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What are “generic automorphisms”?

Definition

For a Polish group G , an element g ∈ G is called generic if it lies

in a (necessarily unique) comeagre conjugacy class.

If K is a countable (first-order) structure, its automorphism group

Aut (K) is a Polish group with the pointwise convergence

topology.

Thus, a generic automorphism of K is a generic element of

Aut (K).
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What structures do we care about here?

Definition

Fix a relational language L, and let K be a countable structure.

• A partial automorphism of K is an isomorphism between sub-

structures of K. Let Aut<ω (K) denote the set of finite partial

automorphisms of K. For each p ∈ Aut<ω (K), let [p] denote

the set of f ∈ Aut (K) extending p.

• K is ultrahomogeneous if every finite partial automorphism

of K extends to a (full) automorphism of K. Equivalently, if

[p] is non-empty for all p ∈ Aut<ω (K).

• If K is a class of L-structures, K is universal for K if every

structure in K embeds into K.
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What structures do we care about here?

We are interested in Fräıssé structures: ultrahomogeneous

countable structures which are universal for a coherent class of

finite structures called a Fräıssé class.

Examples

Fräıssé class Fräıssé structure

{finite sets} ω

{finite linear orders} (Q, <)
{finite (undirected) graphs} The random graph

{finite partial orders} The random poset =: P
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Examples
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Their automorphism groups:

Remark

All the examples on the previous slide admit generic

automorphisms. (That is, their automorphism groups have

comeagre conjugacy classes.)

What might generic automorphisms look like? For example:

Theorem (Truss, 1991)

Let f ∈ S∞. Then f is generic if and only if:

• f has no infinite orbits;

• For every n, f has infinitely many orbits of length n.

Remark

Generic automorphisms of (Q, <) and the random graph admit

similar kinds of descriptions.
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What about the random poset?

Theorem (Kuske–Truss, 2000)

The random poset P admits generic automorphisms.

Goal

Find an explicit description of generic automorphisms of P.
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Tools for describing automorphisms’ actions

Definition

Let (P, <) be any poset, and let f ∈ Aut (P).

• The spiral length of x , denoted sp (x , f ), is the least n ≥ 1 for

which x and f n (x) are comparable, or ∞ if no such n exists.

• The parity of x is given by:

par (x , f ) :=


+1 if sp (x , f ) = n <∞ and x < f n (x);

−1 if sp (x , f ) = n <∞ and x > f n (x);

0 otherwise.
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Tools for describing automorphisms’ actions

x
f (x)

f 2 (x)

f 3 (x)
f 4 (x)

f 5 (x)

...

...

...

f −1 (x)
f −2 (x)

f −3 (x)

.........

Example: suppose sp (x , f ) = 3

and par (x , f ) = +1.

Since f is an automorphism,

f k (x) < f k+3 (x) for all k ∈ Z.

This breaks the orbit f Z (x) into

“rails”, but there may be other

relations too.
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More tools for describing automorphisms’ actions

Definition

Let (P, <) be any poset, and let f ∈ Aut (P).

• Define x ∼f y
def⇐⇒ ∃i , j ∈ Z

(
f i (x) ≤ y ≤ f j (x)

)
.

• ∼f is an equivalence relation.

Let the quotient map be denoted

by Of : P → P/ ∼f .

• The equivalence classes Of (x) are called orbitals.

• The quotient Of [P] is called the orbital quotient.
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Orbitals are the “convex

hulls” of orbits.
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More tools for describing automorphisms’ actions

Facts

• f Z (x) ⊆ Of (x), and equality holds whenever par (x , f ) = 0.

• Parity is orbital-invariant; that is, x ∼f y implies par (x , f ) =
par (y , f ).

• Spiral length need not be orbital-invariant (unless par (x , f ) =
0).
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Example in Q:

Let f (x) :=


2x + 3 x ≤ −2,
x
2 −2 ≤ x ≤ 2,

2x − 3 2 ≤ x .

0 3−3

Then there are seven orbitals: three of parity 0, two each of

parity −1 and +1.



Example in Q:

Let f (x) :=


2x + 3 x ≤ −2,
x
2 −2 ≤ x ≤ 2,

2x − 3 2 ≤ x .

0 3−3

Then there are seven orbitals: three of parity 0, two each of

parity −1 and +1.



Orbitals inherit order structure from P!

Definition

Define two orders on Of [P] — one strong and one weak:

Of (x) <sf Of (y)
def⇐⇒ x ′ < y ′ for all x ′ ∼f x and y ′ ∼f y ,

Of (x) ≤wf Of (y)
def⇐⇒ x ′ ≤ y ′ for some x ′ ∼f x and y ′ ∼f y .

Remark

If P is linearly ordered, these orders agree and are linear orders

themselves.
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Using orbitals to characterize generics

Theorem (Truss, 1991)

Let f ∈ Aut (Q). Then f is generic if and only if Of [Q] ∼= Q, and

for each σ ∈ {+1,−1, 0}, the set of orbitals of parity σ is dense

in Of [Q].

Question

Is an analogous statement true for P?

Answer

Partially.
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Using orbitals to characterize generics of Aut (P)?

Theorem (I., 2020)

If f ∈ Aut (P) is generic, then
(
Of [P] , <sf

) ∼= P. Moreover, the

following sets are dense in
(
Of [P] , <sf

)
:

{Of (x) : par (x , f ) = +1} ;

{Of (x) : par (x , f ) = −1} ;

{Of (x) : par (x , f ) = 0, sp (x , f ) = n} for each 1 ≤ n ≤ ∞.

Remark

This is a partial answer to our goal because we do not know if

the converse holds: whether this property implies genericity.
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A different tactic

Note

Equip P with a relation symbol for the graph of a unary function,

and consider the resulting structures (P, f ) and (P, g) for

f , g ∈ Aut (P).

Then f and g are conjugate iff (P, f ) ∼= (P, g).

Question

Can we study this structure to describe the conjugacy relation on

Aut (P)?

Answer

Yes and no. Finite substructures in this language don’t

“remember” enough.



A different tactic

Note

Equip P with a relation symbol for the graph of a unary function,

and consider the resulting structures (P, f ) and (P, g) for

f , g ∈ Aut (P). Then f and g are conjugate iff (P, f ) ∼= (P, g).

Question

Can we study this structure to describe the conjugacy relation on

Aut (P)?

Answer

Yes and no. Finite substructures in this language don’t

“remember” enough.



A different tactic

Note

Equip P with a relation symbol for the graph of a unary function,

and consider the resulting structures (P, f ) and (P, g) for

f , g ∈ Aut (P). Then f and g are conjugate iff (P, f ) ∼= (P, g).

Question

Can we study this structure to describe the conjugacy relation on

Aut (P)?

Answer

Yes and no. Finite substructures in this language don’t

“remember” enough.



A different tactic

Note

Equip P with a relation symbol for the graph of a unary function,

and consider the resulting structures (P, f ) and (P, g) for

f , g ∈ Aut (P). Then f and g are conjugate iff (P, f ) ∼= (P, g).

Question

Can we study this structure to describe the conjugacy relation on

Aut (P)?

Answer

Yes and no.

Finite substructures in this language don’t

“remember” enough.



A different tactic

Note

Equip P with a relation symbol for the graph of a unary function,

and consider the resulting structures (P, f ) and (P, g) for

f , g ∈ Aut (P). Then f and g are conjugate iff (P, f ) ∼= (P, g).

Question

Can we study this structure to describe the conjugacy relation on

Aut (P)?

Answer

Yes and no. Finite substructures in this language don’t

“remember” enough.



A first-order language

Definition

• Let L be the language consisting of binary relations bi , for

i ∈ Z.

• For each poset P and each f ∈ Aut (P),

let Pf be the L-

structure obtained by letting:

bfi (x , y)
def⇐⇒ x ≤ f i (y) .

• We identify bfi (x , y) with its truth value in {0, 1}, and we

consider the bi-infinite sequence bf (x , y) ∈ 2Z.

Remark

Pf ∼= Pg iff f and g are conjugate in Aut (P).

But also, since L is

infinite, finite substructures can encode a lot more information.
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How to control bf sequences

Remark

Controlling behavior of bf sequences with finitary configurations

is the name of the game here.

Example

Suppose the following is a substructure of P:

y ′

y x

z

z ′

Let p := {(y , y ′) , (z , z ′)} ∈ Aut<ω (P). Then sp (x , f ) =∞ for

every f ∈ [p], i.e. bfi (x , x) = 0 for all i 6= 0. It turns out for

generic f ∈ Aut (P), the converse holds: this condition on the

bfi ’s must be witnessed by an “M” configuration.
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What generic automorphisms of the random poset look

like

Theorem (I., 2020)

Let f ∈ Aut (P). Then f is generic iff the following hold:

(A) f has dense conjugacy class;

(B) Pf is ultrahomogeneous (as an L-structure);

(C) bf (x , x) is eventually constant on both sides whenever

par (x , f ) 6= 0;

(D) A technical condition — illustrated on the next slide — that

forces bf (x , y) to be eventually periodic on both sides for all

x , y ∈ P.
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(...what’s with condition (D)?)

Let x , y ∈ P

such that

sp (x , f ) =∞
and y /∈ f Z (x).

(D) asserts

there is some

chunk of f Z (x)

...

where this

configuration

exists.
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Anything else?

Remark

We hoped model theory might be able to help, but there are some

notable complications.

Facts

Suppose f ∈ Aut (P) is generic.

• The L-theory of Pf is not ω-categorical.

• Pf is not ω-saturated.

• The relation sp (x , f ) = ∞ is definable in Pf , but not

quantifier-freely.

Thus, the L-theory of Pf does not have QE.
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Tack s̊a mycket!


