Speaker: Timothy McNicholl

Title: isometry degrees of computable copies of ℓ^p (joint work with D. Stull)

Abstract: Suppose p is a computable real so that $p \geq 1$, and suppose B is a computable Banach space that is linearly isometric to ℓ^p. The isometry degree of B is the least powerful Turing degree that computes a linear isometry of ℓ^p onto B. When $p = 2$, it follows from a recent result of A. Melnikov that this degree is 0. Suppose $p \neq 2$. In this case it follows from recent work by McNicholl that every isometry degree is Δ^0_2 and every c.e. degree is an isometry degree. We discuss recent work on classifying the isometry degrees.