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HF(R): what is it?
HF(R): hereditarily �nite superstructure over R (similar for

HF(M), for M)

Basic set: all the elements of R and all the sets which can be

explicitly written down using {, }, ∅, r (r ∈ R).

Examples: ∅, {∅,
√

2}, {7, {{∅, 92}, 3, {∅}}}, etc.

Signature of HF(R): 〈+,×, <,U,∈〉
U: a unary predicate, distinguishes R in HF(R) (urelements)

∈ is a membership relation; elements of R contain no

members (they are urelements!)

+ and × are considered as predicates, i.e., graphs of the

corresponding operations
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Σ�formulas: a speci�c class of formulas that de�ne analogs of c.e.

sets in HF(M).

De�nability by means of Σ�formulas over HF(R) can be viewed as

�computable enumerability� in a high level programming language

in which we have exact realizations of the �eld R of real numbers

together with operations on it, and, in addition, we can compute

(and use in further computations) all the roots of polynomial

equations from their coe�cients.

�Computable� functions over HF(M): functions whose graphs can

be de�ned by Σ�formulas with parameters.
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`Church thesis for HF(R)'

If we assume the following to be computable

compute sums and products of reals

answer questions of kind x < y?, x = y? for any two reals x
and y

�nd sets of roots of polynomials and use them in further

computations.

Then a function on HF(R) is intuitively computable if and only if it

is Σ�de�nable.
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Σ�presentability of structures

Computable structures: the basic set and all the operations and

predicates are uniformly computable.

Replace c.e. with Σ�de�nability −→ Σ�presentable structures.

A presentation of an algebraic structure M of a �nite predicate

signature is any assignment of codes from some A ⊆ HF(R) to its

elements, i.e., a mapping ν : A ⊆ HF(R)
onto−→ |M|.

If ν is 1�1 then ν is said to be simple.

If D(M, ν) is Σ�de�nable with parameters in HF(R) then ν is

a Σ�presentation of M over HF(R).

If D+(M, ν) (the positive diagram) is Σ�de�nable with

parameters in HF(R) then ν is said to be a positive

Σ�presentation of M over HF(R).
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Theorem (Yu.L. Ershov, 1985, 1995)

R and C have no Σ�presentations in a hereditarily �nite

superstructure over an in�nite set (i.e., in�nite structure of

empty signature).

C has a Σ�presentation over any dense linearly ordered set of

cardinality 2ω.

R has no Σ�presentations over such superstructures.
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(M.) Some structures without simple Σ�presentations over HF(R):

the Boolean algebra of all subsets of ω and its quotient

modulo the ideal of �nite sets

the group of all permutations on ω and its quotient modulo

the subgroup of all �nitary permutations

the semigroup of all mappings from ω to ω

the lattices of all open and all closed subsets of the reals

the group of all permutations of R Σ�de�nable over HF(R)

the semigroup of all such mappings from R to R
the semigroup of all continuous functions from R to R
some structures of nonstandard analysis (including ultrapowers

of R modulo Fr�echet ultra�lter with distinguished in�nitesimal

and standard elements)
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The basic result

Theorem

Suppose that 4 and L are subsets of HF(R) de�nable by means of

Σ�formulas with parameters and 4 is a preordering on L. Then
there is no isomorphic embedding from ω1 into 〈L;4〉.

Remark Harrington and Shelah proved this property for linear

Borel preorders.

The above result fails to be true for Borel preorders. A

counterexample: 〈P(ω);⊆∗〉.
It follows that this theorem does not follow from Shelah and

Harrington's result.
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Presentability of ordinals
Presentability of ordinals without parameters
Presentability of G�odel constructive sets
Presentability of G�odel constructive sets without parameters
Nonpresentability of some degree structures
Presentability over C

Presentability of ordinals

Corollary

For any ordinal α the following conditions are equivalent:

1 α has a simple Σ�presentation over HF(R)

2 α has a Σ�presentation over HF(R)

3 α has a positive Σ�presentation over HF(R)

4 α < ω1.
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Presentability of ordinals without parameters

Corollary

For any ordinal α the following conditions are equivalent:

1 α has a simple Σ�presentation without parameters over HF(R)
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3 α < ωCK
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Presentability of G�odel constructive sets

L0 = ∅, Lα+1 = Def (Lα), Lγ =
⋃
α<γ Lα, for limit γ

Corollary

For any ordinal α the following conditions are equivalent:

1 〈Lα;∈〉 has a simple Σ�presentation over HF(R)

2 〈Lα;∈〉 has a Σ�presentation over HF(R)

3 〈Lα;∈〉 has a positive Σ�presentation over HF(R)

4 α < ω1.
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Corollary
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Presentability of G�odel constructive sets without parameters

Theorem

For any ordinal α the following conditions are equivalent:

1 The structure 〈Lα;∈〉 has a simple Σ�presentation over

HF(R) without parameters

2 α 6 ω.

(Here we don't need the basic theorem)
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Corollary

Assume that 〈L;6〉 is an arbitrary partially ordered set in which for

any at most countable chain C ⊆ L there exists an x ∈ L \ C with

the property C 6 x .
Then 〈L;6〉 has no positive Σ�presentations over HF(R) with

parameters (it follows that it has no neither Σ�presentations nor

simple Σ�presentations with parameters).
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Nonpresentability of some degree structures

Theorem

The partially ordered sets of Turing, m�, 1�, and tt�degrees have

no positive Σ�presentations over HF(R) with parameters.

(It follows that they have no neither Σ�presentations nor simple

Σ�presentations with parameters).
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Presentability over C

Corollary

Let α be an ordinal. Then the following conditions are equivalent:

1 α has a simple Σ�presentation over HF(C)

2 α has a Σ�presentation over HF(C)

3 α has a positive Σ�presentation over HF(C)

4 α < ωCK
1
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Contents of the talk

Introduction and some early studies

Non�embeddability of ω1 into Σ�de�nable preorderings over

HF(R) (basic result)

Descriptions of Σ�presentable ordinals (with parameters and

without them) over HF(R)

Description of Σ�presentable G�odel constructive sets (with

parameters and without them) over HF(R)

Non�Σ�presentability of some degree structures (T�, m�, 1�,

tt�) over HF(R)

Description of Σ�presentable ordinals over HF(C)
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Thank you!
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