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Abstract

I prove several independence results in the choiceless ZF+DC theory
which separate algebraic and non-algebraic consequences of the axiom of
choice.

1 Introduction

Geometric set theory [8] was developed in part to produce consistency results
in choiceless ZF+DC set theory regarding various Σ2

1 sentences. In this paper,
I produce several such consistency results which separate Σ2

1 sentences dealing
with algebraic topics from those which do not. While the distinction may seem
vague, the techniques of the paper show that there is in fact a clearly visible
fracture line. As a first example of such a result, consider the following.

Theorem 1.1. Let X be a Kσ Polish field with a countable subfield F ⊂ X.
It is consistent relative to an inaccessible cardinal that ZF+DC holds, X has
transcendence basis over F , and

1. there is no nonprincipal ultrafilter on ω;

2. if E is an orbit equivalence relation on a Polish space Y induced by a
turbulent Polish group action, then every E-invariant subset of Y is either
meager or co-meager;

3. the Lebesgue null ideal is closed under well-ordered unions.

There are many similar consistency results which are difficult to subsume under
a single heading. One possibility is the following.

Definition 1.2. Let X be a Polish space and Γ ⊂ [X]<ℵ0 be a hypergraph.
Γ is redundant if for every finite set e ⊂ X the set {x ∈ X : e ∪ {x} ∈ Γ} is
countable.

∗2000 AMS subject classification 03E35, 05C15, 05E14.
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Definition 1.3. Let X be a Euclidean space. A hypergraph Γ ⊂ [X]<ℵ0 is
σ-algebraic if there are algebraic sets An for n ∈ ω such that for every finite
set e ⊂ X with an injective enumeration ~e ∈ X |e|, e ∈ Γ if and only if there is
n ∈ ω such that ~e ∈ An.

For example, the hypergraph of equilateral n + 1-simplices in Rn is a redun-
dant algebraic hypergraph of arity n+ 1. Still another example of a redundant
algebraic hypergraph of arity three is the hypergraph of all real solutions to
the polynomial x3 + y3 + z3 − 3xyz = 0; similar polynomials work as well.
The hypergraph of all right-angle triangles in R2 is algebraic but not redun-
dant. Chromatic numbers of redundant algebraic hypergraphs on Euclidean
spaces are always countable in the theory ZFC+CH, while some redundant hy-
pergraphs are countably chromatic in ZFC alone. The reader is referred to the
rich literature on algebraic (hyper)graphs for more detail [11, 7, 10, 2, 6]. In the
choiceless context, I can prove the following.

Theorem 1.4. Let Γ be a redundant σ-algebraic hypergraph on a Euclidean
space. It is consistent relative to an inaccessible cardinal that ZF+DC holds,
the chromatic number of Γ is countable, and

1. there is no nonprincipal ultrafilter on ω;

2. if E is an orbit equivalence relation on a Polish space Y induced by a
turbulent Polish group action, then every E-invariant subset of Y is either
meager or co-meager;

3. the Lebesgue null ideal is closed under well-ordered unions.

There are other σ-algebraic (hyper)graphs which can be colored while items
(1–3) are preserved [12, 14, 13, 15], but a general theorem remains elusive. As a
simple delimitative result, let Γ be the hypergraph on R2 of arity three consist-
ing of those sets a whose projections to both coordinate axes have cardinality
two. This is a sub-hypergraph of the hypergraph of right triangles in the plane.
In the ZFC context, Γ belongs to a rather large class of hypergraphs whose
countable chromatic number is equivalent to the Continuum Hypothesis. How-
ever, in ZF a coloring of Γ yields an object very close to a well-ordering of the
reals:

Theorem 1.5. (ZF) If the chromatic number of Γ is countable then there is
a total countable-to-one map from R to ω1.

Clearly, a countable-to-one map from R to ω1 precludes (3) of Theorem 1.1
and 1.4. More importantly though, no such a map can exist in cofinally balanced
extensions of the Solovay model [8, Section 9.1], and this completely disables
the whole methodology used to prove these theorems.

In Section 2, I introduce analytic Noetherian topologies and several use-
ful examples. Section 3 discusses the notion of a mutually Noetherian pair of
generic extensions of a model of ZFC and its implications. This is an instrumen-
tal weakening of mutual genericity. In Section 4 I produce several interesting

2



mutually Noetherian pairs of generic extensions, notably one induced by a tur-
bulent action of a Polish group. Section 5 defines the notion of a Noetherian
balanced Suslin forcing–this is a forcing in which conditions can be successfully
amalgamated across mutually Noetherian pairs of generic extensions. There are
several attendant preservation theorems for Noetherian balanced Suslin forc-
ings. Section 6 lists some Noetherian balanced Suslin forcings and uses them
with the preservation theorems to finally obtain independence results. In Sec-
tion 7 I prove Theorem 1.5, which is independent of the rest of the paper.

The paper uses the notation standard of [3]. In matters pertaining to geo-
metric set theory it follows the terminology and notation of [8]. The paper uses
the Effros standard Borel space of closed subsets of a Polish space X, often de-
noted by F (X) in the literature. DC denotes the Axiom of Dependent Choices.
The inaccessible cardinal in the assumptions of Theorems 1.1 and 1.4 is used to
start the method of balanced forcing as in [8]; I do not know if it is necessary.

2 Noetherian spaces

The technology of this paper rests on the following rather standard definition.

Definition 2.1. Let X be a Kσ-Polish space and let T be a topology on X
different from the original Polish one. Say that T is an analytic Noetherian
topology if

1. T is Noetherian. That is, there is no infinite strictly decreasing sequence
of T -closed sets;

2. T is analytic. That is, every T -closed set is closed in the Polish topology,
and the collection of T -closed sets is analytic in the Effros Borel space on
X.

Since there are two topologies on the space X, the word“closed” without a modi-
fier denotes a set closed in the Polish topology, while the phrase “T -closed” refers
to a set closed in the Noetherian topology. There seems to be a good reason to
restrict the considerations to Polish Kσ-spaces: the complexity computations
do not seem to work out otherwise. The following fact stands at the root of all
complexity computation of this paper [5, Section 12.C]. Let F (X) denote the
standard Effros Borel space.

Fact 2.2. Let X be a Polish space. Then

1. the membership relation {〈x,C〉 ∈ X × F (X) : x ∈ C} ⊂ X × F (X) is
Borel;

2. the union relation {〈C0, C1, C2〉 ∈ F (X)3 : C0 ∪ C1 = C2} ⊂ F (X)3 is
Borel, and similarly for unions of any finite number of sets;

3. the subset relation {〈C0, C1〉 ∈ F (X)2 : C0 ⊂ C1} ⊂ F (X)2 is Borel.
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In addition, if the space X is Kσ, then

4. the intersection relation {〈C0, C1, C2〉 ∈ F (X)3 : C0 ∩ C1 = C2} ⊂ F (X)3

is Borel, and similarly for intersections of any finite number of sets;

5. the function y 7→ Cy, whenever Y is a Polish space and C ⊂ Y ×X is a
closed set, is Borel.

The last two items fail badly for non-Kσ spaces. It follows that for a Kσ Polish
space X and an analytic set T ⊂ F (X), the statement “T is a Noetherian
topology on X” is Π1

2 and therefore absolute throughout forcing extensions: it
simply says that the collection of T -closed sets is closed under finite unions and
finite intersections and contains no infinite sequences strictly decreasing under
inclusion. Note that the closure under intersection cannot be expressed in Π1
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way unless the underlying space X is Kσ and intersection is a Borel function
from F (X)2 to F (X) as per Fact 2.2(3).
This paper uses only the following basic algebraic example of a Noetherian
topology.

Example 2.3. Let T be the topology on Fn generated by algebraic sets, where
F is a Kσ Polish field. Then T is an analytic Noetherian topology. It is an
analytic collection of closed sets, it is closed under finite unions and intersections,
and the descending chain condition is verified via the Hilbert Basis Theorem.

3 Noetherian pairs of generic extensions

The following definition is the key tool for connecting Noetherian topologies
with geometric set theory.

Definition 3.1. Let T be an analytic Noetherian topology on a Kσ-Polish
space X. Let M be a transitive model of set theory containing a code for T .
Let A ⊂ X be a set. The symbol C(M,A) denotes the smallest T -closed set
coded in M which is a superset of A.

The most common situation for applying this definition is that neither the set
A nor any of its elements belong to the model M . Note that the set C(M,A)
indeed exists by the Noetherian property of the topology T . There is an obvious
monotonicity property of this concept: IfM ⊂ N are two transitive models, then
C(N,A) ⊆ C(M,A) holds. In addition, C(M,A) = C(M, Ā) where Ā is the
closure of the set A in the Polish topology or in the Noetherian topology on the
space X. The notation leaves out the dependence on the Noetherian topology,
which is figured out from the context.

Definition 3.2. Let V [G0] and V [G1] be generic extensions of V inside an
ambient generic extension. Say that V [G1] is Noetherian over V [G0] if for every
Kσ Polish space X and an analytic Noetherian topology T on X coded in the
ground model V and for every set A ⊂ X in V [G1], C(V [G0], A) = C(V,A). Say
that the extensions V [G0], V [G1] are mutually Noetherian if each is Noetherian
over the other.
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Similar notions of perpendicularity always have a friendly relationship with
product forcing, as recorded in the following routine proposition.

Proposition 3.3. Let n ≥ 1 be a number. Let V [G0], V [G1] be generic ex-
tensions and V [G1] is Noetherian over V [G0]. Suppose that P0 ∈ V [G0] and
P1 ∈ V [G1] be posets and H0 ⊂ P0 and H1 ⊂ P1 be filters mutually generic over
V [G0, G1]. Then V [G1][H1] is Noetherian over V [G0][H0].

Proof. Work in the model V [G0, G1] and consider the poset P0 × P1. Let X be
a Polish space and T an analytic Noetherian topology on it, both in V . Let
p0 ∈ P0 and p1 ∈ P1 be conditions and let τ0, τ1 be respective P0, P1-names in
the models V [G0], V [G1] such that p0  τ0 is a T -closed subset of X, τ1 ⊂ X
is a set, and 〈p0, p1〉  τ0 = C(V [G0][H0], τ1); I must produce a ground model
coded closed set C ⊂ X such that p0  τ0 = C.

Working in V [G1], form the closed set A ⊂ X as A = X \
⋃
{O : O ⊂ X is

open and p1  O ∩ τ1 = 0. By the initial assumptions on the models V [G0] and
V [G1], C(V [G0], A) = C(V,A) holds; write C for the common value. Observe
that p1  τ1 ⊂ C. It will be enough to show that p0  τ0 = C.

Since p1  τ1 ⊂ C, the only way how the equality can fail is that there is
a condition p′0 ≤ p0 forcing τ0 to be a proper subset of C. Working in V [G0],
let M0 be a countable elementary submodel of some large structure containing
τ0, C, and p′0. Let h0 ⊂ P0 ∩M0 be a filter generic over the model M0 and
let D = τ0/h0. This is a T -closed set properly smaller than C, so A ⊆ D
fails. Thus, there must be a basic open set O ⊂ X disjoint from D which
contains some element of the set A. By the definitions, this means that there
is a condition p′′0 ≤ p′0 in the filter h0 which forces τ0 ∩ O = 0, and a condition
p′1 ≤ p1 which forces τ1 ∩ O 6= 0. This contradicts the initial assumptions on
the conditions p0, p1.

Corollary 3.4. Mutually generic extensions are mutually Noetherian.

In the remainder of this section, I isolate several useful features of mutually
Noetherian extensions.

Proposition 3.5. Let V [G0], V [G1] be mutually Noetherian extensions of V .
Then 2ω ∩ V [G0] ∩ V [G1] = 2ω ∩ V .

Proof. Let T be the topology on 2ω whose closed sets are exactly the finite sets
and 2ω itself. It is not difficult to see that T is an analytic Noetherian topology
on X. Now suppose that x ∈ 2ω ∩V [G1] \V is a point. The set 2ω \ {x} is a T -
open set in V [G1] which covers 2ω ∩ V . By the mutual Noetherian assumption,
it covers 2ω ∩ V [G0] as well, and therefore x /∈ V [G0] as desired.

Noetherian topologies are most common in algebra, and the following feature
exploits standard algebraic facts about them.

Proposition 3.6. Let V [G0], V [G1] be mutually Noetherian extensions. Then

1. 2ω ∩ V [G0] ∩ V [G1] = 2ω ∩ V ;
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2. let X be a Kσ Polish field, p(v̄0, v1) a polynomial with all parameters in
V and all free variables listed. Let x̄0 ∈ V [G0] and x̄1 ∈ V [G1] be tuples
such that X |= p(x̄0, x̄1) = 0. Then there is a tuple x̄′0 ∈ V such that
X |= p(x̄′0, x̄1) = 0;

3. let φ(v̄0, v̄1) be a formula of the language of real closed fields with real pa-
rameters in V , with all free variables listed. Let V [G0], V [G1] be mutually
Noetherian extensions and x̄0 ∈ V [G0] and x̄1 ∈ V [G1] be tuples of reals
such that R |= φ(x̄0, x̄1) holds. Then there is a tuple x̄′0 ∈ V of reals such
that R |= φ(x̄′0, x̄1) holds.

Proof. For (1), let T be the topology on 2ω whose closed sets are exactly the
finite sets and 2ω itself. It is not difficult to see that T is an analytic Noetherian
topology on X. Now suppose that x ∈ 2ω ∩ V [G0] ∩ V [G1] is a point. The
set {x} is T -closed, coded in V [G0], containing x. By the mutual Noetherian
assumption, it has to have a T -closed subset coded in V which contains x, which
is possible only if x ∈ V .

For(2), let n = |v̄0| and observe that the topology of algebraic subsets of
Xn is analytic and Noetherian by the Hilbert basis theorem. Consider the set
A = {ȳ ∈ Xn : p(ȳ, x̄1) = 0}. This is an algebraic subset of Xn coded in V [G1]
which contains x̄0 as an element. Thus, there must be an algebraic set B ⊆ A
coded in V which contains x̄0 as an element, in particular B 6= 0. Any element
x̄′0 ∈ Xn ∩ V will work as desired.

For (3), let n0 = |v̄0| and n1 = |v̄1|. Use the quantifier elimination theo-
rem for real closed fields [9, Theorem 3.3.15] to assume that φ is quantifier-free.
Then φ is a boolean combination of statements of the form p(v̄0, v̄1) > 0 and
p(v̄0, v̄1) = 0 for some polynomials p with coefficients in V . Let pi for i ∈ j be a
list of all polynomials used in this boolean combination. Let a ⊂ j be the set of
all indices such that pi(x̄0, x̄1) = 0 and let A = {ȳ ∈ Rn0 : Σi∈api(ȳ, x̄1)2 =
0}. Now, the topology of algebraic subsets of Rn0 is analytic Noetherian
by the Hilbert basis theorem, and by the initial assumptions on the models
V [G0], V [G1], there is an algebraic set B ⊆ A coded in V containing x̄0. Let
O ⊂ Rn0 be a rational open box containing x̄0 such that for each i ∈ j \ a, the
values pi(ȳ, x̄1) have the same sign for all ȳ ∈ O. It is clear that R |= φ(ȳ, x̄1)
for all ȳ ∈ B ∩O. The set B ∩O is nonempty, containing x̄0, it is also coded in
V . Any tuple ȳ ∈ V n B ∩O works as required.

It may seem difficult to verify that given two generic extensions are mutually
Noetherian. In this paper, this is always done using the following duplication
criterion.

Definition 3.7. Suppose that P is a poset, τ0, τ1 are P -names for subsets of
the ground model. Say that τ0 is duplicable over τ1 in P if for every condition
p ∈ P there is a generic extension V [K] and in it, a sequence 〈Hα : α ∈ κ〉 such
that

1. κ is an uncountable ordinal in V [K];
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2. each Hα ⊂ P is a filter generic over the ground model containing the
condition p;

3. τ1/Hα is the same for all α ∈ κ;

4. for disjoint finite sets a, b ⊂ κ, V [τ0/Hα : α ∈ a] ∩ V [τ0/Hα : α ∈ b] = V .

Proposition 3.8. Suppose that P is a poset, τ0, τ1 are P -names for subsets
of the ground model, and τ0 is duplicable over τ1. Then P forces V [τ0] to be
Noetherian over V [τ1].

Proof. Suppose towards a contradiction that the conclusion fails. Then there
must be a condition p ∈ P , a Polish space X, an analytic Noetherian topology
T on it, a name σ for a subset of X in the model V [τ1] such that p forces
C(V [τ0], σ) to be strictly smaller than C(V, σ). Basic forcing theory shows that
V [τ1] is a generic extension of the ground model, and that we may assume that
there is a poset Q1 such that p  τ1 ⊂ Q̌1 is a filter generic over the ground
model. We also may assume that σ is in fact a Q1-name.

Move to a generic extension V [K] in which a sequence 〈Hα : α ∈ κ〉 satisfies
the items of Definition 3.7. Write A ⊂ X for the common value of σ/(τ1/Hα)
for all ordinals α ∈ κ and write Cα = C(V [Hα], A). For each ordinal β ∈ ω1

let Dβ =
⋂
α∈ω1\β Cβ . The sequence 〈Dβ : β ∈ ω1〉 is an inclusion increasing

uncountable sequence of closed subsets of X, and as such it has to stabilize at
some ordinal β0. Write D ⊂ X for the stable value. Use the Noetherian property
of the topology T to find a finite set b0 ⊂ ω1 \ β0 such that D =

⋂
α∈b0 Cα. Let

β1 ∈ ω1 be an ordinal larger than max(b0) and find a finite set b1 ⊂ ω1 \ β1

such that D =
⋂
α∈b1 Cα. By the intersection assumption on the sequence of

the generic extensions, V [Gα : α ∈ b0] ∩ V [Gα : α ∈ β1] = V must hold. Thus,
the set D is in fact coded in V . Now, for every ordinal α ∈ ω1 \β0 it is the case
that A ⊆ D ⊆ Cα. The definition of the set Cα then shows that D = Cα and
the proposiiton follows.

4 Examples I

This section contains several example of mutually duplicable names in forcing,
which by Proposition 3.8 always lead to mutually Noetherian pairs of extensions.

Example 4.1. If Q0, Q1 are posets with the respective names τ0, τ1 for their
generic filters and P = Q0 × Q1, then τ0, τ1 are mutually duplicable in P . To
see that τ0 is duplicable over τ1, let κ be the successor of the maximum of |Q0|
and |Q1|. For every condition p = 〈q0, q1〉 ∈ P , consider the product forcing of
κ-many copies of Q0 � q0 and a single copy of Q1 � q1, yielding filters Gα0 ⊂ Q0

and G1 ⊂ Q1. Let Hα = Gα0 × H1 and observe that for finite disjoint sets
a, b ⊂ κ, the intersection V [Gα0 : α ∈ a] ∩ V [Gα0 : α ∈ b] is equal to V by the
product forcing theorem.

Example 4.2. Let P be the poset of all pairs p = 〈sp, tp〉 of sequences in 3<ω

of the same length, such that ∀i ∈ dom(sp) sp(i) 6= tp(i) holds; the ordering is
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that of coordinatewise reverse inclusion. Let τ0, τ1 be P -names for the unions
of the first coordinates and the second coordinates of conditions in the generic
filter respectively. Then τ0, τ1 are mutually duplicable names in P .

Proof. I will show that τ0 is duplicable over τ1; the example then follows by
a symmetry argument. To start, for a finite set a let Qa be the poset of all
functions q such that dom(q) = a, for some n ∈ ω for every i ∈ a q(i) ∈ 3n,
and for every j ∈ n, the set {q(i)(j) : i ∈ a} 6= 3. The ordering is that of
coordinatewise extension. The generic object is a tuple ~ygen ∈ (3ω)a which is
the coordinatewise union of all conditions in the generic filter. Two easy claims
are necessary to handle these posets.

Claim 4.3. If b ⊂ a then Qa  ~ygen � b is generic over V for the poset Q̌b.

This is proved by an elementary density argument.

Claim 4.4. If b0, b1 ⊂ a are disjoint sets then Qa  V [~ygen � b0] ∩ V [~ygen �
b1] = V .

Proof. In view of Claim 4.3, it is enough to prove the following. Suppose that
σ0 is a Qb0-name for a set of ordinals not in the ground model and σ1 is a Qb1-
name for a set of ordinals, and q ∈ Qa is a condition. Then, there is a condition
r ≤ q and an ordinal α ∈ κ such that r � b0  α̌ ∈ σ0 and r � b1  α̌ /∈ σ1 or
vice versa.

To this end, use the assumption on σ0 to find an ordinal α and conditions
r00, r01 ≤ q � b0 in the poset Qb0 such that r00  α̌ ∈ σ0 and r01  α̌ /∈ σ1.
Strenghtening if necessary, assume that n(r00) = n(r01). For each j ∈ n(r00) \
n(q) find elements kj0, kj1 ∈ 3 which are not in the sets {r00(i)(j) : i ∈ b0}
and {r01(i)(j) : i ∈ b0} respectively. Consider the condition r10 ≤ q � b1 in
Qb1 such that n(r10) = n(r00) and for all j ∈ n(r00) \ n(q) and every i ∈ b1,
r10(i)(j) /∈ {kj0, kj1}. Find a condition r11 ≤ r10 in Qb1 which decides the
membership of α in τ1. For definiteness, assume that the decision is negative.
Now, for all indices i0 ∈ b0 and i1 ∈ b1 and for every j ∈ n(r00) \ n(q), kj0 /∈
{r00(i0)(j), r11(i1)(j)} holds. Therefore, it is easy to find a condition r ≤ q such
that r � b0 coordinatewise extends r00 and r � b1 coordinatewise extends r11.
This condition and nd the ordinal α are as required.

Now, write κ = ω1 and consider the poset R of conditions r such that r is a
function, dom(r) ⊂ κ+ 1 is a finite set containing κ, for some number n(r) for
all ordinals α ∈ dom(r) r(α) ∈ 3n(r), and for every α ∈ dom(r)∩κ and every j ∈
n(r), r(α)(j) 6= r(κ)(j) holds. The ordering is reverse coordinatewise inclusion.
The generic object is a tuple ~ygen ∈ ((3ω)κ+1 which is the coordinatewise union
of all conditions in the generic filter. Again, a simple claim about this poset is
needed; the proof is a simple density argument.

Claim 4.5. For every finite set a ⊂ κ, R  ~ygen � a is Q̌a-generic over V and
for every ordinal β ∈ κ, the pair ~ygen(β), ~ygen(κ) is P̌ -generic over V .
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Now, suppose that p ∈ P is a condition. Let ~ygen be an R-generic sequence
over V . Rewrite the initial segments of ~ygen(β) for all β ∈ κ with sp and the
initial segment of ~ygen(κ) with sp. While the resulting sequence ~zgen is not
R-generic over V , the conclusions of Claim 4.5 remain in force. In view of
Claim 4.4, the filters Hα ⊂ P for α ∈ κ given by the pairs ~zgen(α), ~zgen(κ) show
the duplicability of the name τ0 over τ1.

Corollary 4.6. The poset P of Example 4.2 forces V [τ0], V [τ1] to be mutually
Noetherian extensions.

The second example deals with turbulent actions of Polish groups as outlined
in [4, Section 13.1].

Example 4.7. Let Γ be a Polish group acting turbulently on a Polish space X
with dense meager orbits. Let P = PΓ × PX , let γ̇gen be the P -name for the
PΓ-generic point, τ0 the P -name for the PX -generic point, and τ1 = γ̇gen · τ0.
Then τ0, τ1 are mutually duplicable names in P .

Proof. By a symmetry argument, it is enough to show that τ1 is duplicable over
τ1. Suppose that p = 〈U,O〉 is a condition in the poset P , where U ⊂ Γ and
O ⊂ X are nonempty open sets. Let κ = ω1, let x ∈ O be a point PX -generic
over V . Force with a finite support product of κ-many copies of the poset
PΓ � U to obtain a sequence 〈gα : α ∈ κ〉 of points in U which are in finite tuples
mutually PΓ-generic over V [x]; write xα = gα · x. Each of the filters Hα ⊂ P
for α ∈ κ given by the pair 〈gα, x〉 is P -generic over V ; I will show that the
sequence 〈Hα : α ∈ κ〉 witnesses the duplicability of τ1 over τ0.

Claim 4.8. Let a ⊂ κ be a finite set. Then V [xα : α ∈ a] ∩ V [x] = V .

Proof. Without loss, assume that the set a is nonempty, and write β = min(a).
The point g−1

β is PΓ-generic over V [xβ ], and the tuple t = 〈gα ·g−1
β : β ∈ a\{β}〉

is generic over V [xβ ][g−1
β ] for a product of the posets PΓ. Use the product

forcing theorem to conclude that V [xβ ][g−1
β ] ∩ V [xβ ][s] = V [xβ ] and therefore

V [x]∩V [xα : α ∈ a] ⊆ V [xβ ]. However, V [x]∩V [xβ ] = V holds by the turbulence
assumption and [8, Theorem 3.2.]. It follows that V [x] ∩ V [xα : α ∈ a] = V as
desired.

Claim 4.9. If a, b ⊂ κ are disjoint finite sets then V [xα : α ∈ a] ∩ V [xα : α ∈
b] = V .

Proof. By the product forcing theorem, V [x][gα : α ∈ a]∩V [x][gα : α ∈ b] = V [x]
holds, and therefore V [xα : α ∈ a]∩V [xα : α ∈ b] ⊆ V [x] holds. By the previous
claim, V [xα : α ∈ a] ∩ V [x] = V holds, and in consequence V [xα : α ∈ a] ∩
V [xα : α ∈ b] = V as desired.

The duplicability follows.

Corollary 4.10. The poset P of Example 4.7 forces V [τ0], V [τ1] to be mutually
Noetherian extensions.
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The following example uses the notion of Suslin forcing which occurs several
times in this paper.

Definition 4.11. [1, Definition 3.6.1] A forcing Q is Suslin if there s an ambient
Polish space X in which the conditions of Q form an analytic set, and the
ordering and incompatibility relations on Q are analytic relations on X.

The following fact regarding Suslin forcing will be used repeatedly throughout
the paper.

Fact 4.12. Let Q be a c.c.c. Suslin forcing and let V [G] be a forcing extension.
Then

1. [1, Theorem 3.6.6] the reinterpretation QV [G] is a c.c.c. Suslin forcing in
V [G];

2. [1, Corollary 3.6.5] if H ⊂ QV [G] is a filter generic over V [G], then H ∩
V ⊂ QV is a filter generic over V .

Example 4.13. Let Q0 be an arbitrary forcing and Q1 be a Suslin c.c.c. forcing.
Let P be the iteration Q0 ∗ Q̇1 where the definition of Q1 is reinterpreted in the
Q0-forcing extension. Let τ0 be the P -name for the filter on the first iterand
and τ1 be the P -name for the intersection of the filter on the second iterand
with the ground model.Then τ0, τ1 are mutually duplicable names in P .

Note that by Fact 4.12(2) τ1 is forced to be a filter on Q1 generic over V .

Proof. To show that τ1 is duplicable over τ0, let p = 〈q0, q̇1〉 be a condition
in the poset P . Let κ be a regular cardinal larger than |Q0|. Let G0 ⊂ Q0

be a filter generic over V containing the condition q0, and force with the finite
support product of κ-many copies of the forcing Q1 � q̇1/G0 to obtain filters
G1α ⊂ Q1 for α ∈ κ. I claim that the filters Hα = G0 ∗ G1α ⊂ P for α ∈ κ
witness the duplicability of τ1 over τ0. To see this, for each α ∈ κ write Kα =
G1α ∩ V = τ1/Hα. The following claim completes the proof by the product
forcing theorem.

Claim 4.14. If a ⊂ κ is a finite set, then 〈Kα : α ∈ a〉 are filters on Q1 which
are mutually generic over V .

Proof. Consider the poset R which is the product of a-many copies of Q1. It
is easy to check that R is Suslin, and by Fact 4.12(1), R is c.c.c. The filters
〈G1α : α ∈ a〉 form an R-generic sequence over V [G0]. By Fact 4.12(2), the
sequence 〈Kα : α ∈ a〉 is an R-generic sequence over V as desired.

To show that τ0 is duplicable over τ1, let p = 〈q0, q̇1〉 be a condition in the
poset P . Let κ be a regular cardinal larger than |Q0|. Let s = 〈G0α : α ∈ κ〉 be
a mutually generic sequence of filters on Q0 � q0. In the model V [s], consider
the (reinterpretation of the) poset Q1 and the conditions rα = q̇1/G0α in it for
α ∈ κ. Since Q1 is c.c.c. in V [s] by Fact 4.12(1) there must be a condition
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r ∈ Q1 which forces that the set {α ∈ κ : rα belongs to the generic filter} is
cofinal in κ. Let G1 ⊂ Q1 be a filter generic over V [s], containing the condition
r. By Fact 4.12(2), for each ordinal α ∈ κ, G1α = G1 ∩ V [G0α] is a filter on Q1

generic over V [G0α]. I claim that the filters Hα = G0α ∗G1α for α ∈ κ such that
rα ∈ G1 witness the duplicability of τ0 over τ1. This is an immediate corollary
of the product forcing theorem applied to the models V [G0α] for α ∈ κ.

Corollary 4.15. Let µ be a Borel probability measure on a Polish space X, and
let x0, x1 ∈ X be mutually µ-random elements of X. Then the models V [x0],
V [x1] are mutually Noetherian.

5 Preservation theorems

Any notion of perpendicularity similar to Definition 3.1 comes with a natural
notion of balance for Suslin forcings.

Definition 5.1. Let P be a Suslin forcing.

1. A pair 〈Q, σ〉 is Noetherian balanced if Q  σ ∈ P and for any pair V [G0],
V [G1] of mutually Noetherian extensions of the ground model, every pair
H0, H1 ⊂ Q of filters generic over V and for every pair p0 ∈ V [G0], p1 ∈
V [G1] of conditions stronger than σ/H0, σ/H1 respectively and belonging
to the respective models V [G0], V [G1], the conditions p0, p1 ∈ P have a
common lower bound.

2. P is Noetherian balanced if for every condition p ∈ P there is a Noetherian
balanced pair 〈Q, σ〉 such that Q  σ ≤ p̌.

The supply of mutually Noetherian pairs of extensions provided in the previous
section now makes it possible to prove several preservation theorems. They are
stated using the parlance of [8, Convention 1.7.18]. Thus, given an inaccessible
cardinal κ, a Suslin poset P is Noetherian balanced cofinally below κ if for every
generic extension V [K0] generated by poset of cardinality smaller than κ there
is a larger generic extension V [K1] generated by a poset of cardinality smaller
than κ such that Vκ[K1] |= P is Noetherian balanced.

Theorem 5.2. Let κ be an inaccessible cardinal. Let W be the symmetric
Solovay model derived from κ. In cofinally Noetherian balanced extensions of
W , every nonmeager subset of 3ω contains points y0, y1 such that the set {i ∈
ω : y0(i) = y1(i)} is finite.

I do not know if the conclusion holds also for non-null sets for the usual Borel
probability measure on 3ω.

Proof. Let P be a Suslin forcing which is Noetherian balanced cofinally below
κ. Work in W . Let p ∈ P be a condition and let τ be a P -name such that
p  τ ⊂ 3ω is a nonmeager set. I have to find two points y0, y1 such that the
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set {i ∈ ω : y0(i) = y1(i)} is finite a condition stronger than p which forces both
to τ .

Both p, τ are definable from some elements of the ground model and an
additional parameter z ∈ 2ω. Let V [K] be an intermediate extension obtained
by a partial order of cardinality less than κ such that z ∈ V [K], and such that
V [K] |= P is Noetherian balanced. Work in V [K]. Let 〈Q, σ〉 be a Noetherian
balanced pair such that Q  σ ≤ p. Let R be the Cohen poset of nonempty
open subsets of 3ω ordered by inclusion, adding a Cohen generic point ẏ. There
must be a condition q ∈ Q, a condition r ∈ R, and a poset S of cardinality
smaller than κ, and a Q × R × S-name η for a condition in P stronger than σ
such that

q Q r R s S Coll(ω,< κ)  σ  ẏ ∈ τ.

Otherwise, in the model W , if H ⊂ Q is a filter generic over V [K] then the
condition σ/H would force in P that the comeager set of points R-generic over
V [K][H] to be disjoint from τ , contradicting the initial assumptions on p and
τ .

In the model W , use Example 4.2 to produce points x0, x1 ∈ 3ω which are are
separately R-generic over V [K], such that for all i ∈ ω x0(i) 6= x1(i), and such
that the models V [K][x(0)], V [K][x1] are mutually Noetherian. Let y0 ∈ 3ω be
a finite modification of x0 which belongs to q and let y1 ∈ 3ω be a finite modifi-
cation of x1 which belongs to q. Let H0, H1 ⊂ R×S be filters mutually generic
over V [K][x0][x1] meeting the conditions r ∈ R and s ∈ S. By Proposition 3.3,
the models V [K][y0][H0] and V [K][y1][H1] are mutually Noetherian extensions
of V [K]. Let p0 = σ/y0, H0 and p1 = σ/y1, H1. These are conditions in P in
the respective models stronger than σ/H0 and σ/H1 respectively. By the bal-
ance assumption on 〈Q, σ〉, the conditions p0, p1 are compatible. By the forcing
theorem applied in the respective models V [K][y0][H0] and V [K][y1][H1], the
common lower bound of these two conditions forces y̌0, y̌1 ∈ τ as required.

Corollary 5.3. Let κ be an inaccessible cardinal. Let W be the symmetric Solo-
vay model derived from κ. In closed, cofinally Noetherian balanced extensions
of W , there are no nonprincipal ultrafilters on ω.

Proof. If U is a nonprincipal ultrafilter on ω, then the map c : 3ω → 3 defined
by c(x) = i if {n ∈ ω : c(n) = i} ∈ U partitions of 3ω into three pieces neither
of which contains points y0, y1 such that the set {i ∈ ω : y0(i) = y1(i)} is finite.
One of these pieces must be non-meager. Theorem 5.2 concludes the proof.

Theorem 5.4. Let Γ be a Polish group acting continuously, turbulently and
with dense meager orbits on a Polish space X. Let κ be an inaccessible cardinal.
Let W be the symmetric Solovay model derived from κ. In cofinally Noetherian
balanced extensions of W , every Γ-invariant subset of X is either meager or
co-meager.

Proof. Let P be a Suslin forcing which is Noetherian balanced cofinally below
κ. Work in W . Let p ∈ P be a condition and let τ be a P -name such that
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p  τ ⊂ X is a set which is neither meager nor co-meager. I have to find an
element γ ∈ Γ and points x0, x1 ∈ X such that γ · x0 = x1, and a condition
stronger than p which forces x̌0 ∈ τ and x̌1 /∈ τ .

Both p, τ are definable from some elements of the ground model and an
additional parameter z ∈ 2ω. Let V [K] be an intermediate extension obtained
by a partial order of cardinality less than κ such that z ∈ V [K], and such that
V [K] |= P is Noetherian balanced. Work in V [K]. Let 〈Q, σ〉 be a Noetherian
balanced pair such that Q  σ ≤ p̌. Let R be the Cohen poset of all nonempty
open subsets of X, adding a point ẋgen ∈ X. There must be conditions q0, q1 ∈
Q, r0, r1 ∈ R and posets S0, S1 of cardinality smaller than κ, and Q×R0 × S0-
and Q×R1 × S1-names η0, η1 for conditions in P stronger than σ such that

q0 Q r0 R0 s0 S0 Coll(ω,< κ)  σ0 P ẋgen ∈ τ

q1 Q r0 R1 s0 S10 Coll(ω,< κ)  σ1 P ẋgen /∈ τ.

Otherwise, in the model W , the poset P would force either τ0 or τ1 to be disjoint
from the co-meager set of elements of X Cohen-generic over the model V [K][G]
where G ⊂ Q is any filter generic over V [K]. This would contradict the initial
assumptions on the name τ .

Now, since the group Γ acts on X continuously and with dense orbits, there
are nonempty open sets U ⊂ Γ and O ⊂ r0 such that U · O ⊂ r1. In the
model W , find points g ∈ U and x0 ∈ O which are PΓ × PX -generic over
V [K], and let x1 = g · x0. By the turbulence assumption and Example 4.7, the
models V [K][x0] and V [K][x1] are mutually Noetherian extensions of V [K]. Let
H0 ⊂ Q0 × S0 and H1 ⊂ Q1 × S1 be filters mutually generic over V [K][x0][x1]
and containing the respective conditions q0, s0, q1, s1. By Proposition 3.3, the
models V [K][x0][H0] and V [K][x1][H1] are mutually Noetherian as well.

Let p0 = η/x0, H0 and p1 = η/x1, H1. These are conditions in P in mutually
Noetherian extensions extending the conditions σ/H0 and σ/H1. By the balance
assumption on the pair 〈Q, σ〉, the conditions p0, p1 have a common lower bound
in P . In the model W , the common lower bound forces both x̌0 ∈ τ and x̌1 /∈ τ ,
while it is also the case that g · x0 = x1. This completes the proof of the
theorem.

In order to state the following preservation theorem in full generality, a
standard definition will be useful.

Definition 5.5. Suppose that X is a Polish space and I is a σ-ideal on X. I
is a Suslin c.c.c. ideal if there is a Suslin c.c.c. forcing R and an R-name ẋgen
for an element of the Polish space X such that I is generated by all those Borel
sets B ⊂ X for which P  ẋgen /∈ B holds.

In the last expression, the Borel set B has to be reinterpreted in the P -extension.
In the usual situation, the name ẋgen consists of maximal antichains of condi-
tions deciding the membership of ẋgen in basic open subsets of X. In such a case,
in every generic extension the ideal I can be reinterpreted by first reinterpreting
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the Suslin poset R and the name ẋgen as analytic sets and then using the same
forcing definition to define the reinterpretation of I. A simple absoluteness argu-
ment irrelevant for the purposes of this paper shows that this reinterpretation of
I in generic extension does not depend on the choice of the Suslin c.c.c. forcing
R and the name ẋgen . If B ⊂ X is a Borel set and V [G] is a generic extension,
then V |= B ∈ I holds if and only if V [G] |=the reinterpretation of B belongs
to the reinterpretation of I; this easily follows from Fact 4.12(2). Notorious
examples of Suslin c.c.c. ideals include the ideal of meager and Lebesgue null
sets on R, but other examples are studied in the literature as well [1, Section
3.6].

Theorem 5.6. Let κ be an inaccessible cardinal. Let W be the symmetric
Solovay model derived from κ. In cofinally Noetherian balanced extensions of
W , if X is a Polish space and I a Suslin c.c.c. ideal on it, then I is closed under
well-ordered unions.

Proof. Let P be a Suslin forcing which is Noetherian balanced cofinally below
κ. Work in W . Let X be a Polish space and let I be a Suslin c.c.c. ideal on
it obtained from some Suslin c.c.c. poset R and a name ẋgen . Let p ∈ P be a
condition, λ be an ordinal, and let τ be a P -name such that p  τ : X → λ is a
partial function. I have to find an ordinal α ∈ κ and a condition stronger than
p which forces either dom(p) ∈ I or τ−1{α} /∈ I.

All of p, τ,X,R, ẋgen are definable from some elements of the ground model
and an additional parameter z ∈ 2ω. Let V [K] be an intermediate extension
obtained by a partial order of cardinality less than κ such that z ∈ V [K], and
such that V [K] |= P is Noetherian balanced. Work in V [K]. Let 〈Q, σ〉 be a
Noetherian balanced pair such that Q  σ ≤ p. There are two cases.
Case 1. Q×R  Coll(ω,< κ)  σ P ẋgen /∈ dom(τ) holds. In this case, work
in W and let H0 ⊂ Q be a filter generic over V [K] and set p0 = σ/H0. Consider
the set B = {x ∈ X : ∃G ⊂ R ∩ V [K] a filter generic over V [K]} ⊂ X. This is
a Borel set and its complement belongs to the ideal I. Thus, it will be enough
to argue that p  dom(τ) ∩B = 0.

Suppose towards a contradiction that this fails. Then, there must be a
point x ∈ B and a condition p′0 ≤ p0 such that p′0  x̌ ∈ dom(τ). Now, let
H1 ⊂ Q be a filter generic over V [K][x][H0][p′0] and write p1 = σ/H1. By the
forcing theorem applied in the model V [K], p1  x̌ /∈ dom(τ). By the balance
assumption on the pair 〈Q, σ〉, the conditions p′0, p1 are compatible in P . This
is impossible as they force contrary statements.
Case 2. Case 1 fails. This means that there is a condition q0 ∈ Q, a condition
r ∈ R, and a poset S0 of cardinality smaller than κ with a condition s0 ∈ S0,
an ordinal α ∈ λ, and a Q×R× S0-name η0 for a condition in P stronger than
σ such that

q0 Q r R s0 S0
 Coll(ω,< κ)  η0  τ(ẋgen) = α̌.

By the forcing theorem, it will now be enough to show that in the model
V [K], Q  Coll(ω,< κ)  σ P τ−1{α̌} /∈ I. Work in V [K] and suppose

14



towards a contradiction that this fails. Then, there must be a poset S1 of
cardinality smaller than κ and conditions q1 ∈ Q and s1 ∈ S1 and Q×S1-names
ν for a Borel set in I and η1 for a condition in P stronger than σ such that
q1 Q s1 S1

 Coll(ω,< κ)  η1  τ−1{α̌} ⊂ ν. Let H1 ⊂ Q × S1 be a filter
generic over V [K], meeting the conditions q1 and s1. Let G ⊂ R be a filter
generic over V [K][H1], meeting the condition r. Example 4.13 now shows that
the models V [K][H1] and V [K][G ∩ V [K]] are mutually Noetherian extensions
of V [K]. Let B = ν/H1 and let x = ẋgen/G. Thus, B ∈ I and x /∈ B holds by
the definition of the ideal I.

Let H0 ⊂ Q × S0 be a filter generic over the model V [K][H1][G], meeting
the conditions q0, s0. By Proposition 3.3, the models V [K][H1] and V [K][G ∩
V [K]][H0] are mutually Noetherian extensions of V [K]. Let p0 = η0/G,H0

and p1 = η1/H1. By the balance assumption on the pair 〈Q, σ〉, the conditions
p0, p1 ∈ P have a common lower bound. In the model W , this common lower
bound forces in P that τ(x̌) = α̌ and τ−1{α} ⊂ B, yet x /∈ B holds. This is a
contradiction completing the proof of the theorem.

6 Examples II

In this section, I produce several Noetherian balanced Suslin forcings. This is
of course a necessary ingredient for any specific independence result.

Theorem 6.1. Let X be a Kσ Polish field and F be a countable subfield. Let P
be the partial order of countable subsets of X which are algebraically free over F .
The ordering is reverse inclusion. Then P is σ-closed, Suslin and Noetherian
balanced.

Proof. The Suslinness and σ-closure of P are immediate. To argue for the
Noetherian balance, let p ∈ P be a condition. Let b be a transcendence basis for
X over F containing p as a subset. It will be enough to argue that 〈Coll(ω,X), b̌〉
is a Noetherian balanced pair.

Let V [G0], V [G1] be mutually Noetherian generic extensions of V and let
p0 ∈ V [G0] and p1 ∈ V [G1] be conditions in P such that b ⊂ p0, p1 holds. I must
show that p0, p1 are compatible in P ; in other words, p0 ∪ p1 is algebraically
free over F . Suppose towards a contradiction that this fails. Let r be a nonzero
multivariate polynomial with coefficients in F , and let ~x0, ~x1 be tuples from p0

and p1 respectively such that r(~x0, ~x1) = 0 holds. By Proposition 3.6(2), there
must be a tuple ~x′0 in the ground model such that r(~x′0, ~x1) holds. Note that all
elements of the tuple ~x′0 are algebraic over b; let a ⊂ b be a finite set such that
elements of ~x′0 are algebraic over a. Let x2 be any element of the tuple ~x1 and
observe that x2 is algebraic over a and the remainder of ~x1, contradicting the
assumption that p1 is an algebraically independent set.

Theorem 6.2. Let Γ be a redundant σ-algebraic hypergraph on a Euclidean
space X. Then there is a σ-closed Suslin forcing which adds a countable coloring
of Γ. In addition, under the Continuum Hypothesis, this forcing is Noetherian
balanced.
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Proof. Let X = Rn for some number n ≥ 1. To simplify the notation, I will as-
sume that the algebraic sets in the σ-algebraic presentation of Γ are all obtained
from polynomials with rational coefficients only. The main algebraic feature of
the hypergraph is the following elementary proposition:

Proposition 6.3. Suppose that a ⊂ X is a finite set and x ∈ X is an element
such that a ∪ {x} ∈ Γ. Then x is algebraic over a.

Proof. Let A be an algebraic set in the σ-algebraic presentation of Γ such that
~aax ∈ A. The vertical section A~a is a countable algebraic set by the redun-
dancy assumption. By quantifier elimination for real closed fields [9, Theorem
3.3.15], this set is in fact finite and consists of points all of whose coordinates
are algebraic over the set of real numbers used as coordinates of points in a.
This proves the proposition.

The definition of the coloring poset depends on a Borel ideal I on ω which
contains all singletons and which is not generated by countably many sets. All
other properties of the ideal I are irrelevant; the summable ideal will do. The
coloring poset P consists of all functions p such that there is a countable real
closed subfield supp(p) ⊂ R such that dom(p) = supp(p)n and p is a Γ-coloring
with range consisting of natural numbers. The ordering is defined by q ≤ p if

(A) p ⊆ q;

(B) the set γ(p, q) = {m ∈ ω : there is a Γ-hyperedge e ⊂ dom(p ∪ q) such
that the set e \ dom(p) is nonempty and q-monochromatic of color m} is
empty;

(C) for every finite set f ⊂ supp(q), the set δ(p, q, f) = {m ∈ ω : there is
a nonempty q-monochromatic finite set a ⊂ dom(q) \ dom(p) of color m
such that there is x ∈ dom(q) which is algebraic over supp(p) ∪ f and
b ⊂ dom(p) with a ∪ {x} ∪ b ∈ Γ} belongs to the ideal I.

Note that the definition of the coloring poset does not depend on the σ-algebraic
presentation of Γ or on the redundancy of Γ.

Claim 6.4. The relation ≤ is transitive and σ-closed.

Proof. To see the transitivity, suppose that r ≤ q ≤ p are conditions and argue
that r ≤ p must hold. To verify (B), just note that γ(p, r) ⊆ γ(p, q) ∪ γ(q, r).
To verify (C), let f ⊂ supp(r) be a finite set. Use a transcendence dimension
argument to conclude that there is a finite set f ′ ⊂ supp(q) such that every
real number in supp(q) which is algebraic over supp(p) ∪ f is algebraic over
supp(p)∪f ′. It will then be enough to show that δ(p, r, f) ⊆ δ(p, q, f ′)∪δ(q, r, f).
To this end, suppose that a ⊂ dom(r) is a monochromatic finite set and there
is a point x ∈ X algebraic over dom(p) ∪ f and a finite set b ⊂ dom(p) such
that a ∪ b ∪ {x} ∈ Γ. There are two cases. Either, a ⊂ dom(q) holds. In such
a case, x ∈ dom(q) holds by Proposition 6.3, consequently x is algebraic over
dom(p) ∪ f ′ and the color of a belongs to δ(p, q, f ′). Or, a \ dom(q) 6= 0. In
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this case, the set a \ dom(q) witnesses that the color of a belongs to δ(q, r, f) as
desired.

To see the σ-closure, argue that if 〈pm : m ∈ ω〉 is a descending sequence
of conditions then q =

⋃
m pm is their common lower bound. To see this, fix

m ∈ ω and argue for (C) of q ≤ pm. Let f ⊂ supp(q) be a finite set and
find a number k ≥ m such that f ⊂ supp(pk); it will be enough to show
that δ(pm, q, f) ⊆ δ(pm, pk, f). To see that, let a ⊂ dom(q) \ dom(p) be a
monochromatic finite set such that there is x ∈ dom(q) which is algebraic over
supp(pm)∪ f and b ⊂ dom(pm) with a∪ {x} ∪ b ∈ Γ. Then, since x ∈ dom(pk),
the set a \ dom(pk) cannot be monochromatic if nonempty by (B). Therefore,
a ⊂ dom(pk) and the color of a must belong to δ(pm, pk, f) as desired.

Other properties of the coloring poset depend on the following characterization
of compatibility of conditions in P .

Claim 6.5. Let p0, p1 ∈ P be conditions. The following are equivalent:

1. p0, p1 have a common lower bound;

2. for every point x0 ∈ X, p0, p1 have a common lower bound whose domain
contains x;

3. p0 ∪ p1 is a function and a Γ-coloring, the set γ(p0, p1) and γ(p1, p0) are
both empty, and for finite sets f0 ⊂ supp(p0) and f1 ⊂ supp(p1), the sets
δ(p0, p1, f1) and δ(p1, p0, f0) both belong to the ideal I.

Proof. (2) implies (1) which in turn implies (3) by the definition of the ordering
P . Thus, only the proof of (3) to (2) remains. Assume that (3) holds and let
x0 ∈ X be an arbitrary point. Let F ⊂ R be a countable real closed subfield
containing supp(p0), supp(p1), and all coordinates of the point x0. I will find a
lower bound of p0, p1 with support F . Let d = Fn \ dom(p0 ∪ p1). For every
point x ∈ d, let β(x) = {m ∈ ω : there are finite sets a0 ⊂ dom(p0 \ p1), a1 ⊂
dom(p1 \p0), and b ⊂ dom(p0∩p1) such that either a0 or a1 are monochromatic
of color m and b ∪ a0 ∪ a1 ∪ {x} ∈ Γ}.

The key fact is that β(x) ∈ I holds. To see this, pick finite sets a0 ⊂ dom(p0\
p1), a1 ⊂ dom(p1 \ p0), and b ⊂ dom(p0 ∩ p1) such that b ∪ a0 ∪ a1 ∪ {x} ∈ Γ;
if there happen to be none, then β(x) = 0. By (3) of the claim, it will be
enough to show that β(x) = δ(p0, p1, f1)∪ δ(p1, p0, f0) where f0 ⊂ supp(p0) and
f1 ⊂ supp(p1) are finite sets which contain all coordinates of all points in a0 or
a1 respectively. To this end, suppose that a′0 ⊂ dom(p0 \p1), a′1 ⊂ dom(p1 \p0),
and b′ ⊂ dom(p0 ∩ p1) are such that a′0 is monochromatic of color some m ∈ ω
and b′ ∪ a′0 ∪ a′1 ∪ {x} ∈ Γ}. It will be enough to show that m ∈ δ(p1, p0, f0).
This, however, is immediate since the coordinates of the point x are algebraic
in f0 ∪ f1 by Proposition 6.3.

Now, use the initial choice of the ideal I to find a set c ∈ I such that for
every finite set a ⊂ d, c \

⋃
x∈a β(x) is infinite. Let g : d → c be an injection

such that g(x) /∈ β(x) holds for all x ∈ d. Let q = p0 ∪ p1 ∪ g and argue that q
is a common lower bound of the conditions p0, p1.
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First of all, q is indeed a condition, i.e. a Γ-coloring. To see this, suppose that
e ⊂ dom(q) is a Γ-hyperedge. If e ⊂ dom(p0 ∪ p1) then e is not monochromatic
by (3) of the proposition. If e contains more than one point in d then e is not
monochromatic since g � d is an injection. Finally, if e contains exactly one
point x ∈ d then e is not monochromatic since g(x) /∈ β(x).

I must now show that q ≤ p0; the proof of q ≤ p1 is symmetric. To verify (B)
of q ≤ p0, let e ⊂ dom(q) be a hyperedge such that e \ dom(p0) is a nonempty
set. If this set contains no points of d, then it is not monochromatic by (3) of
the claim. If it contains more than one point of d, then it is not monochromatic
as g � d is an injection. If it contains exactly one point x of d then it is not
monochromatic either as g(x) /∈ β(x).

To verify (C) of q ≤ p0, suppose that f ⊂ F is a finite set. A transcendence
dimension argument produces a finite set f ′ ⊂ supp(p1) such that if a real
number is algebraic over both supp(p0) ∪ f and supp(p0) ∪ supp(p1), then it is
algebraic over supp(p0) ∪ f ′. It will be enough to show that δ(p0, q, f) ⊆ c ∪
δ(p0, p1, f

′). To see this, let a be a q-monochromatic finite subset of dom(q \p0)
such that there is x ∈ dom(q) which is algebraic over supp(p0) ∪ f and b ⊂
dom(p0) with a ∪ {x} ∪ b ∈ Γ. If a ∩ d 6= 0 then the color of a belongs to c and
the proof is complete. Otherwise, a ⊂ dom(p1 \ p0) must hold, in which case
x is algebraic over supp(p0) ∪ supp(p1) by Proposition 6.3, by the choice of the
set f ′ it is algebraic over supp(p0) ∪ f ′, and the color of the set a belongs to
δ(p0, p1, f

′) as desired.

Corollary 6.6. P is a Suslin forcing.

Proof. It is clear that P is in a suitable presentation on a Polish space a Borel
set and so is the ordering. Claim 6.5 shows that the compatibility relation is
Borel as well.

Corollary 6.7. P forces the union of the generic filter to be a total Γ-coloring
on X.

Proof. The poset P is σ-closed and therefore adds no new points to X. Thus,
by a density argument it is enough to show that for every point x ∈ X the set of
conditions containing x in its domain is open dense in P . This is an immediate
consequence of Claim 6.5 applied to a pair of two identical conditions.

Corollary 6.8. (ZFC+CH) The poset P is Noetherian balanced.

The Continuum Hypothesis assumption is necessary for some hypergraphs Γ,
unnecessary for others.

Proof. Let {xα : α ∈ ω1} be an enumeration of all elements of X. Let p ∈ P be
an arbitrary condition. By transfinite recursion on α ∈ ω1 build a descending
sequence of conditions pα so that p0 = p and xα ∈ dom(pα+1). This is imme-
diately possible as the poset P is σ-closed. In the end, let c =

⋃
α pα; this is a

total Γ-coloring of X. Let Q = Coll(ω,X); Q forces č to be a condition in P
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which is stronger than p. It will be enough to show that 〈Q, č〉 is a Noetherian
balanced pair.

To do this, let V [G0], V [G1] be mutually Noetherian generic extensions and
p0, p1 ∈ P be conditions in the respective models which are stronger than
c; it must be proved that p0, p1 are compatible. It will be enough to verify
Claim 6.5(3).

To verify that γ(p0, p1) = 0, suppose that a0 ⊂ dom(p0) and a1 ⊂ dom(p1 \
p0) are sets such that a0 ∪ a1 ∈ Γ and argue that the set a1, if monochromatic,
is empty. Find an algebraic set A in the σ-algebraic presentation of Γ such that
some enumeration of a0 ∪ a1 belongs to A. By Proposition 3.6(3), there is a
set a′0 ⊂ X ∩ V such that some enumeration of a′0 ∪ a1 belongs to A. Thus,
a′0 ∪ a1 ∈ Γ, and since p1 ≤ c, the set a1, if monochromatic, must be indeed
empty.

The proof of p0∪p1 being a Γ-coloring is identical. Finally, let f ⊂ supp(p1)
be a finite set; I must verify that δ(p0, p1, f) ∈ I. Since p1 ≤ c holds, δ(c, p1, f) ∈
I holds by (C). Thus, it is enough to show that δ(p0, p1, f) ⊆ δ(c, p1, f). To
this end, suppose that a ⊂ dom(p1 \ p0) is a monochromatic set whose color
belongs to δ(p0, p1, f), i.e. there is b ⊂ dom(p1) and point x algebraic over
dom(p0) ∪ f such that a ∪ b ∪ {x} ∈ Γ. Pick an algebraic set A from the σ-
algebraic presentation of Γ such that some enumeration of a ∪ b ∪ {x} belongs
to A. By Proposition 3.6(3), there is a set b′ ⊂ (X ∩ V ) and a point x′ ∈ X
algebraic over (X ∩ V ) ∪ f such that some enumeration of a ∪ b′ ∪ {x′} belongs
to A. Thus, the color of A belongs to δ(c, p1, f) as desired.

The proof of the theorem is now complete.

Now it is time to present the proofs of theorems from the introduction. Let
κ be an inaccessible cardinal and let W be the symmetric Solovay model derived
from it. For Theorem 1.1, consider the extension of the choiceless Solovay model
by the poset from Theorem 6.1. Item (1) follows from Corollary 5.3, item (2)
follows from Theorem 5.4, and item (3) follows from Theorem 5.6 applied to the
Lebesgue null ideal. For Theorem 1.4, use the coloring poset from Theorem 6.2
and the preservation theorems as before.

7 Uncolorable hypergraphs

In this section I prove Theorem 1.5. The simple algebraic hypergraph Γ on R2

of arity three consisting of those sets a whose projection to both coordinate axes
has cardinality two has the following property. In ZF, if the chromatic number
of Γ is countable, then there is a countable-to-one map from R to ω1. For the
proof, argue in ZF. Let c : R2 → ω be the Γ coloring. For x ∈ R write Mx for
the model of all sets hereditarily ordinally definable from x and c. Note that
c �Mx ∈Mx holds.
Case 1. There is a real x such that R ∩Mx is uncountable. In this case, we
show that R ⊂Mx and Mx |=CH, which will prove the theorem.
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To show that R ⊂ Mx holds, suppose towards contradiction that it does
not, and pick z ∈ R \Mx. By a counting argument, there are distinct points
y0, y1 ∈ R ∩Mx such that c(y0, z) = c(y1, z), the common value being some
n ∈ ω. Then z is not the unique point such that c(y1, z) = n–otherwise it
would be definable from c and y1, and therefore from c and x, contradicting
the choice of z. Let u ∈ R be a point different from y1 such that c(y1, u) = n.
Then {〈y0, z〉, 〈y1, z〉, 〈y1, u〉} is a monochromatic Γ -hyperedge of color n, a
contradiction.

To show that Mx |=CH, suppose towards a contradiction that it fails. Work
in Mx; observe that it is a model of AC. Let N0 be an elementary submodel
of some large structure containing c � Mx such that N0 has cardinality ℵ1; let
x0 ∈ X \N0. Let N1 be an elementary submodel of a large structure containing
c � Mx, x0, and N0, such that N1 is countable. Let x1 ∈ R ∩ N1 \ N0. Let
n = c(x0, x1). By the elementarity of N0, there must be u ∈ N0 such that
c(u, x1) = n. By the elementarity of N1, there must be v ∈ N0 ∩N1 such that
c(x0, v). Note that u 6= x0 and v 6= x1 holds. Clearly, {〈x0, x1〉, 〈u, x1〉, 〈x0, v〉}
is a monochromatic Γ -hyperedge of color n, a contradiction.
Case 2. Case 1 fails. Let π : R→ ω1 be the map defined by π(x) = ωMx

1 . The
case assumption shows that the range of this map is indeed a subset of ω1. We
will show that π is in fact countable-to-one. Suppose towards contradiction that
it is not, and let α ∈ ω1 be an ordinal such that the set {x ∈ R : π(x) = α} is
uncountable. By the case assumption, there have to be points x0, x1 in this set
such that x1 /∈Mx0

. We will reach a contradiction by a split into cases.
Suppose first that x0 /∈ Mx1 . Let L0 be the line in R2 consisting of points

whose 0-th coordinate is equal to x0 and let L1 be the line in R2 consisting of
points whose 1-st coordinate is equal to x1. Let n = c(x0, x1). Then 〈x0, x1〉
is not the only point on L0 which gets color n–otherwise x1 would be definable
from x0. Let 〈x0, x2〉 ∈ L0 be a different point which gets color n. By the same
argument, 〈x0, x1〉 is not the only point on L1 which gets color n–otherwise x0

would be definable from x1. Let 〈x3, x1〉 ∈ L1 be a different point which gets
color n. Then {〈x0, x1〉, 〈x0, x2〉, 〈x3, x1〉} is a monochromatic Γ -hyperedge of
color n. A contradiction.

Assume now that x0 ∈ Mx1
. The set R ∩Mx0

then belongs to Mx1
and

must be uncountable there because the two models have the same ω1. By a
counting argument in Mx1

, there must be distinct points y0, y1 ∈ R∩Mx0
such

that 〈y0, x1〉 and 〈y1, x1〉 get the same c-color, say n. Now, x1 cannot be the
only point such that 〈y1, x1〉 gets the color n–otherwise x1 would be definable
from y1 and then also from x0. So, pick a point z ∈ R such that c(y1, z) = n and
note that the set {〈y0, x1〉, 〈y1, x1〉, 〈y1, z〉} is a c-monochromatic Γ -hyperedge
of color n. This is a final contradiction proving Theorem 1.5.
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[2] Paul Erdős and Péter Komjáth. Countable decompositions of R2 and R3.
Discrete and Computational Geometry, 5:325–331, 1990.

[3] Thomas Jech. Set Theory. Academic Press, San Diego, 1978.

[4] Vladimir Kanovei. Borel Equivalence Relations. University Lecture Series
44. American Mathematical Society, Providence, RI, 2008.

[5] Alexander S. Kechris. Classical Descriptive Set Theory. Springer Verlag,
New York, 1994.
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[8] Paul Larson and Jindřich Zapletal. Geometric set theory. AMS Surveys
and Monographs. American Mathematical Society, Providence, 2020.

[9] David Marker. Model theory: An introduction. Graduate Texts in Mathe-
matics 217. Springer Verlag, 2002.

[10] James H. Schmerl. Countable partitions of Euclidean space. Math. Proc.
Camb. Phil. Soc., 120:7–12, 1996.

[11] James H. Schmerl. Avoidable algebraic subsets of Euclidean space. Trans.
Amer. Math. Soc., 352:2479–2489, 1999.

[12] Jindrich Zapletal. Coloring the distance graphs. 2021. submitted.

[13] Jindrich Zapletal. Coloring the distance graphs in three dimensions. 2021.
submitted.

[14] Jindrich Zapletal. Krull dimension in set theory. 2021. submitted.

[15] Yuxin Zhou. Coloring isosceles triangles in two dimensions. Ph. D. thesis,
2022.

21


