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Republic
3 Department of Mathematics and Computing Science, Saint Mary’s University, 923 Robie Street, Halifax, NS,

B3H 3C3, Canada
4 Department of Mathematics, University of Florida, 358 Little Hall, P. O. Box 118105, Gainesville, FL

32611-8105, United States of America

Received 3 September 2012, revised 22 March 2013, accepted 16 May 2013
Published online 7 February 2014

We study the possible values of the cofinality invariant for various Borel ideals on the natural numbers. We
introduce the notions of a fragmented and gradually fragmented Fσ ideal and prove a dichotomy for fragmented
ideals. We show that every gradually fragmented ideal has cofinality consistently strictly smaller than the cardinal
invariant b and produce a model where there are uncountably many pairwise distinct cofinalities of gradually
fragmented ideals.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

This paper concerns the possibilities for the cofinalities of Borel ideals on ω. Here, an ideal is a subset of P(ω)
closed under subsets and unions; in order to avoid trivialities, we shall always assume that the ideal contains
all finite sets and is not generated by a countable collection of sets. The space P(ω) is equipped with the usual
Polish topology, and therefore it makes sense to speak about descriptive set theoretic complexity of ideals on ω.
Finally, the cofinality of an ideal I, cof(I), is the least cardinality of a collection A ⊂ I such that every set in the
ideal has a superset in the collection A; thus our ideals will always have uncountable cofinality. The cofinality of
an ideal is a cardinal number less or equal to the continuum. The comparison of these numbers with traditional
cardinal invariants and with each other in various models of set theory carries information about the structure of
the underlying ideals. A survey of known results will generate several natural questions and hypotheses, of which
we address two.

Question 1.1 What are the possible cofinalities of Borel ideals?

Only four possible uncountable values of standard ideals were known: d = cof(Fin × Fin), cof(meager) =
cof(nwd(Q)), cof(null) = cof(Z) and c = cof(ED), where nwd(Q) is the ideal of nowhere dense subsets of the
rationals, Z is the ideal of sets of natural numbers of asymptotic density 0 and ED is the ideal on the square ω × ω

generated by vertical sections and graphs of functions. A possible conjecture that these are the only values fails
badly, we shall produce many Fσ ideals such that the inequalities between their cofinalities can be manipulated
arbitrarily in various generic extensions.

∗ e-mail: michael@matmor.unam.mx
∗∗ e-mail: rdiego@cs.smu.ca
∗∗∗ e-mail: zapletal@ufl.edu
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2 M. Hrušák, D. Rojas-Rebolledo, and J. Zapletal: Cofinalities of Borel ideals

Question 1.2 What is the smallest cofinality of a Borel ideal?

It is not difficult to argue that every Fσ ideal has cofinality larger or equal to cov(meager), and a result of
Louveau and Velickovic [4] shows that every non-Fσ Borel ideal has cofinality at least d. In view of known
examples, the natural conjecture was that d is, in fact, the smallest possible cofinality of a Borel ideal. We shall
identify a whole array of Fσ ideals whose cofinality is equal to ℵ1 in the Laver model. Since in that model,
ℵ2 = b = d, this refutes the conjecture.

The results of this paper were announced in [3], which also serves as a good source of background and literature.
Our notation is standard and follows [1]. For a tree T ⊂ (ω × ω)<ω, the symbol [T ] stands for its set of cofinal
branches as a subset of ωω × ωω, and p[T ] is the projection of this set into the first coordinate.

2 The smallest possible cofinality

Our Fσ -ideals with very small cofinality will be of a quite special form that sets them apart from the analytic
P-ideals.

Definition 2.1 An ideal I on ω is fragmented if there is a partition of ω = ⋃
j a j into finite sets and submeasures

ϕ j on each of them such that lim j ϕ j (a j ) = ∞ and

I = {b ⊂ ω : ∃k ∀ j ϕ j (a j ∩ b) < k}.
The ideal I represented as in the previous sentence is gradually fragmented if for every k there is an m such
that for all l, for all but finitely many j and for any B ⊂ P(a j ), if |B| = l and ϕ j (b) < k (for each b ∈ B), then
ϕ j (

⋃
B) < m.

Note that every fragmented ideal is Fσ . The ideal of sets of polynomial growth P = {A ⊆ ω : (∃k ∈ ω)(∀n ∈
ω) |A ∩ 2n| ≤ nk} introduced in [4] is a typical example of a gradually fragmented ideal. Many ideals which in
retrospect are gradually fragmented were also considered by K. Mazur in [5].

Next we show that any proper forcing notion having the Laver property [1] preserves cofinalities of gradually
fragmented ideals. As a corollary we get the following:

Theorem 2.2 In the iterated Laver model, cof(I) = ℵ1 < b = c = ℵ2 for every gradually fragmented ideal I.

Recall that a forcing notion has the Laver property if for every function f ∈ ωω in the extension which is
dominated by a ground model function, there is a ground model function g : ω → [ω]<ℵ0 such that for every
i ∈ ω, |g(i)| ≤ i + 1 and f (i) ∈ g(i). As the terminology suggests, the Laver forcing as well as its countable
support iterations have the Laver property (cf. [1]).

Proposition 2.3 Let P be a proper forcing notion having the Laver property and let I be a gradually fragmented
ideal. Then in the P-extension, I ∩ V is cofinal in I.

P r o o f . Let I be an ideal gradually fragmented via 〈a j : j ∈ ω〉 and ϕ = sup j ϕ j . Let ȧ be an P-name
and p ∈ P a condition such that p � ȧ ∈ I. Find p′ ≤ p and k ∈ ω such that p′ � ϕ(a) < k. Use the gradual
fragmentation to find a number m ∈ ω as well as numbers 0 = l0 < l1 < l2 < · · · so that for every i ∈ ω and for
every l, if li ≤ l < li+1 and B ⊂ P(al) is a collection of size ≤ i + 1 consisting of sets of φl-mass < k, then
ϕl(

⋃
B) < m. Use the Laver property of P to find a function g : ω → [ω]<ω in the ground model and a condition

q ≤ p′ such that for all i ∈ ω and every li ≤ l < li+1 it is the case that g(l) ⊂ P(al) is a set of size at most
i + 1 consisting of sets of φl -mass < k, and q � ∀i ∈ ω ȧ ∩ al ∈ g(i). Let b = ⋃

i

⋃
g(i). The properties of the

sequence 〈li : i ∈ ω〉 imply that ϕ(b) < m, so b ∈ I and clearly q � ȧ ⊂ b. �
The previous result should be contrasted with the provably high cofinality of fragmented ideals which are not

gradually fragmented. Recall (e.g., from [4]) that a subset P of an ideal I is strongly unbounded if P contains
no infinite bounded subset, i.e the union of every infinite subset of P is I-positive. Clearly, every ideal I which
contains a strongly unbounded subset of size c has cof(I) = c.

Theorem 2.4 If I is a fragmented ideal then either

1. I is gradually fragmented, or
2. I contains a perfect strongly unbounded subset.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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P r o o f . Let I be fragmented (via 〈a j : j ∈ ω〉 and ϕ = sup j ϕ j ) which is not gradually fragmented. If k ∈ ω

is where graduality fails, then there is an infinite set C ⊂ ω, a sequence 〈B j : j ∈ C〉 (with B j ⊂ P(a j ) and
ϕ(b) < k for all b ∈ B j ) and a partition {Cm : m ∈ ω} of C into infinite sets, such that for each m ∈ ω there is an
lm ∈ ω such that:

j ∈ Cm ⇒ |B j | = lm and ϕ
(⋃

B j

)
> m.

For j ∈ Cm write B j = {K j
i : i < lm}. Now, for each m ∈ ω, let

{
Cn

m : n ∈ ω
}

be a partition of Cm into infinite
sets, and set:

Cn =
⋃
m∈ω

Cn
m, Xn =

⋃
{a j : j ∈ Cn} and X =

⋃
n∈ω

Xn.

We shall use the following simple fact:

Claim 2.5 For all N ∈ ω, there is a sequence of functions 〈 fn : n ∈ ω〉 from ω to N such that:(∀A ∈ [ω]N
)
(∃M ∈ ω)([0, N) ⊆ { fn(M) : n ∈ A}).

P r o o f . Fix N ∈ ω, for each t ∈ N<ω define At an infinite subset of ω by recursion on the length of t
as follows: Let A∅ = ω, if At has been defined for all t ∈ N n , let

{
At�〈 j〉 : j < N

}
be a partition of At into

infinite sets. Let f0 : ω → N be the function such that f0�A〈 j〉 = j (for each j ∈ N ). Define fn+1 : ω → N
by: fn+1�At�〈 j〉 = j (for each t ∈ N n and j ∈ N ). The sequence 〈 fn : n ∈ ω〉 has the desired property: If A =
{n0, . . . , nN−1} ∈ [ω]N is such that ni < n j , let t ∈ N nN−1+1 such that t(ni ) = i , then for M ∈ At and for i < N ,
fni (M) = i . �

Apply the claim to each Cn
m and N = lm , in order to obtain a sequence of functions 〈 f 〈n,m〉

p : p ∈ ω〉 from Cn
m

to lm . Then, define a sequence of functions 〈 f p : p ∈ ω〉 from C to ω by:

f p =
⋃

n,m∈ω

f 〈n,m〉
p

and a sequence 〈Jp : p ∈ ω〉 of subsets of ω:

Jp =
⋃
j∈C

K j
f p( j)

Clearly ϕ(Jp) < k, as each K j
f p( j) ⊂ a j is of ϕ-mass less than k. For n, p ∈ ω, let J n

p = Xn ∩ Jp.

Claim 2.6 For each n, m ∈ ω and A ∈ [ω]lm ,

ϕ

( ⋃
p∈A

J n
p

)
> m.

In particular, for each n, the sequence
〈
J n

p : p ∈ ω
〉

is strongly unbounded.

Fix n, m ∈ ω and A ∈ [ω]lm . By the choice of the sequence
〈
f 〈n,m〉

p : p ∈ ω
〉

(Claim 2.5), there is M ∈ Cn
m such

that [0, lm) = {
f 〈n,m〉

p (M) : p ∈ A
}
. So⋃

BM =
⋃
p∈A

K M
f p(M) ⊂

⋃
p∈A

J n
p

and ϕ(
⋃

BM) > m.
We now define the perfect strongly unbounded subset of I: Let A ⊂ ωω be a perfect family of eventually-

different functions. Define G : A → I by

G(g) =
⋃
n∈ω

(
Xn ∩ Jg(n)

)
.

It is clear that ϕ(G(g)) < k and that G is a well defined continuous injection.

www.mlq-journal.org C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 M. Hrušák, D. Rojas-Rebolledo, and J. Zapletal: Cofinalities of Borel ideals

Claim 2.7 The set G”A is strongly unbounded.

Let 〈Gr = G(gr ) : r ∈ ω〉 be an infinite subset of G”A. First, observe that, since A is an eventually-different
family of functions, for each m ∈ ω there is L ∈ ω such that for each n ≥ L , the set {gr (n) : r < lm} has cardinality
lm . Now, set m ∈ ω, n ≥ L and A = {gr (n) : r < lm}. By Claim 2.6, ϕ

( ⋃
r<lm

J n
gr (n)

)
> m. Hence ϕ(

⋃
r∈ω Gr ) =

∞. �
While the cofinality of gradually fragmented ideals is consistently small, it is also true that their cofinality is

consistently quite large in comparison to traditional cardinal invariants.
There is a natural forcing associated to every Borel ideal I, which adds a new element of I not contained in

any ground model set in I.

Definition 2.8 Let I be a Borel ideal, not countably generated. Let J be the σ -ideal on I generated by the
family {P(a) : a ∈ I}. Denote by PI the forcing Borel(I)/J .

The forcing PI falls naturally into the scope of [7]. Formally, one should defineJ as the σ -ideal onP(ω) gener-
ated by singletons and the sets in the family {P(a) : a ∈ I}, hence dealing with the quotient PJ = Borel(P(ω))/J .
The Borel ideal I is then itself a condition in PJ and PI is just a restriction of PJ below I. General theorems of
[7, Section 4.1] and simple genericity arguments give:

Proposition 2.9 Let I be a Borel ideal and let PI be the corresponding forcing. Then:

1. PI is proper.
2. PI preserves non(meager).
3. PI preserves cof(meager) and preserves P-points, provided that I is Fσ .
4. PI adds an unbounded element of I.

P r o o f . Items 1 and 2 follow directly from the fact that the ideal J is σ -generated by compact sets [7,
Theorem 4.1.2], item 4 is a straightforward genericity argument (here we use the restriction to I). To see item 3,
one only needs to realize that if I is an Fσ ideal on ω, then the σ -ideal J is, in fact, σ -generated by a σ -compact
collection of compact sets. By [7, Theorem 4.1.8] PI is ωω-bounding (does not add unbounded reals) which
together with (2) implies that cof(meager) is preserved. The fact that PI preserves P-points is proved yet not
stated in [7, Theorem 4.1.8]. �

As a corollary one gets the following:

Theorem 2.10 It is consistent that cof(meager) = ℵ1 < cof(I) = c = ℵ2 for all uncountably generated Fσ

ideals I at once.

P r o o f . To construct the model witnessing the statement of the theorem, start with a model of CH and use
a suitable bookkeeping tool to set up a countable support iteration of forcings of the form PI defined above,
as I varies over all possible Fσ ideals in the extension. Suitable iteration theorems show that the iteration is
proper, bounding, preserves Baire category (and also preserves P-points). Thus, in the resulting model the desired
statement holds. �

Another property of the forcing PI used heavily in the next section is the continuous reading of names: For
every J -positive Borel subset B of I and a Borel function f : B → 2ω there is a J -positive Borel subset C of B
such that f restricted to C is continuous (cf. [7, Theorem 4.1.2]).

3 Nonclassification of possible cofinalities

This section aims to produce many Fσ ideals whose cofinality invariants can take quite independent values in
various generic extensions. These will be gradually fragmented ideals with an additional weak boundedness
property.

Definition 3.1 Let g, h ∈ ωω be increasing functions such that g(0), h(0) > 0, logh(i) g(i) ≥ i and
(
∏

j<i g( j))(
∑

j<i g( j)) logh(i) 2 < 2−i . Let ω = ⋃
i ai be a partition of ω into successive intervals of respective

lengths g(i), and let ϕi be the submeasure on ai defined by ϕi (b) = logh(i)(|b|) if b �= ∅ and ϕi (∅) = 0.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Finally, for each infinite set u ⊂ ω define Iu to be the ideal on the countable set
⋃

i∈u ai given by

Iu = {b : ϕ(b) < ∞},
where ϕ(b) = supi∈u ϕi (b ∩ ai ).

The choice of the functions g, h is not particularly relevant to this paper. The following two lemmas encapsulate
all the arithmetic properties of the submeasures used below.

Lemma 3.2 Whenever i ∈ ω, k ≤ ∣∣∏
j<i P(a j )

∏
j<i a j

∣∣ and {bl : l ∈ k} are subsets of ai , then ϕi (
⋃

l bl) <

maxl ϕi (bl) + 2−i .

P r o o f . Let b = ⋃
l bl . Thus, |b| ≤ k · maxl |bl | and by the properties of the functions g, h ∈ ωω, ϕi (b) ≤

logh(i) k + maxl ϕi (bl) < maxl ϕi (bl) + 2−i . �
Lemma 3.3 If bi ⊂ ai for i ∈ ω are nonempty sets such that limi ϕi (bi ) = ∞, and f :

∏
i bi → ∏

i P(ai ) is a
continuous function, then there are sets ci ⊂ bi such that limi ϕi (ci ) = ∞ and for x ∈ ∏

i ci and j ∈ ω, f (x)� j
depends only on x� j .

P r o o f . First argue that for every i ∈ ω and every map f :
∏

j≤i b j → ∏
j<i P(a j ) there is a nonempty set

b′
i ⊂ bi such that ϕi (b′

i ) > ϕi (bi ) − 2−i and for every x ∈ ∏
j<i b j × b′

i , the value f (x) depends only on x�i .

This is immediate by Lemma 3.2, as there are certainly fewer than |∏ j<i P(a j )
∏

j<i a j | many maps from
∏

j<i b j

to
∏

j<i P(a j ).
Now argue that for every i ≤ k and every map f :

∏
j≤k b j → ∏

j<i P(a j ) there are nonempty set b′
j ⊂ b j

for each i ≤ j ≤ k such that ϕ j (b′
j ) > ϕ j (b j ) − 2− j and for every x ∈ ∏

j<i b j × ∏
i≤ j≤k b′

j , the value f (x)
depends only on x�i . This is proved by a straightforward downward induction on k for every fixed i using the
previous paragraph.

Finally, towards the proof of the lemma, suppose that f :
∏

i bi → ∏
i P(ai ) is a continuous function. By a

compactness argument and the continuity of the function f , for every number i ∈ ω there is a number ki > i such
that the value of f (x)�i depends only on x�ki . By induction on i ∈ ω, build nonempty sets bi

j for j ∈ ω so that

1. b0
j = b j , bi+1

j = bi
j if j < i , and bi+1

j ⊂ bi
j and ϕ j (bi+1

j ) > ϕ j (bi
j ) − 2− j if j ≥ i ;

2. for every x ∈ ∏
j bi

j , the value f (x)�i depends only on x�i .

The induction step is performed easily by the previous paragraph applied to i ≤ k = ki . In the end, let ci = bi
i .

It is clear that for x ∈ ∏
i ci and every j ∈ ω, f (x)� j depends only on x� j . Also, ϕi (ci ) > ϕ(bi ) − i2−i for each

i ∈ ω; as limi i2−i = 0, it follows that limi ϕi (ci ) = ∞ as required. �
We shall show that whenever u, v ⊂ ω are almost disjoint infinite sets then the inequalities cof(Iu) > cof(Iv)

and cof(Iv) > cof(Iu) are both consistent, and this effect can be reached in both iteration-type and product-type
extensions. The product method even leads to the consistency of the cofinalities of many of these ideals being
mutually distinct at the same time (a somewhat similar result has been proved in [2]).

Theorem 3.4 It is relatively consistent with ZFC that there are uncountably many distinct cofinalities of ideals
of the form Iu.

The basic forcing PI to achieve this has already been introduced in Proposition 2.9 as the forcing PJ =
Borel(P(ω))/J , where J is the σ -ideal on P(ω) σ -generated by singletons and the sets in the family {P(a) :
a ∈ I} restricted to I (considered as a condition of PJ ). Here we shall strengthen the initial condition and give a
different presentation of the forcing for the case of the fragmented ideals Iu .

Let u ⊂ ω be an infinite set. Set T = ⋃
j

∏
i∈ j∩u ai and let Ju be the σ -ideal on

∏
i∈u ai = [T ] generated by

all products
∏

i∈u bi of sets bi whose ϕi -masses are uniformly bounded by some real number. This is equivalent
to generating the ideal by sets A ⊂ ∏

i∈u ai such that
⋃

f ∈A rng( f ) ∈ Iu . So the quotient forcing PJu of Borel
Ju-positive subsets of [T ] ordered by inclusion is a proper, bounding forcing preserving Baire category and adding
an unbounded element of Iu ([7, Section 4.1] and Proposition 2.9) .

Identifying functions in the product with their ranges, it is quite clear that, in fact, PJu is equivalent to the
forcing PIu below the set of all selectors on the sets ai : i ∈ u.

www.mlq-journal.org C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6 M. Hrušák, D. Rojas-Rebolledo, and J. Zapletal: Cofinalities of Borel ideals

We shall give a combinatorial form of the quotient forcing PJu . Say that a tree S ⊂ T is a large tree if for every
real number r , every node of T can be extended to a splitting node s at some level i ∈ u such that the ϕi -mass
of the set of immediate successors of the splitting node is at least r . As in [7, Claim 4.1.9] the following lemma
holds.

Lemma 3.5 Every analytic Ju-positive set contains all branches of a large tree.

Thus, the poset of large trees ordered by inclusion is naturally densely embedded in PJu by the embedding
S �→ [S].

P r o o f . Suppose that A ⊂ ∏
i∈u ai is an analytic Ju-positive set, a projection of some tree S ⊂ (ω × ω)<ω.

Thinning out the tree S if necessary we may assume that for every node t ∈ S, p[S�t ] /∈ Ju . By recursion on n ∈ ω

build finite trees Un as well as functions fn so that

1. 0 = U0 and Un+1 is an end-extension of Un . The tree U = ⋃
n Un will be the large tree we are looking for;

2. f0 ⊂ f1 ⊂ . . . are functions such that dom( fn) ⊂ Un is a set including all endnodes of Un , and fn(t) ∈ S
is a pair of finite sequences of which t is the first, for every t ∈ dom( fn). Thus, for every point x ∈ [U ],
the union

⋃
n fn(x�n) witnesses the fact that x ∈ A and therefore [U ] ⊂ A;

3. for every endnode t ∈ Un there is an extension s ∈ Un+1 such that, writing i = min(u \ dom(s)), ϕi ({ j ∈
ai : s�〈i, j〉 ∈ Un+1}) > n. This guarantees the largeness of the tree U .

The recursion is straightforward: Suppose that Un, fn have been constructed, fix an endnode t ∈ Un and
construct the part of Un+1 and fn+1 above t in the following way. There must be a finite sequence s extending t such
that writing i = min(u \ dom(s)), ϕi ({ j ∈ ai : ∃x ∈ p[S� fn(t)] s�〈i, j〉 ⊂ x}) > n. For if such a sequence s did
not exist, Lemma 3.2 would imply that for every i ∈ u \ dom(t), ϕi { j ∈ ai : ∃x ∈ p[S� fn(t)] x(i) = j} < n + 1
and therefore the set p[S� fn(t)] would be in the ideal Iu . Pick such a finite sequence s, write i = min(u \ dom(s)),
for every number j ∈ ai such that ∃x ∈ p[S� fn(t)] s�〈i, j〉 ⊂ x put the sequence s�〈i, j〉 into Un+1 and pick a
node fn+1(s�〈i, j〉) in the tree S� fn(t) whose first coordinate is this sequence, and proceed to another endnode
of Un . �

The following simple definition and lemma will be useful in the fusion arguments below.

Definition 3.6 A good map is a continuous map G :
∏

i∈w bi → [T ] (bi ⊂ ai ) such that the numbers ϕi (bi ) tend
to infinity and for every choice of sets ci ⊂ bi such that the numbers ϕi (ci ) tend to infinity, the image G”

∏
i∈w ci

contains all branches of some large tree.

Lemma 3.7 If S is a large tree whose splitting nodes occur only at levels in some set w ⊂ ω, then there is a
good map G :

∏
i∈w bi → [S].

P r o o f . Thin out S if necessary so that every level of S contains at most one splitting node, and writing
bi ⊂ ai for the set of all immediate successors of the splitting node at level i , the numbers ϕi (bi ), i ∈ w tend to
infinity. The function G :

∏
i∈w bi → [S] is then defined in such a way that G(x) is the unique path y through the

tree S such that whenever i ∈ w is such that x�i is a splitting node of S then x(i) = y(i). It is easy to verify the
required properties of the function G. �

We shall show that if v ⊂ ω is an infinite set with finite intersection with u, then both countable support
iterations and countable support products of quotient forcing PJu preserve the cofinality of Iv .

Lemma 3.8 In the PJu extension, every set in Iv can be covered by a ground model set in Iv with arbitrarily
close ϕ-mass.

P r o o f . Suppose that B ∈ PJu is a condition forcing that ȧ ∈ Iv is a set of ϕ-mass < r , and let ε > 0 be a
real. Find a large tree S and a continuous function f such that [S] ⊂ B, f : [S] → Iv and B � ḟ (ẋgen) = ȧ. Find
a number m ∈ ω large enough so that u ∩ v ⊂ m and 2−m < ε. Thinning out the tree S we may assume that the
range of the function f consists only of sets of mass < r , and for every i ∈ v ∩ m, [S] decides the value ȧ ∩ ai to
be some specific set H(i) ⊂ ai .

Let w be the set of splitting levels of S and let G0 :
∏

i∈w bi → [S] be a good function as in Lemma 3.7. Extend
G0 to a continuous function G on some product

∏
i∈ω bi by setting G(x) = G0(x�w). Use Lemma 3.3 to find sets
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ci ⊂ bi such that limi ϕi (ci ) = ∞ and for every i ∈ v \ m, f ◦ G(x) ∩ ai depends only on x�i + 1. Since i /∈ u,
the value G(x) does not depend on x(i). Thus, there are at most |∏ j<i c j | many possibilities for the value of
f ◦ G(x) ∩ ai , each of ϕi -mass ≤ r . By Lemma 3.2, their union H(i) has ϕi -mass < r + 2−i . Let b = ⋃

i∈v H(i)
and observe that G”

∏
i ci � ȧ ⊂ b̌. �

For the treatment of the product, we need a slight strengthening of this argument. Let K be an arbitrary set, let
uk for k ∈ K be infinite subsets of ω, let Puk = PJuk

, and consider the countable support product P = ∏
k Puk .

Lemma 3.9 Let u ⊂ ω be an infinite set. P forces that every set in Iu is covered by a set of arbitrarily close
ϕ-mass that belongs to the model given by

∏{Puk : uk ∩ u is infinite} .

P r o o f . Let us set up some useful standard notation for the product. A condition in the product is a function
p with a countable domain dom(p) ⊂ K such that for each k ∈ dom(p) the value p(k) is a tree in the poset Puk .
The set [p] is defined as the subset of (2ω)dom( p) consisting of those sequences �x such that for every k ∈ dom(p),
�x(k) is a branch through the tree p(k). A splitting node of p is a splitting node of one of the trees in rng(p). The
generic object for the product is identified with the sequence �xgen : K → 2ω such that for every condition p in the
generic filter, �xgen�dom(p) ∈ [p].

Let p ∈ P and let ȧ be a P-name for a set in Iu of ϕ-mass < r and let ε > 0 be a real number. Find
m ∈ ω such that 2−m < ε and strengthen the condition p if necessary to decide the values of ȧ ∩ a j for all
j ∈ m. The usual countable support product fusion arguments yield a condition q ≤ p and a continuous function
f : [q] → ∏

i P(ai ) such that q � ∀i ∈ u ȧ ∩ ai = f (�xgen�dom(q))(i), and for every �x ∈ [q] and every i ∈ u,
ϕi ( f (�x)(i)) < r . For k ∈ dom(q) let vk ⊂ uk be the set of splitting levels of the tree q(k). Thinning out the
condition q if necessary we may assume that the sets {vk : k ∈ dom(q)} are pairwise disjoint, and if u ∩ uk is
finite then vk ∩ u = 0.

For each k ∈ dom(q), Lemma 3.7 yields a good map Gk :
∏

i∈vk
bi → [q(k)]. The product of these maps yields

a map H :
∏

i bi → [q]. Use Lemma 3.3 to find sets ci ⊂ bi such that lim ϕi (ci ) = ∞ and f ◦ H(y) ∩ a j depends
only on y� j + 1 for y ∈ ∏

i ci and j ∈ u. Let q ′ ≤ q be some condition with dom(q ′) = dom(q) and for every
k ∈ dom(q ′), q ′(k) is some large tree below the set Gk”

∏
i∈vk

ci .
Let L = {k ∈ dom(q) : uk ∩ u is infinite} and let PL = ∏

k∈L Puk . Consider the PL -name ḃ for the set defined
as follows: for every k ∈ L choose some yk ∈ ∏

i∈vk
ci such that �xgen(k) = Gk(yk), and for each j ∈ u let ḃ ∩ a j

be the union of all possible values of f ◦ H(y) ∩ a j for y ∈ ∏
i ci extending all yk : k ∈ L . There are only fewer

than
∏

j<i |ci | many such values, and so by Lemma 3.2 this union has size ϕ j -mass less than r + ε. It is also clear
that q ′ � ȧ ⊂ ḃ, and the lemma follows. �

P r o o f o f T h e o r e m 3 . 4 . Let V be a model of CH and let uα, α < ω1 be an almost disjoint family
of infinite subsets of ω. Let Pα be a countable support product of ωα+1 copies of the forcing PJuα

and let P be a
countable support product of the Pα , α < ω1. Then:

1. P is proper and ω2-c.c., hence it does not collapse cardinals.
2. Each Pα forces cof(Iuα

) = ωα+1.
3. P forces cof(Iuα

) = ωα+1 for every α < ω1.

As V is a model of CH and each forcing in the product has size c the ω2-c.c. follows from a standard 	-system
argument. The properness of P easily follows from a standard Sacks-type fusion argument.

By a simple genericity argument all of the generic reals added by Pα are mutually independent elements of I
each unbounded over the rest. If the ground model is a model of CH, then Pα forces c = ωα+1.

To see (3) first note that P forces cof(Iuα
) ≥ ωα+1 by (2). On the other hand, the fact that P forces cof(Iuα

) ≤
ωα+1 follows directly from Lemma 3.9. �

As mentioned before, also countable support iteration can be used to separate the cofinalities of the ideals Iu .

Theorem 3.10 Let u, v be infinite almost disjoint subsets of ω, let P be a countable support iteration of length
ω2 of the forcing PJu , and let G be P-generic over a model of CH. Then V [G] |= cof(Iv) < cof(Iu).

P r o o f . Say that a forcing P strongly preserves the ideal Iv , if every set a ∈ Iv in the extension can be
covered by a ground model set of an arbitrarily close ϕ-mass. We shall show that the countable support iteration of
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proper posets strongly preserving Iv also strongly preserves Iv , using the first preservation theorem [1, Theorem
6.1.13]. The theorem then follows from the fact that the forcing PJu strongly preserves Iv , Lemma 3.8.

The following easy claim, which follows directly from the very slow fragmentation property of the submeasure,
is the starting point.

Claim 3.11 Suppose that {bn : n ∈ ω} are sets in Iv and r > 0 is a real number such that ϕ(bn) ≤ r holds for
every number n. Suppose ε > 0. Then there is an infinite set W ⊂ ω such that ϕ(

⋃
n∈W bn) < r + ε.

P r o o f . By a compactness argument we may assume that the sets bn converge to some c, and then ϕ(c) ≤ r .
Find i ∈ ω such that for every j > i , j2− j < ε. For every j > i , pick some n j so that bn j , c have the same
intersection with the set

⋃
k∈ j ak , and so that the numbers n j are pairwise distinct. The set W = {n j : j > i}

works as desired by Lemma 3.2. �

Fix positive rationals r, ε > 0. Let X be the space of all sequences x = 〈rx , x(0), x(1), . . .〉 where rx ∈ Q is a
positive rational smaller than r and (∀i ∈ ω)(x(i) ⊂ a ji ∧ ϕi (x(i)) ≤ rx), where ji is the i-th element of the set
v. Let Y be the set of all sequences y = 〈y(0), y(1), . . .〉 such that (∀i ∈ ω)(y(i) ⊂ a ji ∧ ϕi (y(i)) ≤ r + ε). Let
�n be the relation on X × Y defined by: x �n y if for every i > n, x(i) ⊂ y(i). Let �= ⋃

n �n .
These relations fall into the framework of [1, Definition 6.1.6]: (0) Both X and Y are naturally homeomorphic to

closed subsets of ωω (treating the first coordinate of X as a discrete set), (1) for every y ∈ Y the set {x ∈ X : x �n y}
is obviously closed in X , (2) the domain of the relation � is all of X , hence it is closed in X , (3) For every
countable set A ⊆ X there is a y ∈ Y such that for every x ∈ A x � y (This follows directly from very slow
fragmentation: if A = 〈xn : n ∈ ω〉 and 〈in : n ∈ ω〉 is an increasing sequence of numbers such that for every
j > in and sets B, C ⊂ a j , if ϕ j (B), ϕ j (C) < r + ε − ε/(n + 1), then ϕ j (B ∪ C) < r + ε − ε/(n + 2), then
the sequence y = 〈⋃n:in<i xn(i) : i ∈ ω〉 ∈ Y �-dominates all the points in {xn : n ∈ ω} ), and (4) all of the closed
sets mentioned have absolute definition.

We shall show that if the forcing P strongly preservesIv , then it preserves � in the sense of [1, Definition 6.1.10].
The preservation theorem [1, Theorem 6.1.13] then completes the proof.

Suppose that M is a countable elementary submodel of a large structure, 〈ẋl : l ∈ k〉 are finitely many names
for elements of the space X in the model M , suppose 〈pn : n ∈ ω〉 is a decreasing collection of conditions in the
model M such that pn decides ẋl�n, yielding sequences 〈x̄l : l ∈ k〉 in X ∩ M , and suppose that y ∈ Y is a point
such that ∀x ∈ X ∩ M , x � y. We must find a condition q ≤ p0 such that

1. q is M-master for P;
2. q � ∀x ∈ X ∩ M [G] x � y; and
3. for all l ∈ k for all n ∈ ω q � x̄l �n y → ẋl �n y.

To find the condition q, first work in the model M . Fix a rational r ′ < r greater than all the numbers rx̄l .
By assumption, for each n there is a condition p′

n and a set bln ∈ Iv such that (∀i ≥ n)(ϕi (bln ∩ a ji ) < r ′),
p′

n � ẋl(i) ⊂ (bln ∩ a ji ) and for i ∈ n, aln ∩ a ji = x̄l(i).
Use Claim 3.11 to find an infinite set d ⊂ ω such that for each l less than or equal to k, ∀iϕi (

⋃
n∈d bln ∩ a ji ) < r .

Set b = ⋃
n∈d,l∈k bln , then by the very slow fragmentation, there is i0 ∈ ω such that (∀i > i0) ϕi (b ∩ a ji ) < r.

Since y �-dominates all elements of X ∩ M , there must be j > i0 such that for every i > j , b ∩ a ji ⊂ y(i). Let
n > j be a number in the set d, and use the properness of the forcing P to find a master condition q ≤ p′

n . The
last item holds by the choice of the condition p′

n: for l ≤ k,

p′
n � ẋl(i) ⊂ (bln ∩ a ji ) ⊂ (b ∩ a ji ) ⊂ y(i)

for all i > n. The first item holds by the choice of the condition q. The second item is an immediate consequence
of the first, and the fact that the forcing P strongly preserves the ideal Iv: If ẋ is a name in M for an element of
X ∩ M [G], such that ϕ(ẋ) < r , by assumption, there is a ∈ M such that ϕ(a) < r and ẋ ⊂ a. But y bounds M ,
therefore ẋ � y. �
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[3] M. Hrušák, Combinatorics of filters and ideals, In: Set theory and its applications, edited by L. Babinkostova, A. E. Caicedo,

S. Geschke, and M. Scheepers, Contemporary Mathematics Vol. 533 (American Mathematical Society, Providence RI,
2011), pp. 26–69.

[4] A. Louveau and B. Velickovic, Analytic ideals and cofinal types, Ann. Pure Appl. Log. 99, 171–195 (1999).
[5] K. Mazur, A modification of Louveau and Velickovic’s construction for Fσ -ideals, Proc. Am. Math. Soc. 128(5), 1475–

1479 (2000).
[6] A. Roslanowski and S. Shelah, Norms on Possibilities I: Forcing with Trees and Creatures, Memoirs of the American

Mathematical Society Vol. 141(671) (American Mathematical Society, Providence RI, 1999).
[7] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics Vol. 174 (Cambridge University Press, Cambridge,

2008).

www.mlq-journal.org C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




