Assignment 2.

- 1. Suppose that $\langle P, \leq_P \rangle$ and $\langle Q, \leq Q \rangle$ are two well-ordered sets. Define an ordering on $P \times Q$ by letting $\langle p_0, q_0 \rangle \leq \langle p_1, q_1 \rangle$ if either $p_0 <_P p_1$ or $p_0 = p_1$ and $q_0 \leq_Q q_1$. Prove that \leq is a well-ordering.
- 2. Prove that for every ordinal $\alpha, \alpha \in V_{\alpha+1}$.
- 3. Prove that for every ordinal α , $\alpha \notin V_{\alpha}$.
- 4. Suppose that x, y are sets such that |x| < |y|. Prove that every partial injection from x to y can be extended to a total injection of x to y, i.e. one whose domain is the whole set x. What happens if we allow |x| = |y|?
- 5. Let $\langle P, \leq \rangle$ be a partially ordered set. Prove that there is a set $A \subset P$ such that no two distinct elements of A are \leq -comparable and every element of P is \leq -comparable with some element of A.