely many c ∈ s such that
⋃

(b ∩ Ȧi/Hi) ∩ c = 0
since 〈Ȧi, Ḃi〉 is forced to be an improved MAD family. By the second item
above, there must be infinitely many c ∈ s such that

⋃
(b ∩ Ȧi/Hi) ∩ c = 0 and

there is k such that c ⊂ aik. By the first item above, there must be infinitely
many c ∈ s such that

⋃
(b∩ Ȧi/Hi)∩ c = 0 and there is k such that c ⊂ aik and

for all x ∈ b \ Ȧi/Hi, x ∩ aik = 0. This completes the proof.

Theorem 5.5. Injective maps from ω1 to 2ω are independent of improved MAD
families.

Proof. Suppose that 〈A,B〉 is an improved MAD family, Q is a poset which
collapses 2c, and τ and σ are Q-names for an improved MAD family extending
〈A,B〉 and an injection from ω1 to ω respectively. Use Claim 3.5 to find con-
ditions q0, q1 ∈ Q such that for any two filters G0, G1 ⊂ Q generic over V and
containing the respective conditions q0, q1 , the union σ/G0∪σ/G1 is not a map
from ordinals to 2ω. Use Theorem 5.3 to find generic filters G0, G1 ⊂ Q such
that q0 ∈ G0, q1 ∈ G1, and τ/G0∪ τ/G1 is an improved AD family. This proves
the theorem.

Corollary 5.6. (ZFC+LC) In the model L(R)[A,B], where 〈A,B〉 is the generic
improved MAD family, there is no injection from ω1 to 2ω.

More sophisticated information about the model L(R)[A,B] can be obtained
by investigating chromatic numbers of Borel graphs.
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Theorem 5.7. (ZFC+LC) Let Z be a Borel hypergraph of finite dimension on
a Polish space X. Then L(R) |= Z has countable chromatic number if and only
if L(R)[A,B] |= Z has countable chromatic number whenever 〈A,B〉 is a generic
improved MAD family.

Proof. The right-to-left implication is immediate as L(R) ⊂ L(R)[A,B] holds.
For the left-to-right implication, fix a natural number d. [8] shows that there is
a certain critical Borel graph Z0 on dω that needs to be investigated. To obtain
the graph Z0, pick binary sequences zn ∈ dn such that they are dense in d<ω

and let 〈xi : i ∈ d〉 ∈ Z0 if there is n ∈ ω such that for every i ∈ d xi(n) = i
and xi � n = zn hold, and the functions xi � ω \ n+ 1 for i ∈ d are all the
same. It is known [8, Theorem 16] that in L(R), the graph Z0 has uncountable
chromatic number and homomorphically continuously embeds into every other
Borel hypergraph of dimension d and uncountable chromatic number. Thus, for
the left-to-right implication it is only necessary to show that the graph Z0 has
uncountable chromatic number in the model L(R)[A,B].

To this end, it will be enough to find a bounding proper poset P of size c and
a P -name ẋ for an element of 2ω such that for every condition p ∈ P , in some
generic extension there are filters Ki ⊂ P for i ∈ d, separately generic over V ,
containing the condition p and such that 〈ẋ/Ki : i ∈ d〉 ∈ Z0. Once this is done,
the proof of Theorem 3.6 (with Theorem 5.3 replacing Theorem 3.2) shows that
colorings of Z0 with countably many colors are independent of improved MAD
families. A reference to Theorem 2.2 then concludes the proof.

The construction of the requisite poset P is routine. By recursion on k ∈ ω
build natural numbers mk ∈ ω such that 0 = m0 ∈ m1 ∈ m2 ∈ . . . and for
every t ∈ dmk there is n ∈ mk+1 such that t ⊂ zn. The poset P consists of all
functions g whose domain is a coinfinite subset of ω and for each k ∈ dom(g),
g(k) ∈ dmk+1\mk . The ordering is that of reverse inclusion. Thus, the poset
P is a variation of the Silver forcing investigated in [1, Definition 7.4.11] It is
well-known that the poset P is proper and bounding.

Now, if Ġ is a P -name for the generic filter then ẋ =
⋃

rng(
⋃
Ġ) is a point

in 2ω. We claim that the name ẋ has the required properties. Indeed, whenever
p ∈ P is a condition then let k = min(ω \ dom(p)), and let n ∈ mk+1 \mk be
a number such that z =

⋃
l∈k p(l) ⊂ zn. Let ui ∈ dmk+1\mk for i ∈ d be strings

such that zn is an initial segment of z∪ui and ui(n) = i and u(i)(m) = 0 for all
i ∈ d and all n ∈ (m,mk+1). Let K ⊂ P be a filter generic over V containing
the condition p and get filters Ki ⊂ P for i ∈ d by adjusting the conditions in K
to return the value ui respectively at k. It is not difficult to see that the filters
Ki ⊂ P for i ∈ d are as required.

Corollary 5.8. (ZFC+LC) If 〈A,B〉 is a generic improved MAD family, then
in L(R)[A,B]

1. the E0 quotient space is not linearly orderable;

2. there is no Hamel basis for R;

3. there is no nonprincipal finitely additive measure on ω.
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Proof. For (1), consider the Borel graph Z on 2ω connecting points x, y if x E0

1− y. It is clear that the Z-relation depends only on the E0-classes of x, y, that
modulo E0 every node has degree exactly 1, and so a presence of a linear ordering
on the E0 quotient space would imply that a Z has chromatic number two.
Now, the graph Z has uncountable chromatic number in L(R) (say, by a Baire
category argument), so it has uncountable chromatic number in L(R)[A,B] by
Theorem 5.7 and so the E0 is not linearly orderable there. (2) follows from
Observation 4.9. (3) follows from Observation 4.7 and Theorem 5.7.

We conclude this section with another natural question:

Question 5.9. Is there an ω-dimensional Borel hypergraph which is uncount-
ably chromatic in L(R) and countably chromatic in the model L(R)[A,B]?
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