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Bounded Namba forcing axiom may fail
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I show that in a σ-closed forcing extension, the bounded forcing axiom for Namba forcing fails.
This answers a question of Justin Tatch Moore.
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1 Introduction

Ronald Jensen proved [1] that Namba forcing and certain variations of it can be iterated without
adding reals. It follows that the forcing axiom for the Namba forcing is consistent with the Continuum
Hypothesis. During Jensen’s talk at Oberwolfach set theory meeting in February 2017 on this result,
Justin Tatch Moore asked whether it is possible that the Continuum Hypothesis (possibly under a
large cardinal assumption) outright implies the forcing axiom or the bounded forcing axiom for Namba
forcing. The question proved to be a surprisingly tough nut to crack. The purpose of this note is to
provide a complete negative answer to the question:

Theorem 1.1 Assume the Continuum Hypothesis. Then in a σ-closed ℵ2-preserving extension the
bounded forcing axiom for Namba Forcing fails.

The arguments are identical for all common versions of Namba forcing. For definiteness, I will use the
“Laver-style” version. The Namba forcing N is the set of all trees T ⊂ ω<ω2 which contain an element t
(the trunk) such that every node on T is compatible with t and every element of T extending t has ℵ2
many immediate successors in T . The ordering is that of inclusion. Thus, the Namba forcing adds an
ω-sequence of ordinals cofinal in ωV2 ; below, the Namba name for it will be denoted by ẋ.

Recall that if P is a poset then the bounded forcing axiom for P [2, 3] is the statement that the
structure 〈Hℵ2 ,∈, ω1〉 of the ground model is forced to be a Σ1-elementary submodel of 〈Hℵ2 ,∈, ω1〉
of the P -extension. There are many equivalent restatements of this condition; under the Continuum
Hypothesis, it is equivalent to the statement that P does not add any branches to trees of height and
width ω1 which have no branches in the ground model.

The notation used in this note follows the set theory standard of [4]. The author was partially
supported by NSF grant DMS 1161078.

2 The proof

I will start with a piece of terminology. Let U ⊂ 2<ω1 be a tree. A set a of branches of U is consonant at
β ∈ ω1 if for every b ∈ a, b(β) = 0; otherwise, the set is dissonant at β. The set a is eventually dissonant
if there is a countable ordinal α such that a is dissonant at all larger countable ordinals. The idea of
the proof is to force with a σ-closed forcing P a tree U ⊂ 2<ω1 such that every infinite set a ⊂ 2ω1 of its
uncountable branches is eventually dissonant. At the same time, in the P -extension the Namba forcing
will add a countably infinite set of ground model branches through U which is not eventually dissonant.

Towards the definition of the poset P , a condition will be a tuple p = 〈αp, ep, fp, ap, bp〉 such that

• αp is a countable ordinal, ep ⊂ ω2 is a countable set;
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• fp : αp × ep → 2 is a function;

• ap is a countable subset of 2≤αp such that for no ordinal δ ∈ ep and no t ∈ ap it is the case that for
all β ∈ dom(t), t(β) = f(β, δ);

• bp is a countable collection of infinite subsets of ep.

The ordering is defined by q ≤ p just in case αp ≤ αq, ep ⊆ eq, fp ⊆ fq, ap ⊆ aq, bp ⊆ bq, and for every
ordinal β ∈ αq \ αp and every set a ∈ bp there is δ ∈ a such that f(β, δ) = 1.

The idea behind the definition of the poset P is the following. If G ⊂ P is a generic filter, let
f : ω1 × ω2 → 2 be the union

⋃
p∈G fp. Also, let U ⊂ 2<ω1 be the collection of all countable binary

sequences t such that for some δ ∈ ω2, ∀β ∈ dom(t) t(β) = f(β, δ). Thus, U is a tree and the functions
bδ = f(·, δ) are its branches. The ap coordinate is inserted to make sure that the tree U has no other
branches. The bp coordinate is inserted to make sure that any infinite set of branches of U is eventually
dissonant. The genericity of the whole construction will imply that in V [G], the Namba forcing N forces
the set {bẋ(n) : n ∈ ω} to be consonant at uncountably many ordinals, where ẋ is the N -name for its
generic sequence of ordinals. I now proceed to verify the features of the poset P one by one.

Claim 2.1 The poset P is σ-closed and ℵ2-c.c.

P r o o f. For the σ-closedness, for every countable descending sequence of conditions its coordinate-
wise union is its lower bound. For ℵ2-c.c., note that if conditions p, q ∈ P satisfy αp = αq, ap = aq,
and fp � (αp × ep ∩ eq) = fq � (αp × ep ∩ eq) then p, q are compatible–their coordinatewise union will be
their lower bound. The proof of ℵ2-c.c. is completed by a standard ∆-system argument using the CH
assumption.

Claim 2.2 P forces the domain of
⋃
p∈G fp to be equal to ω1 × ω2 and the set

⋃
p∈G bp to be equal

to [ω2]ℵ0 .

P r o o f. An elementary density argument.

Claim 2.3 The poset P forces that every branch through the tree U is on the list {bδ : δ ∈ ω2}.

P r o o f. Suppose towards a contradiction that this fails and let p ∈ P force ċ to be an unlisted a
branch through U̇ . Let M be a countable elementary submodel of a large structure and g ⊂ P ∩M be
a filter generic over M , containing the condition p. It is immediate that the coordinatewise union q of
all conditions in the filter is again a condition in the poset P , stronger than all conditions in the filter
p, in particular q ≤ p. Let t = ċ/g. The genericity of the filter g plus the assumption on the name ċ
imply that αq = M ∩ω1, t ∈ 2αq and for no δ ∈M ∩ω2 it is the case that for all β ∈ αq, t(β) = fq(β, δ).
Thus, the condition r obtained from q by simply adding t into ar, is indeed an element of the poset P ,
and r ≤ q ≤ p. At the same time, r  ť ⊂ ċ and ť /∈ U̇ , contradicting the assumption that ċ was forced
to be a branch through U̇ .

Claim 2.4 P forces that every infinite collection of branches of U is eventually dissonant.

P r o o f. It is of course only necessary to treat countably infinite collections of branches of U . By the
previous claim, such collections are equal to {bδ : δ ∈ c} for some countable set c ⊂ ω2, and by the σ-
closure of the poset P , the set c must be in the ground model. Let p ∈ P be a condition. Strengthening
it if necessary, I may assume that c ⊂ ep holds. Now, let q ≤ p be a condition obtained from p by simply
adding c to bp. It is immediate that q ≤ p is a condition and q  c is dissonant at every ordinal larger
than αp.

Move to the P -generic extension V [G]. Consider the Namba forcing N , its name ẋ for a generic ω-

sequence of ordinals cofinal in ωV2 , and its name ḋ for the infinite collection {bẋ(n) : n ∈ ω} of branches
of U . The following claim will conclude the proof of the theorem.

Claim 2.5 In V [G], the Namba forcing forces ḋ not to be eventually dissonant.
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P r o o f. Suppose towards a contradiction that this fails and T ∈ N is a tree and α ∈ ω1 is an ordinal
such that T  ḋ is dissonant everywhere past α̌. For simplicity assume that T has empty trunk. For
every ordinal β > α consider a game Hβ in which Players I and II alternate, creating an increasing
sequence γ0 < δ0 < γ1 < δ1 < . . . of ordinals in ω2 and Player II wins if his ordinals 〈δn : n ∈ ω〉 form
a branch through the tree T and for all n ∈ ω it is the case that f(β, δn) = 0. The game Hβ is closed
for Player II and therefore determined. If for some ordinal β > α Player II has a winning strategy,
then a standard argument yields a Namba tree S ⊂ T such that for every ordinal δ appearing on it,
f(β, δ) = 0. Such a tree S necessarily forces ȧ to be consonant at β, contradicting the choice of the tree
T . Thus, it will be enough to derive a contradiction from the assumption that Player I has a winning
strategy in the game Hβ for every ordinal β > α. Note the larger ordinals Player I plays, the better
for him. It follows that all of these ℵ1 many strategies for Player I can be compounded into a single
one that wins in all the games simultaneously. It also follows from ℵ2-c.c. of the poset P that such a
universal strategy exists already in the ground model.

For the rest of the proof, move back to the ground model, let p ∈ P be a condition, Ṫ a P -name for
the tree T from the previous paragraph, and σ a strategy for which p  σ̌ is winning for all the games
Hβ : β > α̌ for Player I. I will find a condition r ≤ p, an ordinal β with α < β < αr and a counterplay
γ0 < δ0 < γ1 < . . . against the strategy σ such that for all n ∈ ω, fr(β, δn) = 0 and r  〈δn : n ∈ ω〉
is a branch through the tree Ṫ . So, r forces that with this counterplay, Player II won in the game Hβ

against the strategy σ, yielding the final contradiction.
To construct the condition r, let M be a countable elementary submodel of a large structure, let

g ⊂ P ∩M be a generic filter over M , and let q be a coordinatewise union of all conditions in g. It
is immediate that q is a condition stronger than all conditions in g, in particular q ≤ p. Look at the
evaluation Ṫ /g in the model M [g]. Clearly, M [g] |= Ṫ /g is a tree in which every node has ℵ2 many
immediate successors. Thus, it is possible to find a a counterplay γ0 < δ0 < γ1 < . . . against the
strategy σ such that the sequence 〈δn : n ∈ ω〉 is a branch through the tree Ṫ /g and cofinal in M ∩ ω2.

It follows that q  〈δn : n ∈ ω〉 is a branch through Ṫ .
Now, consider a condition r ≤ q which is obtained from q by letting αr = αq + 1, er = eq, fp ⊂ fr,

ar = aq and br = bq and such that fr(αq, δn) = 0 for all n ∈ ω. Such a condition r will have the
required properties with the ordinal β = αq. It is necessary to verify that such a condition exists. To
see that, observe that each ordinal δn belongs to the set eq = M ∩ ω2 by the M -genericity of the filter
g. Observe also that bq is just the set of all countably infinite subsets of ω2 which belong to the model
M by the genericity of the filter g. Thus, each set in bq is bounded in M ∩ ω2 and therefore has finite
intersection with the set {δn : n ∈ ω} it immediately follows that the function fq can be extended to fr
on the domain (αq + 1)× eq so that the last demand on fr is satisfied.

To conclude the proof, move to the P -extension. Note that the tree U has size ℵ1 and so U ∈ Hℵ2 .
The statement “any infinite collection of branches of U is eventually dissonant” is Π1 in the parameter
U in the structure 〈Hℵ2 ,∈, ω1〉, it holds in the P -extension by Claim 2.4 while it fails in the further
Namba extension by Claim 2.5. This shows that in the P -extension, the bounded forcing axiom for
Namba forcing fails.
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