
1 Syntax of modal logic

The symbols of modal logic consistute of an infinite countable set P of proposi-
tional variables, logical connectives, parenthesization, and the modal operator
�. The choice of logical connectives depends on the development of proposi-
tional logic one wants to follow; below I choose negation and implication.

The set of modal formulas is defined recursively as follows. Every proposi-
tional variable is a formula. If φ and ψ are formulas then so are ¬φ, φ→ ψ, and
�φ. All formulas are obtained by a repeated application of these constructions.

Example 1.1. �(�φ→ ψ)→ ¬�φ is a beautiful modal formula when φ, ψ are
propositional variables.

The formal proof system of modal logic includes the proof system for propo-
sitional logic as a subset. Here I choose to use the Hilbert system, with the
following axioms:

• φ→ (ψ → φ);

• (implication distribution) (φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ));

• (¬φ→ ¬ψ)→ (ψ → φ),

and the modus ponens inference rule: from φ and φ → ψ infer ψ. The modal
proof system also must include rules and axioms for the modal operator. There
is only one extra inference rule, the generalization or necessitation or � in-
troduction: from φ infer �φ. There are several possibilities for extra axioms,
resulting in different modal logics.

• the logic K is obtained by adding the � distribution axiom: �(φ→ ψ)→
(�φ→ �ψ);

• the logic K4 is obtained by adding the distribution axiom and the K4
axiom �φ→ ��φ;

• the provability logic or GL logic is obtained by adding the distribution
and K4 axiom and the Löb axiom: �(�φ→ φ)→ �φ.

There are numerous other options. K stands for Kripke, GL stands for Gödel
and Löb.

Definition 1.2. Suppose that Γ is a set of model formulas and φ is a modal
formula.

1. Γ `P φ means that φ is provable from Γ in propositional logic;

2. Γ `K φ indicates provability of φ in K logic from Γ;

3. similarly for Γ `K4 φ etc.
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We will need a couple of facts about formal proofs in K. For a theory ∆ let
�∆ be the set {�θ : θ ∈ ∆}.

Proposition 1.3. Let ∆ be a theory and φ a formula. If ∆ K φ then �∆ K

�φ.

Proof. By induction on the length of the proof of φ from ∆. Suppose that all
proofs of length ≤ n have been handled, and consider a proof of length n + 1.
There are several possibilities for the formula on the last line of the proof (which
is φ):
Case 1. φ is an axiom of K. Then �φ is provable in K from no assumptions by
an application of the � introduction rule to φ, and so it is also provable from
�∆.
Case 2. φ is an element of ∆. In such a case, �φ is provable from �∆ since it
is just an element of �∆.
Case 3. φ is obtained from some previous lines of the proof using modus
ponens. So there is a formula ψ such that both ψ and ψ → φ appear earlier in
the proof. By the induction hypothesis, �ψ and �(ψ → φ) are both provable
from �∆. To obtain the proof of �φ, quote an instance of � distribution:
�(ψ → φ) → (�ψ → �φ) and apply modus ponens twice to get a proof of �φ
from �∆.
Case 4. φ is obtained from some previous line of the proof using the � intro-
duction rule. So there is a formula ψ appearing earlier in the proof such that
φ = �ψ. By the induction hypothesis, �ψ is provable from �∆. �φ (which is
just ��ψ) is obtained from �ψ by one application of the � introduction rule.
So again, we produced a formal proof of �φ from �∆ in K.

For the following proposition, let Γ0 be the set of all formulas provable in
the K logic. The proof is the same as that of Proposition 1.3 except the last
case disappears.

Proposition 1.4. Let ∆ be a theory and φ a formula. If ∆ `P φ then Γ0 ∪
�∆ `P �φ.

One great distinction between modal logic and propositional logic is that
the deduction theorem does not hold for modal logic. That is, φ `K ψ is not
generally equivalent to `K φ → ψ. This is best observed on the case where
ψ = �φ. Certainly φ `K �φ (the proof uses just one application of the �
introduction rule), but `K φ→ �φ fails.

2 Semantics of modal logic

The models for modal logic were isolated by Kripke.

Definition 2.1. A Kripke frame is a pair 〈W,R〉 where W is a set (its elements
are called worlds) and R is a binary relation on W called accessibility relation.
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Definition 2.2. Let 〈W,R〉 be a frame. Let V be a function from the product
of W and the set of all modal formulas. V is a valuation if for all formulas φ, ψ
and all worlds w ∈W ,

1. V (w,¬φ) = 1− V (w, φ);

2. V (w, φ→ ψ) is the binary sum of (1− V (w, φ)) + V (w,ψ);

3. V (�φ) = Π{V (v, φ) : w R v}.

Definition 2.3. A model is a triple 〈W,R, V 〉 where 〈W,R〉 is a frame and V
is a valuation.

Thus, the truth value of a propositional variable in a model depends on the
world in which it is evaluated.

Definition 2.4. The notation 〈W,R, V 〉 |= φ means that for every world
w ∈ W , V (w, φ) = 1. The notation 〈W,R〉 |= φ means that for every model
〈W,R, V 〉, it is the case that 〈W,R, V 〉 |= φ; it is verbalized as φ holds on the
frame 〈W,R〉.

Note that for a modal formula φ and a model 〈W,R, V 〉, neither of 〈W,R, V 〉 |=
φ and 〈W,R, V 〉 |= ¬φ needs to hold since φ may hold in one world and not in
another; this is one of the differences between propositional and modal logic.

Theorem 2.5. (Soundness and completeness for K) Let φ be a modal formula.
The following are equivalent:

1. φ is provable in K;

2. φ holds on every frame.

Proof. The implication (1)→(2) is the soundness. It is proved by induction on
the length of the proof of φ. We have to verify that the inference rules of K are
sound, and the axioms of K hold on every frame.

The more difficult implication (2)→(1) is the completeness. To prove it,
we introduce the canonical model for K. To construct it, let Γ0 be the set of
all formulas provable in K. Let W be the set of all maximal propositionally
consistent theories containing Γ0 as a subset. Let R be the relation on W
defined by Γ R ∆ if for every formula θ, if �θ ∈ Γ then θ ∈ ∆. Let V be
the function defined by V (Γ, φ) = 1 if φ ∈ Γ. The triple 〈W,R, V 〉 is called
the universal model for K. We have to verify that V in fact is a valuation,
meaning that it satisfies all three clauses of Definition 2.2. The first two clauses
are immediate. The verification of the � clause is more interesting, and it is
split into two cases.
Case 1. Suppose first that �φ ∈ Γ. By the definition of the relation R, for all
theories ∆ ∈ W with Γ R ∆ it is the case that φ ∈ ∆. This means that the �
recursive demand of Definition 2.2 is satisfied in this case.
Case 2. Suppose now that �φ /∈ Γ. In this case, we have to construct a theory
∆ ∈W such that Γ R ∆ and φ /∈ ∆. Let ∆0 = {θ : �θ ∈ Γ}.
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Claim 2.6. Γ0 ⊂ ∆0.

Proof. If θ is provable in K then so is �θ: just add one more line to the proof
of θ in K using the � introduction rule. Since Γ0 ⊂ Γ, it follows that �θ ∈ Γ
and so θ ∈ ∆0 by the definition of θ0.

Claim 2.7. ∆0 does not propositionally prove φ.

Proof. If ∆0 `P φ, then Γ0∪�∆ `P �φ by Proposition 1.4. Now, Γ0∪�∆ ⊂ Γ
and so Γ P �φ. By the maximality of the theory Γ, this means that �φ ∈ Γ,
contradicting the case assumption.

The last claim shows that ∆0 ∪ {¬φ} is propositionally consistent. Let ∆ be a
maximal propositionally consistent theory containing ∆0. Then Γ R ∆, since
for every formula �θ ∈ Γ, θ is an element of ∆0 and therefore of ∆. Moreover,
φ /∈ ∆ since ¬φ ∈ ∆ and ∆ is propositionally consistent. This completes the
verification of the � clause of Definition 2.2. Thus, the triple 〈W,R, V 〉 is a
model.

The completeness immediately follows. If φ is a formula not derivable in K,
then Γ0 ∪ {¬φ} is a propositionally consistent theory. Extend this theory to a
maximal consistent theory Γ. Then V (Γ, φ) = 0, showing that φ does not hold
in the canonical model.
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