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Chapter 1

Zermelo–Fraenkel
axiomatization

1.1 Historical context

In 19th century, mathematicians produced a great number of sophisticated the-
orems and proofs. With the increasing sophistication of their techniques, an
important question appeared now and again: which theorems require a proof
and which facts are self-evident to a degree that no sensible mathematical proof
of them is possible? What are the proper boundaries of mathematical discourse?
The contents of these questions is best illustrated on several contemporary ex-
amples.

The parallel postulate of Euclidean geometry was a subject of study for cen-
turies. The study of geometries that fail this postulate was considered a non-
mathematical folly prior to early 19th century, and Gauss for example withheld
his findings in this direction for fear of public reaction. The hyperbolic geom-
etry was discovered only in 1830 by Lobachevsky and Bolyai. Non-Euclidean
geometries proved to be an indispensable tool in mathematical physics later on.

Jordan curve theorem asserts that every non-self-intersecting closed curve
divides the Euclidean plane into two regions, one bounded and the other un-
bounded, and any path from the bounded to the unbounded region must inter-
sect the curve. The proof was first presented in 1887. The statement sounds
self-evident, and the initial proofs were found confusing and unsatisfactory. The
consensus formed that even statements of this kind must be proved from some
more elementary properties of the real line.

Georg Cantor produced an exceptionally simple proof of existence of non-
algebraic real numbers, i.e. real numbers which are not roots of any polynomial
with integer coefficients (1874). Proving that specific real numbers such as π
or e are not algebraic is quite difficult, and the techniques for such proofs were
under development at that time. On the other hand, Cantor only compared
the cardinalities of the sets of algebraic numbers and real numbers, found that

1



2 CHAPTER 1. ZERMELO–FRAENKEL AXIOMATIZATION

the first has smaller cardinality, and concluded that there must be real numbers
that are not algebraic without ever producing a single definite example. Can-
tor’s methodology–comparing cardinalities of different infinite sets–struck many
people as non-mathematical.

As a result, the mathematical community in late 19th century experienced an
almost universally acknowledged need for an axiomatic development of math-
ematics modeled after classical Euclid’s axiomatic treatment of geometry. It
was understood that the primitive concept will be that of a set (as opposed to
a real number, for example), since the treatment of real numbers can be fairly
easily reinterpreted as speaking about sets of a certain specific kind. The need
for a careful choice of axioms was accentuated by several paradoxes, of which
the simplest and most famous is the Russell’s paradox : consider the ”set” x of
all sets z which are not elements of themselves. Consider the question whether
x ∈ x or not. If x ∈ x then x does not satisfy the formula used to form x, and
so x /∈ x. On the other hand, if x /∈ x then x does satisfy the formula used
to form x, and so x ∈ x. In both cases, a contradiction appears. Thus, the
axiomatization must be formulated in a way that avoids this paradox.

Several attempts at a suitable axiomatization appeared before Zermelo pro-
duced his collection of axioms in 1908, now known as Zermelo set theory with
choice (ZC). After a protracted discussion and two late additions, the axiomati-
zation of set theory stabilized in the 1920’s in the form now known as Zermelo–
Fraenkel set theory with the Axiom of Choice (ZFC). This process finally placed
mathematics on a strictly formal foundation. A mathematical statement is one
that can be faithfully represented as a formula in the language of set theory. A
correct mathematical argument is one that can be rewritten as a formal proof
from the axioms of ZFC. Here (roughly), a formal proof of a formula φ from the
axioms is a finite sequence of formulas ending with φ such that each formula on
the sequence is either one of the axioms or follows from the previous formulas
on the sequence using a fixed collection of formal derivation rules.

The existence of such a formal foundation does not mean that mathemati-
cians actually bother to strictly conform to it. Russell’s and Whitehead’s Prin-
cipia Mathematica [9] was a thorough attempt to rewrite many mathematical
arguments in a formal way, using a theory different from ZFC. It showed among
other things that a purely formal treatment is excessively tiresome and adds
very little insight. Long, strictly formal proofs of mathematical theorems of any
importance have been produced only after the advent of computers. Mathe-
maticians still far prefer to verify their argument by social means, such as by
presentations at seminars or conferences or in publications. The existence of a
strictly formal proof is considered as an afterthought, and a mechanical conse-
quence of the existence of a proof that conforms to the present socially defined
standards of rigor. In this treatment, we will also produce non-formal rigor-
ous proofs in ZFC with the hope that the reader can accept them and learn to
emulate them.
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1.2 The language of the theory

Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC) is just one formal
theory among many. Any formal theory starts with the specification of its
language. ZFC belongs to a class of formal theories known as first order theories.
As such, its language consists of the following symbols:

• an infinite supply of variables;

• a complete supply of logical connectives. We will use implication →,
conjunction ∧, disjunction ∨, equivalence ↔, and negation ¬;

• quantifiers. We will use both universal quantifier ∀ (read ”for all”) and
existential quantifier ∃ (read ”there exists”);

• equality =;

• special symbols. In the case of ZFC, there is only one special symbol,
the binary relational symbol ∈ (membership; read ”belongs to”, ”is an
element of”).

The symbols of the language can be used in prescribed ways to form expressions–
formulas. In the case of ZFC, if x, y are variables then x = y and x ∈ y are
formulas; if φ, ψ are formulas then so are φ ∧ ψ, ¬φ, etc.; and if φ is a formula
and x is a variable then ∀x φ and ∃x φ are formulas.

Even quite short formulas in this rudimentary language tend to become
entirely unreadable. To help understanding, mathematicians use a great number
of shorthands, which are definitions of certain objects or relations among them.
Among the most common shorthands in ZFC are the following:

• ∀x ∈ y φ is a shorthand for ∀x x ∈ y → φ;

• x ⊆ y (subset) is short for ∀z z ∈ x→ z ∈ y;

• 0 is the shorthand for the empty set (the unique set with no elements);

• x ∪ y and x ∩ y denote the union and intersection of sets x, y;

• P(x) denotes the powerset of x, the set of all its subsets.

After the development of functions, arithmetical operations, real numbers etc.
more shorthands appear, including the familiar R, +, sinx,

∫
f(x)dx and so on.

Any formal proof in ZFC using these shorthands can be mechanically rewritten
into a form which does not use them. Since the shorthands really do make
proofs shorter and easier to understand, we will use them whenever convenient.

The final definition of this section introduces a basic syntactical concept in
the development of any first order theory. It will be necessary for the statement
of several axioms of ZFC:

Definition 1.2.1. A variable x is said to be free in a formula φ if x does occur
in φ but no quantifier of φ ranges over x.
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1.3 The most basic axioms

At the basis of any first order theory, there is a body of axioms known as
the logical axioms. They record the behavior of the underlying logic and have
nothing to do with the theory per se. The choice of logical axioms depends on the
precise definition of the formal proof system one wants to use. They are typically
statements like the following: ∀x x = x, ∀x∀y∀z (x = y ∧ y = z) → x = z, or
φ → (ψ → φ) for any formulas φ, ψ. It is not the aim of this treatment to
develop the first order logic formally, and we will not provide any specific list of
logical axioms. Move on to the axioms specific to ZFC set theory.

Definition 1.3.1. The Empty Set Axiom asserts ∃x∀y y /∈ x.

It would be just as good to assert the existence of any set, ∃x x = x. The
existence of the empty set would then follow from Comprehension below. We
do need to assert though that the universe of our theory contains some objects.

Definition 1.3.2. The Extensionality Axiom states that ∀x∀y (∀z z ∈ x ↔
z ∈ y)→ x = y.

In other words, two sets with the same elements are equal. Restated again,
a set is determined by its elements. In particular, there can be only one set
containing no elements and we will denote it by 0.

Definition 1.3.3. The Pairing Axiom says ∀x∀y∃z∀u u ∈ z ↔ (u = x∨u = y).

In other words, given x, y one can form the pair {x, y}. This is our first
use of the set builder notation. Larger finite sets can be obtained by the Union
Axiom:

Definition 1.3.4. The Union Axiom is the following statement. ∀x∃y∀z (z ∈
y ↔ ∃u u ∈ x ∧ z ∈ u).

In other words, for every set x (note that elements of x are again sets as in
our discourse everything is a set) one can form the union of all elements of x.
The notation commonly used is y =

⋃
x.

Exercise 1.3.5. Use the pairing and union to show that for any three sets
x0, x1, x2 there is a set y containing exactly x0, x1, and x2.

Definition 1.3.6. The Powerset Axiom is the statement ∀x∃y∀z z ∈ y ↔ z ⊆
y.

1.4 Axiom of Infinity

Definition 1.4.1. The Axiom of Infinity is the statement ∃x 0 ∈ x ∧ ∀y ∈
x y ∪ {y} ∈ x.
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A brief discussion reveals that the set x in question must be in some naive
sense infinite: its elements are 0, {0}, {0, {0}} and so on. One must keep in mind
that the distinction between finite and infinite sets must be defined formally.
This is done in Section 2.3 and indeed, every set x satisfying 0 ∈ x ∧ ∀y ∈
x y ∪ {y} ∈ x must be in this formal sense infinite. A natural question occurs:
why is the axiom of infinity stated in precisely this way? Of course, there are
many formulations which turn out to be equivalent. The existing formulation
makes the development of natural numbers in Section 2.2 particularly smooth.

Historical debate. As there are no collections in common experience that
are infinite, there was a considerable discussion, mostly predating the axiomatic
development of set theory, regarding the use of infinite sets in mathematics.

Zeno’s paradoxes (5th century BC) have long been regarded as a proof that
infinity is an inherently contradictory concept. Bernard Bolzano, a catholic
philosopher, produced an argument that there are infinitely many distinct truths
which must be all present in omniscient God’s mind, and therefore God’s mind
must be infinite (1851). This was intended as a defense of the use of infinite
sets in mathematics. Poincaré and Hermann Weyl can be listed as important
opponents of the use of infinite sets among 19th–20th century mathematicians.
Finitism, the rejection of the axiom of infinity, still has a small minority following
among modern mathematicians. On a practical level, while a great deal of
mathematics can be developed without the axiom of infinity, the formulations
and proofs without the axiom of infinity become cumbersome and long.

1.5 Axiom schema of Comprehension

Also known as Separation or Collection. It is in fact an infinite collection of
axioms, with one instance for each formula φ of set theory.

Definition 1.5.1. Let φ be a formula of set theory with n+ 1 free variables for
some natural number n. The instance of the Axiom schema of Comprehension
associated with φ is the following statement. ∀x∀u0∀u1 . . . ∀un−1∃y∀z z ∈ y ↔
z ∈ x ∧ φ(z, u0, . . . un−1).

We will use this axiom schema tacitly whenever we define sets using the set
builder notation: y = {z ∈ x : φ(x, u0, u1, . . . un)}.
Historical debate. The formulation of the axiom schema of comprehension
is motivated by the desire to avoid Russell’s paradox. The use of the ambient
set x makes it impossible to form sets such as {z : z /∈ z} since we are missing
the ambient set: y = {z ∈? : z /∈ z}. This trick circumvents all the known
paradoxes, it comes naturally to all working mathematicians, and it does not
present any extra difficulties in the development of mathematics in set theory.

There were other attempts to circumvent the paradoxes by limiting the syn-
tactical nature of the formula φ used in the comprehension schema as opposed
to requiring the existence of the ambient set x. One representative of these
efforts is Quine’s New Foundations (NF) axiom system [8]. Roughly stated, in
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NF the formula φ has to be checked for circular use of ∈ relation between its
variables before it can be used to form a set. This allows the existence of the
universal set {z : z = z}, but it also makes the development of natural numbers
and general practical use extremely cumbersome. This seems like a very poor
trade. As a result, NF is not used in mathematics today.

There was an objection to possible use of impredicative definitions allowed
by the present form of comprehension. Roughly stated, the objecting parties
(including Russell and Poincaré) claimed that a set must not be defined by a
formula which takes into account sets to which the defined set belongs (the
defining formula φ should not use P(x) as one of its parameters, for example).
Such a definition would form, in their view, a vicious circle. It is challenging to
make this objection precise. Mathematicians use impredicative definitions quite
often and without care–for example the usual proof of completeness of the real
numbers contains a vicious circle in this view. Attempts to build mathematics
without impredicative definitions turned out to be awkward. The school of
thought objecting to impredicative definitions in mathematics mostly fizzled
out before 1950.

Definition 1.5.2. A class is a collection C of sets such that there is a formula φ
of n+1 variables, and sets u0, . . . un−1, such that z ∈ C ↔ φ(z, u0, u1, . . . un−1).
A proper class is a class which is not a set.

The set builder notation: C = {z : φ(z, u0, u1, . . . un−1)} is often used to denote
classes. A class may not be a set since the axiom schema of comprehension
cannot be a priori applied due to the lack of the ambient set x. On some
intuitive level, classes may fail to be sets on the account of being “too large”.

Exercise 1.5.3. Every set is a class.

Exercise 1.5.4. An intersection of a class and a set is a set.

Exercise 1.5.5. Show that {x : x /∈ x} is a proper class; i.e., it is not a set.
Hint. Use the reasoning behind Russell’s paradox.

Exercise 1.5.6. Show that the universal class {x : x = x} is a proper class.

1.6 Functions

Several of the following axioms require the notion of a function, and we pause
to develop the necessary function concepts and notation.

Definition 1.6.1. (Sierpiński) An ordered pair 〈x, y〉 for sets x, y is the set
{{x}, {x, y}}.

A brief discussion of the cases x = y and x 6= y shows that given a set z,
there are formulas of the language of set theory saying “z is an ordered pair”,
“x is the first coordinate of the ordered pair z”, and “y is the second coordinate
of the ordered pair z”. If z is an ordered pair, we will write z(0) for its first
coordinate and z(1) for its second coordinate.
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Definition 1.6.2. A function is a set of ordered pairs such that ∀u, v ∈ f u(0) =
v(0)→ u(1) = v(1). A class with this property is a class function.

Definition 1.6.3. Let f be a function.

1. the expression f(x) = y is a short for 〈x, y〉 ∈ f ;

2. the set {x : ∃y 〈x, y〉 ∈ f} is the domain of f , dom(f);

3. the set {y : ∃x 〈x, y〉 ∈ f} is the range of f , rng(f);

4. if a ⊆ dom(f) then f � a = {〈x, y〉 ∈ f : x ∈ a};

5. if a ⊆ dom(f) then f ′′a, the image of a under f , is the set {f(x) : x ∈ a};

6. if b is a set then f−1b, the preimage of b under f , is the set {x ∈ dom(f) :
f(x) ∈ b}.

Similar definitions pertain to class functions.

Definition 1.6.4. If x, y are sets then x× y is the set of all ordered pairs 〈u, v〉
where u ∈ x and v ∈ y.

Exercise 1.6.5. Show that x× y is a set on the basis of the axioms introduced
so far.

Exercise 1.6.6. If f is a function, show that dom(f) and rng(f) are sets.

1.7 Axiom of Choice

Definition 1.7.1. The Axiom of Choice (AC) is the following statement. For
every set x consisting of nonempty sets, there is a function f with dom(f) = x
and ∀y ∈ x f(y) ∈ y. The function f is referred to as the selector.

Historical debate. The axiom of choice is the only axiom of set theory which
asserts an existence of a set (the selector) without providing a formulaic descrip-
tion of that set. The Axiom of Infinity is presently stated in such a way as well,
but it can be reformulated. Naturally, AC provoked the most heated discussion
of all the axioms.

Zermelo used AC in 1908 to show that the set of real numbers can be well-
ordered (see Section 3.2). This seemed counterintuitive, as the well-ordering
of the reals is an extremely strong construction tool, and at the same time it
is entirely unclear how one could construct such a well-ordering. A number of
people (including Lebesgue, Borel, and Russell) voiced various objections to AC
as the main tool in Zermelo’s theorem. A typical objection (Lebesgue) claimed
that a proof of an existence of an object with a certain property, without a
construction or definition of such an object, is not permissible. In the end,
certain consequences of the axiom proved indispensable to the development
of certain theories, such as Lebesgue’s own theory of measure. A repeated
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implicit use of certain consequences of AC in the work of its very opponents
also strengthened the case for adoption of the axiom.

One reason for the acceptance of the axiom was the lack of a constructive
alternative. A plausible and useful alternative appeared in the 1960’s in the form
of Axiom of Determinacy (AD), asserting the existence of winning strategies in
certain infinite two-player games [7]. At that point, the axiom of choice was
already part of the orthodoxy and so AD remained on the sidelines.

Pleasing consequences. The axiom of choice is helpful in the development
of many mathematical theories. Typically, it allows proving general theorems
about very large objects.

• (Algebra) Every vector space has a basis;

• (Dynamical systems) A continuous action of a compact semigroup has a
fixed point;

• (Topology) Product of any family of compact spaces is compact;

• (Functional analysis) Hahn–Banach theorem.

Foul consequences. Some weak consequences of AC are necessary for the
development of theory of integration. However, its full form makes a com-
pletely harmonious integration theory impossible to achieve. It produces many
“paradoxical” (a better word would be“counterintuitive”) examples which force
integration to apply to fairly regular functions and sets only.

• There is a nonintegrable function f : [0, 1]→ [0, 1];

• (Banach–Tarski paradox) there is a partition of the unit ball in R3 into
several parts which can be reassembled by rigid motions to form two solid
balls of unit radius.

The upshot. The axiom of choice is part of the mathematical orthodoxy today,
and its suitability is not questioned or doubted by any significant number of
mathematicians. A good mathematician notes its use though, and (mostly)
does not use it when an alternative proof without AC is available. The proof
without AC will invariably yield more information than the AC proof. Almost
every mathematical theorem asserting the existence of an object without (at
least implicitly) providing its definition is a result of an application of the axiom
of choice.

Definition 1.7.2. If x is a collection of nonempty sets, then
∏
x, the product

of x, is the collection of all selectors on x.

It is not difficult to see that
∏
x is a set. The Axiom of Choice asserts

that the product of a collection of nonempty sets is nonempty. In the case that
x consists of two sets only, this definition gives a nominally different set than
Definition ??, but this will never cause any confusion.
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1.8 Axiom schema of Replacement

As was the case with the axiom schema of comprehension, this is not a single
axiom but a schema including infinitely many axioms, one for each formula of
set theory defining a class function.

Definition 1.8.1. The Axiom schema of Replacement states the following. If
f is a class function and x is a set, then f ′′x is a set as well.

Replacement was a late contribution to the axiomatics of ZFC (1922). It
is the only part of the axiomatics invented by Fraenkel. It is used almost
exclusively for the internal needs of set theory; we will see that the development
of ordinal numbers and well-orderings would be akwward without it. The only
”mathematical” theorem for which it is known to be indispensable is the Borel
determinacy theorem of Martin, ascertaining the existence of winning strategies
in certain types of two player infinite games [6].

Exercise 1.8.2. Show that the axiom schema of replacement is equivalent to
the statement “each class function with set domain is a set”.

Exercise 1.8.3. The statement “the range of a set function is a set” can be
proved without replacement. Use Comprehension to prove the following: ∀f∀x
if f is a function then ∃y∀z z ∈ y ↔ ∃v ∈ x f(v) = z.

Exercise 1.8.4. There is no class injection from a proper class into a set.

1.9 Axiom of Regularity

Also known as Foundation or Well-foundedness.

Definition 1.9.1. The Axiom of Regularity states ∀x x = 0∨∃y ∈ x∀z ∈ x z /∈
y.

Restated, every nonempty set contains an ∈-minimal element. This is the
only axiom of set theory that explicitly limits the scope of the set-theoretic
universe, ruling out the existence of sets such as the following:

Exercise 1.9.2. Use the axiom of regularity to show that there is no set x with
x ∈ x, and there are no sets x, y such that x ∈ y ∈ x.

The motivation behind the adoption of this axiom lies in the fact that the
development of common mathematical notions within set theory uses sets that
always, and of necessity, satisfy regularity. The formal development of set theory
is smoother with the axiom as well. The present form of the axiom is due to
von Neumann [12]. Mathematical interest in the phenomena arising when the
axiom of regularity is denied has been marginal [1].
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Chapter 2

Basic notions

2.1 Transitive sets

We will start with a brief investigation of a notion that will be constantly used
in the book.

Definition 2.1.1. A set x is transitive if ∀y ∈ x ∀z ∈ y z ∈ x.

Proposition 2.1.2. If a is a set of transitive sets then
⋃
a is transitive.

Proof. Let y ∈
⋃
a and z ∈ y; we must conclude that z ∈

⋃
a. Since y ∈

⋃
a,

there must be x ∈ a such that y ∈ x. Since a consists of transitive sets, x is
transitive and so z ∈ x. Since z ∈ x, z ∈

⋃
a as required.

Proposition 2.1.3. If x is a transitive set then P(x) is transitive.

Proof. Suppose that y ∈ P(x) and z ∈ y; we must prove that z ∈ P(x). Since
y ∈ P(x), y ⊆ x and so z ∈ x. Since x is transitive, z ∈ x implies z ⊆ x and so
z ∈ P(x). This concludes the proof.

Exercise 2.1.4. If a is a set of transitive sets then
⋂
a is transitive.

2.2 Von Neumann’s natural numbers

The purpose of this section is to develop natural numbers in ZFC.

Definition 2.2.1. For a set x, write s(x) = x ∪ {x}. A set y is inductive if
0 ∈ y and for all x, x ∈ y implies s(x) ∈ y.

Definition 2.2.2. (Von Neumann) ω is the intersection of all inductive sets.

Note that this is in fact a set. Just let z be any inductive set as guaranteed by
the Axiom of Infinity, and let ω = {x ∈ z : ∀y if y is inductive then x ∈ y}.

Claim 2.2.3. ω is an inductive set.

11
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Proof. As 0 belongs to every inductive set, 0 ∈ ω by the definition in ω. Now
suppose that x ∈ ω; we must show that s(x) ∈ ω. For every inductive set y,
x ∈ y holds by the definition of ω. As y is inductive, s(x) ∈ y as well. We have
just proved that s(x) belongs to every inductive set, in other words s(x) ∈ ω.
This completes the proof.

This means that ω is the smallest inductive set as it is by its definition a
subset of every other inductive set. We will show that the membership relation ∈
is a linear ordering on ω which has the properties we expect of natural numbers:
every x ∈ ω is either the smallest element 0 or else the successor of some other
element, and every subset of ω has an ∈-smallest element. The arguments
leading to this conclusion use induction over ω several times. Our first claim
justifies the use of induction:

Theorem 2.2.4. (Induction) Suppose that φ is a formula, φ(0) holds, and
∀x ∈ ω φ(x)→ φ(s(x)) also holds. Then ∀x ∈ ω φ(x).

Proof. Consider the set y = {x ∈ ω : φ(x)}. We will show that y is an inductive
set. Then, since ω is the smallest inductive set, it follows that y = ω, in other
words ∀x ∈ ω φ(x) as desired.

Indeed, 0 ∈ y as φ(0) holds. If x ∈ y then s(x) ∈ y as well by the assumptions
on the formula φ. It follows that y is an inductive set as desired.

We will use the standard terminology for induction: φ(0) is the base step,
the implication φ(x)→ φ(s(x)) is the induction step, and the formulas φ(x) in
the induction step is the induction hypothesis. The next step is to verify that
∈ on ω is a linear ordering that emulates the properties of natural numbers.
Firstly, define what is meant by a linear ordering here.

Definition 2.2.5. A preordering on a set x is a two place relation ≤⊂ x × x
such that

1. u ≤ u for every u ∈ x;

2. u ≤ v ≤ w implies u ≤ w.

A ordering is a preordering which satisfies in addition

3. u ≤ v and v ≤ u implies u = v.

A linear ordering is an ordering which satisfies in addition

4. for every u, v ∈ x, u ≤ v or v ≤ u holds.

A strict ordering on x is a two place relation < such that

1’. for every u ∈ x, u < u is false;

2’. u < v < w implies u < w.
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All properties of orderings introduced above have counterparts for strict order-
ings. Clearly, a strict ordering on x is obtained from an ordering by removing
the diagonal, i.e. the set {〈u, u〉 : u ∈ x}. On the other hand, an ordering can
be obtained from any strict ordering by adding the diagonal. The two notions
are clearly very close and we will sometimes confuse them.

Theorem 2.2.6. 1. ω is a transitive set;

2. the relation ∈ is a strict linear ordering on ω;

3. 0 is the smallest element of ω, for every x ∈ ω s(x) is the smallest element
of ω greater than x, and for every nonzero x ∈ ω there is y ∈ ω such that
s(y) = x;

4. every nonempty subset of ω has a ∈-smallest element.

Proof. For (1), by induction on x ∈ ω prove the statement ∀y ∈ x y ∈ ω. This
will prove the transitivity of ω. Base step. The statement φ(0) holds since its
first universl quantifier ranges over the empty set. Successor step. Suppose that
φ(x) holds. To prove φ(s(x)), let y ∈ s(x). Either y ∈ x, in which case y ∈ ω
by the induction hypothesis. Or y = x, in which case y ∈ ω since x ∈ ω. This
proves (1).

To prove (2), we have to verify the transitivity and linearity of ∈ on ω. We
will start with transitivity. The formula φ(x) = ∀y ∈ x ∀z ∈ y z ∈ x is proved
by induction on x ∈ ω. Base step. The statement φ(0) holds as its first universal
quantifier ranges over the empty set. Induction step. Suppose that φ(x) holds
and work to verify φ(s(x)). Let y ∈ s(x) and z ∈ y. By the definition of s(x),
there are two cases. Either y ∈ x, then by the induction hypothesis z ∈ x, and
as x ⊆ s(x), z ∈ s(x) holds. Or, y = x, then z ∈ x and as x ⊆ s(x), z ∈ s(x)
holds again. This confirms the induction step and proves the transitivity.

Next, we proceed to linearity. The formula φ(x) = ∀y ∈ ω x = y ∨ x ∈
y ∨ y ∈ x is proved by induction on x ∈ ω. Base step. The statement φ(0) must
be itself verified by induction on y:

Claim 2.2.7. For every y ∈ ω, 0 = y or 0 ∈ y.

Proof. By induction on y ∈ ω prove ψ(y): 0 = y or 0 ∈ y. Base step. ψ(0) holds
as y = 0 is one of the disjuncts. Induction step. Suppose that ψ(y) holds and
work to verify ψ(s(y)). The induction hypothesis offers two cases. Either, y = 0,
in which case y = 0 ∈ s(y) by the definition of s(y). Or, 0 ∈ y and then 0 ∈ s(y)
since y ⊆ s(y). In both cases, the induction step has been confirmed.

Induction step. Suppose that φ(x) holds, and work to verify φ(s(x)). Let y ∈ ω
be arbitrary. The induction hypothesis yields a split into three cases. Either,
y ∈ x and then, as x ⊆ s(x), y ∈ s(x). Or, y = x and then y ∈ s(x) by the
definition of s(x). Or, x ∈ y, then by the following claim s(x) ∈ s(y), which
by the definition of s(y) says that either s(x) ∈ y or s(x) = y. In all cases, the
induction step has been confirmed.
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Claim 2.2.8. For every y ∈ ω, for every x ∈ y s(x) ∈ s(y) holds.

Proof. By induction on y prove ψ(y) = ∀x ∈ y s(x) ∈ s(y). Base step. ψ(0) is
trivially true as its universal quantifier ranges over an empty set. Induction step.
Assume ψ(y) holds and work to verify ψ(s(y)). Let x ∈ s(y) be any element. By
the definition of s(y), there are two cases. Either, x ∈ y, then by the induction
hypothesis s(x) ∈ s(y), and as s(y) ⊆ s(s(y)), s(x) ∈ s(s(y)) holds. Or, x = y,
in which case s(x) = s(y) ∈ s(s(y)) by the definition of s(s(y)). In both cases,
the induction step has been confirmed.

For the third item, Claim ??? just verified that 0 is the smallest element of
ω. To verify that s(x) is the smallest element of ω larger than x, suppose that
x ∈ y are elements of ω. ??? Finally, the statement φ(x) saying “x is either 0
or s(y) for some y ∈ ω is proved by induction on x.

For the last item, suppose that a ⊂ ω is a set without ∈-smallest element,
and proceed to show that a = 0. Let b = {x ∈ ω : x ∩ a = 0}. This is an
inductive set: 0 ∈ b since 0∩ a = 0, and if x ∈ b then s(x) ∈ b since otherwise x
would be the ∈-smallest element of a. As ω is the inclusion-smallest inductive
set, we conclude that b = ω and so a = 0.

The ∈-linear ordering on ω starts out with 0 and then continues with s(0),
s(s(0)), s(s(s(0))) . . . (Why?) I will use the shorthands 1 = s(0), 2 = s(s(0)),
3 = s(s(s(0)) and so on. From now on, the elements of ω will be referred to
as natural numbers and denoted typically by n,m. The successor of n will be
denoted by n + 1. Note that in the set theoretic setting, each natural number
is in fact equal to the set of all preceding numbers.

In order to develop further concepts associated with the natural numbers,
such as the arithmetic operations, one uses inductive definitions as captured in
the following theorem.

Theorem 2.2.9. (Recursive definitions) Suppose that F is a class function such
that F (x) is defined for every set x. Then there is a unique class function G
such that dom(G) = ω and for every n ∈ ω, G(n) = F (G � n).

Proof. First, prove that for every m ∈ ω there is a unique set function Gm
such that dom(Gm) = m + 1 and for every n ∈ m + 1, Gm(n) = F (Gm � n).
The proof proceeds by induction on m ∈ ω. The base step m = 0 is trivial:
G0(0) = F (0). For the induction step, suppose that the unique function Gm
with domain m+ 1 has been found. Let Gm+1 = Gm ∪{〈m+ 1, F (Gm)〉}. This
is the unique function such that for every n ∈ m+ 2, G(n) = F (G � n).

Now, note that for natural numbers m ∈ k, it must be the case that Gm ⊂
Gk: Gk � m + 1 satisfies that for every n ∈ m + 1, Gk(n) = F (Gk � n) and by
the uniqueness of Gm, Gk � m+ 1 = Gm must hold. Let G be the class defined
by 〈m,x〉 ∈ G if and only if m ∈ ω and Gm(m) = x. This is the unique class
function required in the theorem.

For the uniqueness of the function G, suppose that H is a class function with
dom(H) = ω and such that for every n ∈ ω, H(n) = F (H � n). Suppose for
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contradiction that H 6= G. The set x = {n ∈ ω : G(n) 6= H(n)} is nonempty,
and therefore contains a smallest element m. Then, G � m = H � m and so
G(m) = F (G � m) = F (H � m) = H(m). This contradicts the assumption that
x ∈ m.

As an interesting application of recursive definitions, we will develop the
notion of the transitive closure of a set.

Definition 2.2.10. Let x be a set. The transitive closure of x, trcl(x), is the
inclusion-smallest transitive set containing x as an element.

Theorem 2.2.11. For every set x, trcl(x) exists.

Proof. Recursively define a function G with dom(G) = ω so that G(0) = x
and G(n + 1) =

⋃
G(n). Theorem 2.2.9 shows that there is a unique function

G satisfying these demands. By Axiom of Replacement, rng(G) is a set. Let
y = {x} ∪

⋃
rng(G). We claim that y is a transitive set and if z is a transitive

set containing x as an element, y ⊆ z holds.
For the transitivity of y, suppose that u ∈ y and v ∈ u. Then u = x or

there must be n ∈ ω such that u ∈ G(n). By the definition of the function G,
v ∈ G(0) or v ∈ G(n+ 1) must hold. Thus, v ∈ y and the transitivity of y has
been confirmed.

For the minimality of y, suppose for contradiction that z is a transitive set
containing x as an element and y 6⊆ z. Thus, the set y \ z must be nonempty,
containing some element v. There must be n ∈ ω such that v ∈ G(n); choose
v ∈ y \ z so that this number n is minimal possible. By the definition of G(n),
there is u ∈ G(n− 1) such that v ∈ u. By the minimal choice of the number n,
u ∈ z. By the transitivity of the set z, u ∈ z and v ∈ u imply that v ∈ z. This
contradicts the initial choice of the set z. The theorem follows.

Corollary 2.2.12. (Axiom of Regularity for classes) Let C be a nonempty class.
There is an element x ∈ C such that no elements of x belong to C.

Proof. Let y be any element of C. Consider the nonempty set C∩trcl(y). The
fact that this is indeed a set and not just a class follows from Exercise 1.5.4.
Use the Axiom of Regularity to find an ∈-minimal element x of C ∩ trcl(y).
All elements of x belong to trcl(y), and so by the minimal choice of x, none of
them can belong to C. Thus, the set x works as required.

Exercise 2.2.13. Define addition of natural numbers using an inductive defi-
nition.

2.3 Finite and infinite sets

The purpose of this section is to develop the definition of finiteness for sets. One
reasonable way to proceed is to define a set to be finite if it is in a bijection with
some natural number. I will use a different definition which has the virtues of
being more intelectually stimulating, very efficient in proofs, and independent
of the development of ω:
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Definition 2.3.1. (Tarski) A set x is finite if every nonempty set a ⊆ P(x) has
a ⊆-minimal element: a set y ∈ a such that no z ∈ a is a proper subset of y. A
set is infinite if it is not finite.

Theorem 2.3.2. 1. 0 is a finite set;

2. if x is finite and i is arbitrary then x ∪ {i} is finite;

3. union of two finite sets is finite;

4. a bijective image of a finite set is finite again;

5. the powerset of a finite set is finite again;

6. ω is not finite.

Proof. For (1), if a ⊆ P(0) is a nonempty set, then either it contains 0 and
then 0 is its ⊆-minimal element, or it does not contain 0 and then {0} is its
⊆-minimal element.

For (2), write x′ = x ∪ {i}. Let a′ ⊆ P(x′) be a nonempty set. There are
two cases. Either, there is an element y′ ∈ a′ such that i /∈ a. In this case, let
a = a′ ∩ P(y′). This is a nonempty set containing at least y′ as an element.
It is also a subset of P(x) since i does not appear in its elements. There is a
⊆-minimal element y ∈ a by the finiteness assumption on x, and this is also
a ⊆-minimal element of a′. Or, all elements of a′ contain i. In this case, let
a = {y ⊆ x : y ∪ {i} ∈ a′}. This is a nonempty subset of P(x) and so it has a
⊆-minimal element y by the finiteness assumption on x. Then y′ = y ∪ {i} is a
⊆-minimal element of a′.

For (3), assume for contradiction that x, y are finite and x ∪ y is not. Let
a = {z ⊂ x : z ∪ y is not finite}. This is a nonempty subset of x containing
at least x as an element. Since x is finite, the set a has an inclusion-minimal
element, say u. The set u must be nonempty since y ∪ 0 = y is a finite set. Let
i ∈ u be an arbitrary element, and let v = u \ {i}. By the minimality of u,
y ∪ v is finite. By (2) y ∪ v ∪ {i} is finite as well. As y ∪ v ∪ {i} = y ∪ u, this
contradicts the assumption that u ∈ a.

For (4), suppose that x is a finite set, x′ is a set and f : x→ x′ is a bijection.
To argue that x′ is finite, suppose that a′ ⊆ P(x′) is a nonempty set. The set
a = {y ⊆ x : f ′′y ∈ a′} ⊆ P(x) is nonempty and so it has a ⊆-minimal element
y ⊆ x. The set y′ = f ′′y ⊆ x′ is a ⊆-minimal element of a′.

For (5), assume for contradiction that x is finite and P(x) is not finite. Let
a = {y ⊆ x : P(y) is not finite}. This is a nonempty set, containing at least x
as an element. Let y be a ⊆-minimal element of a. Pick an element i ∈ y and
consider the set z = y \{i}. Then, P(y) = P(z)∪{u∪{i} : u ∈ P(z)}. The first
set in the union is finite by the minimality of y, and the second is a bijective
image of the first, therefore finite as well. By the previous items, P(y) is finite,
and his is a contradiction to the assumption that y ∈ a.

For (6), for every n ∈ ω let yn = {m ∈ ω : n ∈ m} and let a = {yn : n ∈
ω}. This is a subset of P(ω); let us show that it has no ⊆-minimal element.
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Suppose yn was such a minimal element. Then yn+1 ∈ a is its proper subset,
contradicting the minimality of yn.

Theorem 2.3.3. For every set x, x is finite if and only if it is in bijection with
a natural number.

Proof. For the right-to-left implication, argue by induction that ∀n ∈ ω n is
finite. The base step is verified in Theorem 2.3.2(1), and the induction step
follows from Theorem 2.3.2(2).

For the left-to-right implication, suppose that x is finite and for contradiction
assume that it is not in bijection with any natural number. Let a = {y ⊆ x : y
is not in a bijective image with a natural number}. This is a nonempty set,
containing at least x as an element. Let y ∈ a be a ⊆-minimal element of a.
Pick an arbitrary element i ∈ y and let z = y \ {i}. By the minimal choice of y,
z is a bijective image of an element of ω, and then y is a bijective image of its
successor.

In the following exercises, use Tarski’s definition of finiteness.

Exercise 2.3.4. Prove that a surjective image of a finite set is finite.

Exercise 2.3.5. Let x be a finite set and ≤ a linear ordering on x. Prove that
x has a largest element in the sense of the ordering ≤.

Exercise 2.3.6. Prove that the product of two finite sets is finite.

Exercise 2.3.7. Prove without the axiom of choice that if x is a finite set
consisting of nonempty sets, then x has a selector.

2.4 Cardinality

In this section, we will develop the basic features of the set-theoretic notion of
size–cardinality.

Definition 2.4.1. Let x, y be sets. Say that x, y have the same cardinality, in
symbols |x| = |y|, if there is a bijection f : x→ y. Say that |x| ≤ |y| if there is
an injection from x to y.

Theorem 2.4.2. Having the same cardinality is an equivalence relation and ≤
is a quasiorder.

Theorem 2.4.3. (Schröder–Bernstein) If |x| ≤ |y| and |y| ≤ |x| then x, y have
the same cardinality.

Proof. Let x, y be sets and f : x → y and g : y → x be injections; we must
produce a bijection. Identifying y with rng(g), we may assume that y ⊂ x and
g is the identity on y. By induction on n ∈ ω define sets xn, yn ⊂ x by letting
x0 = x, y0 = y and xn+1 = f ′′xn, yn+1 = f ′′yn. By induction on n ∈ ω prove
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that x0 ⊇ y0 ⊇ x1 ⊇ y1 ⊇ x2 ⊇ . . . Let xω =
⋂
n xn. Consider the function

h : x → y defined by h(z) = z if z ∈ xω, h(z) = f(z) if z ∈ xn \ yn for some
n ∈ ω, and h(z) = z if z ∈ yn \ xn+1. This is the desired bijection. To see
this, note that h � xω is a bijection from xω to itself, h � xn \ yn is a bijection
from xn \ yn to xn+1 \ yn+1, and h � yn \ xn+1 is a bijection from yn \ xn+1 to
itself.

Theorem 2.4.4. Distinct natural numbers have distinct cardinalities.

Proof. It will be enough to show that if x, y are finite sets and y ⊆ x and y 6= x
then y, x have distinct cardinalities. Suppose for contradiction that this fails for
some x, y. Let a = {z ⊆ x : |z| = |x|}. The set a ⊂ P(x) is certainly nonempty,
containing at the very least the set x itself. Let z ∈ a be a ⊆-minimal element.
Note that z 6= x since y ∈ a and y is a proper subset of x. Let h : x → z be
a bijection, and let u = h′′z. Then u ⊆ z and |u| = |z|, since h � z : z → u
is a bijection. Moreover, u 6= z: if i is any element of the nonempty set x \ z,
then h(i) belongs to z \ u. Thus, u is a proper subset of z which has the same
cardinality of z and so the same cardinality as x. This contradicts the minimal
choice of the set z.

This theorem completely determines the possible cardinalities of finite sets.
Every finite set has the same cardinality as some natural number by Theo-
rem 2.3.3, and distinct natural numbers have distinct cardinalities. Thus, the
cardinalities of finite sets are linearly ordered. One can ask if this feature per-
sists even for infinite cardinalities. The answer depends on the axiom of choice.
Assuming the axiom of choice, we will show that the even infinite cardinalities
are linearly ordered.

We will conclude this section by proving that there are many distinct infinite
cardinalities.

Theorem 2.4.5. (Cantor) For every set x, |x| ≤ |P(x)| and |x| 6= |P(x)|.

Proof. Clearly |x| ≤ |P(x)| since the function f : x 7→ {x} is an injection from
x to P(x).

To show that |x| 6= |P(x)| suppose for contradiction that x is a set and f :
x→ P(x) is any function. It will be enough to show that rng(f) 6= P(x), ruling
out the possibility that f is a bijection. Consider the set y = {z ∈ x : z /∈ f(z)};
we will show that y /∈ rng(f). For contradiction, assume that y ∈ rng(f) and
fix z ∈ x such that y = f(z). Consider the question whether z ∈ y. If z ∈ y
then z /∈ f(z) by the definition of y, and then z /∈ y = f(z). If, on the other
hand, z /∈ y then z ∈ f(z) by the definition of y, and so z ∈ y = f(z). In both
cases, we have arrived at a contradiction.

Thus, P(ω) has strictly greater cardinality than ω, PP(ω) has strictly greater
cardinality than P(ω) and so on. We have produced infinitely many infinite sets
with pairwise distinct cardinalities.

Exercise 2.4.6. Prove that if |x| = |y| then |P(x)| = |P(y)|.
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2.5 Countable and uncountable sets

The most important cardinality-related concept in mathematics is countability.
We will use it in this section to provide the scandalously easy proof of the
existence of transcendental real numbers discovered by Cantor.

Definition 2.5.1. A set x is countable if |x| ≤ |ω|. A set which is not countable
is uncountable.

As a matter of terminology, some authors require countable sets to be infinite.
By the following theorem, this restricts the definition to the collection of sets
which have the same cardinality as ω.

Theorem 2.5.2. 1. If x is countable then either x is finite or |x| = |ω|.

2. A nonempty set is countable if and only if it is a surjective image of ω.

3. A surjective image of a countable set is countable.

4. A countable union of finite sets of reals is again countable.

Proof. For (1), first argue that for every set x ⊂ ω, either x is finite or |x| = |ω|.
This is easy to see though: if the set x ⊂ ω is infinite, then its increasing
enumeration is a bijection between ω and x.

Now suppose that x is an arbitrary countable set, and choose an injection
f : x→ ω. Let y = rng(f), so f : x→ y is a bijection. By the first paragraph,
the set y is either finite or has the same cardinality as ω, and so the same has
to be true about x. This completes the proof of (1).

For (2), if f : ω → x is a surjection of ω onto any set x, then the function
g : x → ω defined by g(z) = min{n ∈ ω : f(n) = z} is an injection of x to ω,
confirming that x is countable. On the other hand, if x is countable, then either
x is infinite and then x is in fact a bijective image of ω by (1), or x is finite and
then it is a bijective image of some natural number n. Any extension of this
bijection to a function defined on the whole ω will be a surjection of ω onto x.

For (3), let x be a countable nonempty set and f : x → y be a surjection.
By (2), there is a surjection g : ω → x and then f ◦ g will be a surjection of ω
onto y, confirming the countability of x.

For (4), let x be a countable set whose elements are finite sets of real numbers;
I must show that

⋃
x is countable. ???

The last item deserves a couple of remarks related to the axiom of choice.
The assumption that

⋃
x ⊂ R made it possible to define the enumerating func-

tion for
⋃
x: for every element y ∈ x there is an easily defined bijection of y with

a natural number, namely the increasing one. If we dropped the assumption
that x consists of sets of reals, such a system of bijections would not be readily
available, and we would have to use the Axiom of Choice to select the bijections
and prove the theorem. Also, the version of the last item for countable unions
of countable sets of reals is still true but requires the Axiom of Choice for its
proof.
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Theorem 2.5.3. The following sets are countable:

1. the set of integers;

2. if x is any countable set then the set x<ω of all finite sequences of elements
of x;

3. the set of rational numbers;

4. the set of all open intervals with rational endpoints;

5. the set of all polynomials with integer coefficients;

6. the set of all algebraic numbers.

Theorem 2.5.4. |R| = |P(ω)|.

While we have not developed the real numbers R formally, any usual concept
of real numbers will be sufficient to prove this theorem.

Proof. By the Schröder-Bernstein theorem, it is enough to provide an injection
from R to P(ω) as well as an injection from P(ω) to R.

To construct an injection from R to P(ω), we will construct an injection from
R to P(x) for some countable infinite set instead, and finish the argument by
Theorem 2.5.2(1). Let x be the set of all open intervals with rational endpoints,
so x is countable by Theorem 2.5.3(4). Let f : R→ P(x) be the function defined
by f(r) = {i ∈ x : r ∈ i}; we claim that this is an injection. Let r 6= s be two
distinct real numbers. Then, there is an open interval i with rational endpoints
that separates r from s, i.e. r ∈ i but s /∈ i. Then i ∈ f(r) and i /∈ f(s), and
therefore f(r) and f(s) must be distinct.

To construct an injection from P(ω) to R, consider the function g : P(ω)→ R
defined by the following formula: g(y) is the unique element of the closed interval
[0, 1] whose ternary expansion consists of 0’s and 2’s only, and n-th digit of the
ternary expansion of g(y) is 2 if n ∈ y, and the n-th digit is 0 if n /∈ y. It is easy
to check that this is an injection.

Corollary 2.5.5. (Cantor) There is a real number which is not the root of a
nonzero polynomial with integer coefficients.

Proof. The set P(ω) is uncountable by Theorem 2.4.5, and so is R. On the
other hand, the set of algebraic real numbers is countable. Thus, there must be
a real number which is not algebraic.

The presented proof is incomparably easier than any proof that a specific real
number (say π or e) is not algebraic. Also, it does not use almost any knowledge
about real numbers.

Exercise 2.5.6. Let x be a countable set. Show that any set consisting of
pairwise disjoint subsets of x is countable.



Chapter 3

Ordinals

3.1 Basic definitions

In this chapter, we will develop the notion of well-ordering. A well-ordering is a
linear order along which one can perform induction arguments similar to those
on ω. However, well-orderings are typically “longer” than ω. Theorems using
well-orderings in their proofs or statements are common in pure mathematics.
The following are motivational examples:

• (Cantor–Bendixson analysis of closed sets) Every closed set of reals is a
union of a countable set and a closed set without isolated points.

• (Ulm classification of countable p-groups) Every countable p-group is spec-
ified up to isomorphism by a well-ordered sequence of Ulm factors.

• (Hausdorff analysis of countable linear orders) Every linear order either
contains an isomorphic copy of Q or it is obtained by a ”repeated” appli-
cation of substitution or ???

• (Borel determinacy) Every two-player infinite game with a Borel payoff is
determined.

Definition 3.1.1. A well-ordering is a linear ordering ≤ ona set x which in
addition satisfies that every nonempty subset a ⊂ x has a ≤-least element, i.e.
an element u such that the conjunction v ∈ a and v ≤ u implies v = u.

Well-orderings are intended to share many good inductive properties of the
natural ordering on ω. ω itself with its natural ordering is a well-ordering as
verified in Theorem 2.2.6. However, there are many well-orderings that are not
isomorphic to ω. Consider for example two copies of ω stacked upon each other,
or three of them, and so on. We will now isolate somewhat canonical collection
of well-orderings, the von Neumann ordinal numbers. Ordinals are typically
denoted by lower-case Greek letters such as α, β, γ . . . The collection of ordinals
is itself naturally linearly ordered: given two ordinals α, β then either α is an

21



22 CHAPTER 3. ORDINALS

initial segment of β or vice versa, β is an initial segment of α. It will also turn
out that every well-ordering is isomorphic to an ordinal. This will provide us
with good understanding of well-orderings.

Our treatment of ordinal numbers uses the axiom of regularity. A treatment
without the use of this axiom is possible, yielding the same understanding, with
slightly more involved definitions and arguments.

Definition 3.1.2. A set x is an ordinal number, or ordinal for short, if it is
transitive and linearly ordered by ∈.

In particular, every natural number as well as ω is an ordinal.

Theorem 3.1.3. 1. Every element of an ordinal is again an ordinal.

2. Whenever α, β are ordinals then either α ⊆ β or β ⊆ α holds.

3. (Linearity) Whenever α, β are ordinals then either α ∈ β or β ∈ α or
α = β holds.

4. (Rigidity) Whenever α, β are ordinals and i : α → β is an isomorphism
of linear orders then α = β and i = id.

Proof. For (1), let α be an ordinal and β ∈ α. We have to verify that β is
linearly ordered by ∈ and transitive. For the linearity, observe that β ⊆ α
by the transitivity of α, and as α is linearly ordered by ∈, so is β. For the
transitivity, suppose that γ ∈ β and δ ∈ γ; we must conclude that δ ∈ β. By
the transitivity of α, all β, γ, δ are in α. Since ∈ is a linear ordering on α and
δ ∈ γ ∈ β, δ ∈ β follows as required.

For (2) assume that both inclusions α ⊆ β, β ⊆ α fail. Use the axiom of
regularity to find ∈-least element of α which is not in β, call it α0. Find the
∈-least element of β which is not in α, call it β0. We will show that α0 = β0;
this will contradict the assumption that α0 ∈ α \ β and β0 ∈ β \ α. For the
inclusion β0 ⊂ α0, every element γ ∈ β0 must be in α0: it is certainly in α by
the minimal choice of β0, and neither α0 ∈ γ nor α0 = γ can hold as then α0 ∈ β
by the transitivity of β, and this contradicts the choice of α0. The linearity of
α then leaves γ ∈ α0 as the only possibility. By a symmetric argument, every
element γ ∈ α0 must be in β0. By extensionality, α0 = β0 as desired.

For (3), if both inclusions α ⊆ β, β ⊆ α hold, then α = β and we are done.
Suppose that one of the inclusions, say α ⊆ β, fails; by (2), the other must hold.
Then let α0 be the ∈-least element of α which is not in β; we will show that
α0 = β. Certainly α0 ⊆ β by the minimal choice of α0. For the other inclusion,
suppose for contradiction that it fails, and let γ ∈ β be an element such that
γ /∈ α0. Since both α0, γ are elements of α and α is linearly ordered by ∈, it
must be the case that either γ = α0 or α0 ∈ γ. In both of these cases it would
follow that α0 ∈ β (in the latter case by the transitivity of β), contradicting the
choice of α0.

For (4), assume that α, β are ordinals and i : α → β is an isomorphism.
Suppose for contradiction that i is not the identity. Then, there must be an
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ordinal γ ∈ α such that i(γ) 6= γ. Use the axiom of regularity to choose the
∈-least ordinal γ ∈ α such that i(γ) 6= γ.

Claim 3.1.4. γ ∈ i(γ).

Proof. As ordinals are linearly ordered by ∈ and i(γ) ∈ β is an ordinal by (1),
there are only three options: γ = i(γ), i(γ) ∈ γ, or γ ∈ i(γ). The first one is
ruled out by the assumption. The second is impossible as well: if i(γ) ∈ γ then
i(i(γ)) = i(γ) by the minimality of γ, contradicting the fact that i is a bijection.
We are left with the third option, proving the claim.

Now, since β is a transitive set and it contains i(γ), it must contain also
its element γ. Let δ ∈ α be an element such that i(δ) = γ. Since i is an
isomorphism, the previous claim shows that δ ∈ γ. By the minimality choice of
γ, i(δ) = δ 6= γ, a contradiction.

As one corollary, we will show that the axis of ordinal numbers is so long
that it no longer forms a set.

Definition 3.1.5. ON denotes the class of all ordinals.

Corollary 3.1.6. ON is well-ordered by ∈. It is not a set.

Proof. ON is linearly ordered by ∈ by Theorem 3.1.3(3). The ordering must
be a well-ordering by the axiom of regularity: whenever a is a set (of ordinals),
then a has a ∈-least element.

To prove that ON is not a set, assume for contradiction that it is. The set is
transitive, as every element of an ordinal is again an ordinal by Theorem 3.1.3(1).
It is linearly ordered by ∈, as we have just seen. Therefore, ON is an ordinal,
and so ON ∈ ON, contradicting the axiom of regularity.

Theorem 3.1.7. Every well-ordering is isomorphic to a unique ordinal.

Proof. The uniqueness part follows from the rigidity of ordinals, Theorem 3.1.3(4).
For the existence part, let ≤ be a well-ordering on a set x. For each y ∈ x, let
Sy denote the initial segment of x up to y: Sy = {z ∈ x : z < y}. Let
a = {y ∈ x : Sy is isomorphic to an ordinal} and let F be the function with
domain a, assigning to each y ∈ a the ordinal to which Sy is isomorphic. By
the first paragraph, F is indeed a function.

Claim 3.1.8. a is an initial segment of x, rng(F ) is an ordinal, and F is an
isomorphism of a with rng(F ).

Proof. For the first sentence, suppose that y ∈ a is an arbitrary element and
y′ < y. We must show that y′ ∈ a. Let i : Sy → α be an isomorphism of Sy
with an ordinal, and set i(y′) = β ∈ α. Then i � Sy′ is an isomorphism between
Sy′ and β, and so y′ ∈ a as desired.

For the second sentence, observe that by the Axiom schema of Replacement,
rng(F ) is indeed a set. To show that it is an ordinal, note that it is a set of
ordinals and as such it is linearly ordered by ∈ by Theorem 3.1.3. Thus, it is
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only necessary to show that rng(F ) is transitive. Let α ∈ rng(F ) and β ∈ α.
Let y ∈ x be a point such that F (y) = α. Thus, there is an isomorphism
i : Sy → α. Let y′ < y be a point such that i(y′) = β. Then i � Sy′ : Sy′ → β is
an isomorphism, and β ∈ rng(F ) as required.

For the last sentence, just note that if y′ < y are elements of a then F (y′) ∈
F (y).

In view of the claim, it is enough to show that a = x. Suppose that a 6= x,
and use the fact that x is a well-ordering to find a ≤-least element y ∈ x which
is not in a. Then F is an isomorphism of Sy with rng(F ) by the claim, and
y ∈ a by the definition of a. This is a contradiction with the choice of y.

Note the use of the Axiom schema of Replacement in the above proof. The
theorem cannot be proved without it. The development of ordinals is one of the
reasons why Replacement was incorporated into ZFC.

Corollary 3.1.9. There is an uncountable ordinal.

Proof. Let x ⊂ P(ω × ω) be the set of all well-orderings on ω. Let F be the
function with domain x which assigns to each element y ∈ x the unique ordinal
to which y is isomorphic. F is indeed a function as guaranteed by Theorem 3.1.7.
We will show that rng(F ) is an uncountable ordinal.

To verify that rng(F ) is an ordinal, first note that by Replacement, rng(F )
is a set. As a set of ordinals, it is linearly ordered by ∈ by Theorem 3.1.3. Thus,
it is enough to show that rng(F ) is transitive. Suppose that α ∈ rng(F ) and
β ∈ α. Let d ⊂ ω be a set and ≤ be a well-ordering on a and i : d → α be an
isomorphism between d and α with their respective orderings. Let e = {n ∈ d :
i(n) ∈ β}. Then i � e is an isomorphism of the well-ordering ≤ restricted to e
and β. Therefore, β ∈ rng(F ).

As for the uncountability of rng(F ), suppose for contradiction that i : ω →
rng(F ) is a bijection. Then, consider the relation ≤ on ω defined by n ≤ m if
i(n) ∈ i(m) or n = m. Then i is an isomorphism of ≤ with rng(F ). By the
definition of F , rng(F ) ∈ rng(F ), contradicting regularity.

Definition 3.1.10. An ordinal α is a successor ordinal if there is a largest
ordinal β strictly smaller than α. In this case, write α = β + 1. If α is not a
successor ordinal, then it is a limit ordinal.

Exercise 3.1.11. Let ≤ be a linear ordering. The following are equivalent:

1. ≤ is a well-ordering;

2. there is no infinite strictly descending sequence x0 > x1 > x2 > . . . in ≤.

Exercise 3.1.12. For every ordinal α there is a limit ordinal β such that α ∈ β.

Exercise 3.1.13. For every set x of ordinals there is an ordinal larger than all
elements of x.

Exercise 3.1.14. There is no class injection from the class of all ordinals into
a set.
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3.2 Transfinite induction and recursion

The ordinal numbers allow proofs by transfinite induction and definitions by
transfinite recursion much like natural numbers allow proofs by induction and
definitions by recursion.

Theorem 3.2.1. Suppose that φ is a formula of set theory with parameters.
Suppose that φ(0) holds, and for every ordinal α, (∀β ∈ α φ(β))→ φ(α) holds.
Then, for every ordinal α, φ(α) holds.

Proof. Suppose for contradiction that there is an ordinal, call it γ, such that
φ(γ) fails. Consider the set x = {α ∈ γ + 1 : ¬φ(α)}. This is a nonempty set of
ordinals, containing at least γ itself. By the Axiom of regularity, the set x has
an ∈-minimal element α. Then ∀β ∈ α φ(β) holds and φ(α) fails, contradicting
the assumptions.

As in the case of induction on natural numbers, we will refer to the implication
(∀β ∈ α φ(β)) → φ(α) as the induction step. In most transfinite induction
arguments, the proof of induction step is divided into the successor case and
the limit case according to whether α is a successor or a limit ordinal.

Theorem 3.2.2. Suppose that F is a class function such that F (x) is defined
for all x. Then there is a unique class function G such that dom(G) = ON and
for every ordinal α, G(α) = F (G � α).

Proof. We will prove first that for every ordinal β, there is a unique function
Gβ such that

(*) dom(G) = β and for every ordinal α ∈ β, G(α) = F (G � α).

If this fails for some ordinal, then there must be the least ordinal β for which it
fails. There are two cases:

Case 1. β is a limit ordinal. In such a case, consider the set {Gγ : γ ∈ β}. These
functions can indeed be collected into a set by the axiom schema of replacement.
It is also the case that if γ ∈ β and δ ∈ γ, then Gδ = Gγ � δ by the uniqueness
property of the function Gδ with respect to (*) at δ. Thus,

⋃
γ∈β Gγ is a function

with domain β, and it is clearly the unique function satisfying (*). This is a
contradiction to the choice of β.

Case 2. β is a successor ordinal, β = γ + 1. In such a case, there is a unique
function Gβ satisfying (*), namely the function Gγ ∪ 〈γ, F (G � γ)〉. This is
again a contradiction to the choice of β.

Now, the function G is defined as follows: G(α) = x if for every β > α,
Gβ(α) = x. This is the only possibility given the uniqueness of the functions
Gβ , and at the same time this function G works.
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3.3 Applications with choice

In the way of applications of the transfinite recursion procedure, we will state
and prove two equivalent restatements of the axiom of choice. The first one is
the famous well-ordering principle of Zermelo [13].

Definition 3.3.1. The well-ordering principle is the statement “every set can
be well-ordered”.

Theorem 3.3.2. (Zermelo) The following are equivalent on the basis of ZF
axioms:

1. axiom of choice;

2. well-ordering principle.

Proof. (1) implies (2) is the more difficult implication. Assume the Axiom
of Choice. Let x be an arbitrary set. It is enough to show that there is a
bijection between x and an ordinal. Let h be a selector function on P(x) \ {0}
as guaranteed by the Axiom of Choice. Let F be a two-place function defined
by F (u, v) = h(x \ rng(u)) if u is a function and x \ rng(u) 6= 0; otherwise, let
F (u, v) = x. Let G be the unique function given by Theorem 3.2.2.

There must be an ordinal β such that G � β is not an injection from β to x.
If there was no such an ordinal, then the inverse of G would be a function from
x to ON. This is excluded by the Replacement schema, as the class of ordinals
is not a set by Corollary 3.1.6.

Let β be the smallest ordinal such that G � β is not an injection from β to
x. We will show that β is a successor ordinal, β = γ + 1 for some γ, and G � γ
is a bijection between x and γ. This will prove (2).

First of all, β is not a limit ordinal, because in such a case G � β =
⋃
γ∈β G �

γ, and as all the functions G � γ for γ ∈ β are injections into x by the minimality
assumption on β, G � β would have to be such an injection again. Thus, β is
a successor ordinal, β = γ + 1 for some γ, and G � γ is an injection into x. If
G′′γ is not equal to x, then G(γ) ∈ x is an element which does not belong to
G′′γ by the definition of the function F . In such a case, G � β would be again
an injection into x, contradicting the choice of β. Thus, G′′γ = x and so G � γ
is a bijection between γ and x as desired.

To prove that (2) implies (1), assume that well-ordering principle holds. To
verify the axiom of choice, let x be a collection of nonempty sets. To produce a
selector on x, just use the well-ordering principle to find a well-ordering on

⋃
x,

and let f be the function such that dom(f) = x and f(y) is the ≤-least element
of y, whenever y ∈ x. This proves (1).

Now we come to another equivalent of the axiom of choice, the Zorn’s lemma.
It is the most commonly used form of the axiom of choice in mathematics, since
its use does not require technical tools such as transfinite recursion. Every good
Pole will tell you that Zorn’s lemma was first discovered by Kuratowski in 1922
[5].
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Definition 3.3.3. Zorn’s lemma is the following statement. Whenever 〈P,≤〉
is a nonempty partially ordered set such that every linearly ordered subset of P
has an upper bound, then P has a maximal element.

Theorem 3.3.4. (Kuratowski) The following are equivalent on the basis of
axioms of ZF set theory:

1. Axiom of Choice;

2. Zorn’s lemma.

Proof. We will start with (1)→(2) implication. Let P be a partially ordered
set. Let trash be a set which is not an element of P . Use the axiom of choice
to find a selector on the set P(P ) \ {0}. Let F be a two-place function defined
by F (x, y) = H(a) where a = {p ∈ P : p is an upper bound of P ∩ rng(x) and
p /∈ rng(x)} if the set a is nonempty; otherwise, let F (x, y) = trash. Let G be
the unique class function obtained from the transfinite recursion theorem.

Let β be the least ordinal such that G � β is not an increasing injection
from β to P . First of all, β exists, because otherwise G would be an increasing
injection from ON to x, which is impossible by ???. Second, β must be a
successor ordinal, β = γ + 1 for some ordinal γ.

Now, G � γ is an increasing function from γ to P , so its range G′′γ is a
linearly ordered subset of P . By the assumption on P , the set a of upper
bounds of G′′γ is nonempty. ???

For the implication (2)→(1), assume that Zorn’s lemma holds. Let x be
a set of nonempty sets. To confirm the axiom of choice, we must produce a
selector for x. Consider the partially ordered oset P of all functions f such that
dom(f) ⊆ x, and for all y ∈ dom(f), f(y) ∈ y. The ordering on P is inclusion:
f ≤ g if f ⊆ g. Every linearly ordered subset of P has an upper bound: if
a ⊂ P is a collection linearly ordered by inclusion, then

⋃
a ∈ P is the upper

bound. By an application of Zorn’s lemma, the partially ordered set P must
have a maximal element, call it h. We will show that h is a selector on x.

Indeed, suppose for contradiction that h is not a selector on x. The only
way how that can happen is that dom(h) 6= x. Let y ∈ x be some set not
in the domain of h. Let z ∈ y be an arbitrary element. Consider the set
f = h ∪ {〈y, z〉}. It is clear that f is an element of the partially ordered set P ,
h ⊂ f , and h 6= f . This contradicts the maximal choice of h and completes the
proof of the theorem.

Since Zorn’s lemma is such a common presence in many mathematical ar-
guments, at least one application of it is called for. Note the typical form of
the argument: a complicated object is constructed. The partially ordered set
to which Zorn’s lemma is applied consists of approximations to such an object,
and a maximal approximation (granted by Zorn’s lemma) is the object that we
want.

Definition 3.3.5. Let x be a set. A filter on x is a set F ⊂ P(x) which is
closed under supersets (∀y ∈ F ∀z ⊆ x y ⊆ z → z ∈ F ) and intersections
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(∀y, z ∈ F y ∩ z ∈ F ), and does not contain an empty set. A filter F is an
ultrafilter if for every set y ⊆ x, y ∈ F or x \ y ∈ F .

Ultrafilters are quite useful in various parts of mathematics. How do we
find one? There is a rather obvious and useless type of ultrafilter, the principal
kind. An ultrafilter F is principal if there is an eleemnt i ∈ x such that y ∈ F if
and only if i ∈ y. Are there any nonprincipal ultrafilters? The axiom of choice
yields a positive answer:

Theorem 3.3.6. (AC) There is a nonprincipal ultrafilter on every infinite set.

Proof. Let x be an infinite set. Let P be the poset of all filters on x which
do not contain any finite sets. The ordering on P is inclusion. We will use
Zorn’s lemma to produce a maximal element in P . Then, we will show that this
maximal element is a nonprincipal ultrafilter.

First, observe that P is a nonempty poset. For this, consider F = {y ⊆
x : x \ y is finite}. It is easy to check that F is a filter. Since x is infinite,
0 /∈ F . Since the union of finite sets is finite, F is closed under intersections. As
a subset of a finite set is finite again, F is closed under supersets. Lastly, since
x is infinite, F contains no finite sets.

Second, observe that every linearly ordered set a ⊂ P has an upper bound.
This upper bound is

⋃
a. To verify that

⋃
a is indeed an element of P ,

•
⋃
a contains no finite sets as no filters in a contain any finite sets;

• to check the closure of a under supersets, let y ⊆ x be an element of
⋃
a

and y ⊆ z be a subset of x. Choose F ∈ a such that y ∈ F . Since F is a
filter, z ∈ F and so z ∈

⋃
a;

• to check the closure of
⋃
a under intersections, we will finally use linearity

of a. Suppose that y, z ∈
⋃
a and F,G ∈ a are such that y ∈ F and z ∈ G.

By linearity of a, either F ⊆ G or G ⊆ F holds. For definiteness, suppose
F ⊆ G. Then y ∈ G, and since G is a filter closed under intersections,
y ∩ z ∈ G and so y ∩ z ∈

⋃
a as required.

Now, Zorn’s lemma shows that the poset P has a maximal element F . Let
x = y ∪ z be a partition; we will show that either y ∈ F or z ∈ F .

Claim 3.3.7. Either ∀u ∈ F u ∩ y is infinite, or ∀u ∈ F u ∩ z is infinite.

Proof. If both of the disjuncts failed, then there would be sets uy, uz ∈ F such
that uy ∩ y is finite and uz ∩ z is finite. Consider the set u = uy ∩ uz. Since p
is closed under intersections, u ∈ F . Since x = y ∩ z, it must be the case that
u ⊂ (uy ∩ y) ∪ (uz ∩ z). This is a union of two finite sets, and therefore finite.
This contradicts the assumption that elements of P contain no finite sets.

Now, one of the disjuncts in the claim must hold; for definiteness assume
that ∀u ∈ F u ∩ y is infinite. Consider G = {v ⊆ z : ∃u ∈ F u ∩ y ⊆ v}. This is
a filter containing no finite sets, containing F as a subset, and y as an element.
By the maximality assumption, it must be the case that F = G. Thus, y ∈ F
as requested.
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Exercise 3.3.8. Every filter on a set x can be extended to an ultrafilter.

3.4 Applications without choice

Not all applications of the transfinite induction and recursion involve the axiom
of choice. Our first such application yields the cumulative hirearchy of the
set-theretic universe.

Definition 3.4.1. If α is an ordinal, let Vα be the set defined by the following
recursive formula: Vα+1 = P(Vα) and Vα =

⋃
β∈α Vβ if α is limit.

Theorem 3.4.2. 1. Each Vα is a transitive set;

2. α ≤ β implies Vα ⊆ Vβ;

3. for every set x there is an ordinal α such that x ∈ Vα.

Proof. The first item is proved by induction on α. For the successor step of
the induction, suppose that Vα is transitive; we must conclude that Vα+1 is
transitive. Since Vα+1 = P(Vα), this follows from Proposition 2.1.3. For the
limit step, suppose that Vα is limit and the sets Vβ for β ∈ α are already
known to be transitive. Since Vα =

⋃
β∈α Vβ , the transitivity of Vα follows from

Proposition 2.1.2. This completes the proof of the first item.

For the second item, first observe

Claim 3.4.3. For every ordinal β, Vβ ⊆ Vβ+1.

Proof. Let x ∈ Vβ . Since Vβ is transitive by (1), x ⊆ Vβ . Therefore, x ∈
P(Vβ) = Vβ+1.

The argument for the second item now proceeds by induction on β. For the
successor step of the induction, suppose that the statement holds for β. To
verify it for β + 1, suppose that α ≤ β + 1 is an ordinal. There are two cases.
Either α = β + 1 in which case certainly Vα ⊂ Vβ+1. Or α ≤ β in which case
Vα ⊆ Vβ by the induction hypothesis, and Vβ ⊆ Vβ+1 by the claim; together
Vα ⊆ Vβ as desired. For the limit step of the induction, if β is a limit ordinal
then Vα ⊆ Vβ for every ordinal α by the definition of Vβ .

The last item uses the Axiom of Regularity. Let V =
⋃
α Vα. Suppose that

the complement of V is a nonempty class. By the axiom of regularity for classes
(Corollary 2.2.12) applied to the complement of V , there is a set x /∈ V such
that all its elements are in V . For every y ∈ x let rk(y) be the least ordinal α
such that y ∈ Vα; this exists as y ∈ V by the minimal choice of x. By the Axiom
of Replacement, rk′′x ⊂ ON is a set. By Exercise 3.1.13, there is an ordinal α
larger than all ordinals in rk′′x. It follows that x ⊆ Vα, and so x ∈ Vα+1 by the
definition of Vα+1. This contradicts the assumption that x /∈ V .
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The theorem makes it possible to define, for every set x, the ordinal rk(x)
to be the smallest α such that x ∈ Vα. Note that this is always a successor
ordinal. The rank can serve as a rough measure of complexity of mathematical
considerations. The theory of finite sets (such as most of finite combinatorics or
finite group theory) takes place inside the structure 〈Vω,∈〉. Most mathematical
analysis can be interpreted as statements about Vω+1. On the other hand,
classical set theory often studies phenomena occurring high in the cumulative
hierarchy. The high and low stages of the hierarchy are tied together more
closely than one might expect.

The following theorem is a typical application of the transfinite induction to
mathematical analysis.

Theorem 3.4.4. (Cantor–Bendixson) Every closed set of reals can be written
as a disjoint union of a countable set and a closed set without isolated points.

In fact, the decomposition is unique, as we will show later.

Proof. Recall that a basic open set of reals is an interval (p, r) with rational
endpoints, not including the endpoints. An open set of reals is one which is
obtained as a union of some collection of basic open sets, and a closed set is one
whose complement is open.

Let C ⊂ R be a closed set of reals. By the transfinite recursion theorem 3.2.2,
there is a unique transfinite sequence 〈Cα : α ∈ ON〉 such that C0 = C, Cα+1 =
Cα \ {isolated points of Cα}, and Cα =

⋂
β∈α Cβ .

Claim 3.4.5. For every ordinal α, the set Cα is closed, and if β ∈ α then
Cα ⊆ Cβ.

Proof. By transfinite induction on α. At limit stage α, the construction takes
an intersection of a collection of closed sets, which then must be closed and
smaller than all sets in the intersection. At the successor stage, Cα+1 ⊆ Cα
certainly holds. To prove that Cα+1 is closed, for every point x ∈ Cα \ Cα+1

pick an open neighborhood Ox containing only x and no other elements of Cα.
Then Cα+1 = Cα \

⋃
xOx, and as a difference of a closed set and an open set,

the set Cα is closed.

Say that the sequence 〈Cα : α ∈ ON〉 stabilizes at α if Cα+1 = Cα. If
this happens then Cα is perfect by the definitions, and for every β ≥ α, Cβ =
Cα. Note that the sequence must stabilize at some ordinal, since otherwise the
function α 7→ Cα would be an injection of ON (proper class) into P(R) (a set),
which is excluded by ??? We will now show that only countably many points
have been removed from the set C before the stable stage. This will prove that
C = Cα ∪D is a partition of C into a perfect set and a countable set, where α
is the first stable stage of the construction and D = C \ Cα.

Let D = {x ∈ C : x has been removed at some stage}. For every x ∈ D,
let αx be the ordinal such that x ∈ Cαx

\Cαx+1 and let Ox be some basic open
interval containing x but no other points of Cαx

.
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Claim 3.4.6. The function x 7→ Ox is an injection on D.

Proof. Let x 6= y be distinct points of the set D; we must show that Ox 6= Oy.
The proof considers two symmetric cases, αx ≤ αy and αy ≤ αx

Suppose first that αx ≤ αy. Then, y ∈ Cαy
, the set Ox does not contain any

points of the set Cαx
except for x, and since Cαy

⊆ Cαx
by the previous Claim,

y /∈ Ox. On the other hand, y ∈ Oy by the choice of the neighborhood Oy. It
follows that Ox 6= Oy.

If αy ≤ αx then in the same way as in the previous paragraph we show that
x ∈ Ox and x /∈ Oy, and therefore Ox 6= Oy. This completes the proof of the
claim.

Since the collection of basic open neighborhoods is countable and the set D
can be injectively mapped into it, the set D is countable. This completes the
proof of the theorem.

Exercise 3.4.7. Let x be a set. The following are equivalent:

1. x ∈ Vω;

2. trcl(x) is finite.

Exercise 3.4.8. Show that Vω is a countable set.

Exercise 3.4.9. Show that for every ordinal α, there is a set x ∈ Vα+1 which
does not belong to Vα.

Exercise 3.4.10. Show that the first stage at which the Cantor–Bendixson
analysis of a closed set stabilizes is countable.

Exercise 3.4.11. Show that for every countable ordinal α there is a closed
set C of reals such that the Cantor–Bendixson analysis of C does not stabilize
before α.

3.5 Cardinal numbers

The purpose of this section is to further develop the theory of cardinalities under
the Axiom of Choice. In particular, we will identify a canonical representative
for each cardinality, and show that cardinalities are linearly ordered.

Definition 3.5.1. A cardinal number, or cardinal for short, is an ordinal number
which is not in a bijective correspondence with any ordinal number smaller than
it.

In particular, every natural number as well as ω is a cardinal number. In set-
theoretic literature, cardinals are typically denoted by lowercase Greek letters
such as κ, λ, µ, . . .

Theorem 3.5.2. (AC) Every set is a bijective image of a unique cardinal num-
ber.
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Proof. Let x be any set. Let a be the class of all ordinal numbers which are
bijective images of x. Observe that a is nonempty: by Zermelo’s well-ordering
theorem, x can be well-ordered and the well-ordering on it is isomorphic to
some ordinal. The isomorphism is then a bijective function between x and the
ordinal.

Now, the class a must have an ∈-least element. Review the definition of a
to check that this minimum of a is a cardinal number. This shows that x is
in bijective correspondence with some cardinal number. The uniqueness of this
cardinal number follows easily: if κ, λ are cardinals such that |κ| = |x| = |λ|,
then κ and λ are in a bijective correspondence. This excludes both κ ∈ λ and
λ ∈ κ by the definition of a cardinal number, and by the linearity of ordering of
the ordinal numbers (Theorem 3.1.3), κ = λ is the only option left.

Corollary 3.5.3. (AC) Whenever x, y are sets, then either |x| ≤ |y| or |y| ≤ |x|.
Proof. Let κ, λ be cardinals such that |κ| = |x| and |λ| = |y|. By the linearity
of ordering of ordinal numbers–Theorem 3.1.3, either κ ⊆ λ or λ ⊆ κ holds.
Then, either |κ| ≤ |λ| or |λ| ≤ |κ| holds, as the identity map will be the required
injection map. Thus, either |x| ≤ |y| or |y| ≤ |x| holds as desired.

Thus, under the axiom of choice, cardinalities are linearly ordered (even well-
ordered), and the cardinal numbers are canonical representatives of cardinalities.
There is an enormous supply of cardinal numbers, as described in the following
theorem:

Theorem 3.5.4. For every ordinal α there is a cardinal κ such that α ∈ κ.

Proof. There are two possible, quite different proofs. For the first proof, fix an
ordinal α. By Theorem ???, |P(α)| > |α|. By the Axiom of Choice, there is a
cardinal number κ such that |κ| = |P(α)|. Since |α| < |κ|, it must be the case
that α ∈ κ.

The second proof does not use the Axiom of Choice. Consider the class
function F from P(α × α) to ordinals which maps a set T to α if T is a well-
ordering and α is the unique ordinal isomorphic to T , and F (T ) = 0 if T is
not a well-ordering. By the Replacement axiom, rng(F ) is a set. By ???, there
is an ordinal β larger than all elements of rng(F ). Let κ be the cardinal such
that |κ| = |β|, and argue that α ∈ κ. If this failed, then there would have to be
an injection from κ to α, also an injection from β to α, and so there would be
a well-ordering on a subset of α of ordertype α, contradicting the definition of
β.

Thus, the infinite cardinal numbers can be enumerated by ordinals in an in-
creasing order: ω = ω0, ω1, ω2, . . . , ωω, ωω+1, . . . ωα . . . Set theoretical literature
often makes a conceptual distinction between a cardinal number and the cardi-
nality which that cardinal number represents. The cardinalities are denoted by
ℵ, pronounced “aleph”, the first letter of the Hebrew alphabet. Thus, ℵ0 is the
cardinality of ω0, ℵ1 is the cardinality of ω1, and ℵα is the cardinality of ωα.

Finally, we come to the formulation of the question which was one of the
driving forces behind the development of modern set theory from its beginnings.
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Question 3.5.5. (Continuum Hypothesis, CH) Is |R| = ℵ1? (The contin-
uum problem) Determine the ordinal α such that |R| = ℵα. (The generalized
continuum problem) For every ordinal α, determine the ordinal β such that
|P(ωα)| = ℵβ .

It turns out that the continuum problem cannot be resolved in ZFC. There is a
good amount of speculation, some primitive and some highly sophisticated, as
to what the “right” answer to the continuum problem “should” be. The author
recommends a healthy dose of scepticism towards such speculation.

Before we leave the subject of cardinal numbers, we will develop the notion
of cofinality:

Definition 3.5.6. Let κ, α be limit ordinals. Say that cof(κ) = α, or the
cofinality of κ is equal to α, if α is the smallest ordinal such that there is a
cofinal subset of κ of ordertype α. The ordinal κ is regular if cof(κ) = κ. An
ordinal which is not regular is called singular.

It is fairly immediate to observe that cofinality of any limit ordinal must be
regular, and every regular ordinal is a cardinal. Many cardinals are regular, as
becomes obvious from the following theorem:

Theorem 3.5.7. Every successor cardinal is regular.

Proof. This theorem requires the axiom of choice for its proof; without the
axiom of choice it may even happen that every limit ordinal has cofinality equal
to ω. We will just show that ω1 is regular.

Suppose for contradiction that ω1 is singular. Then, its cofinality must be
equal to ω = ω0 and there has to be a function f : ω → ω1 whose range is
cofinal in ω1. Then, ω1 =

⋃
n f(n) is a countable union of countable sets. Such

unions are countable by Theorem ???, contradicting the definition of ω1 as the
first uncountable cardinal.

The theorem immediately suggests a question:

Question 3.5.8. Is there an uncountable limit regular cardinal?

The question was considered by Hausdorff in 1908 and later greatly expanded
by Tarski. The question cannot be resolved in ZFC. Limit regular cardinals are
called weakly inaccessible, and they are the beginning of a hierarchy of large
cardinals which is one of the main tools of modern set theory.
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Chapter 4

Descriptive set theory

The purpose of this chapter is to develop the basics of the theory of definable sets
of reals and ”similar” spaces. This allows a careful development of all subjects
of mathematical analysis such as integration theory and functional analysis.

4.1 Rational and real numbers

Before everything else, we must develop the real numbers in ZFC. This is not
difficult, but we will use the opportunity to state and prove several interesting
results on the way.

To develop the rational numbers in set theory, consider the set Z×Z\{0} and
define an equivalence on it: 〈p0, q0〉 E 〈p1, q1〉 if p0q1 = p1q0. It is not difficult to
check that E is indeed an equivalence. Let Q be the set of all equivalence classes
of the relation E. Define the ordering ≤ on Q by setting 〈p0, q0〉 ≤ 〈p1, q1〉 if
p0q1 ≤ p1q0. It is not difficult to verify that ≤ is indeed an ordering respecting
the equivalence classes. The ordering is countable, dense in itself, and it has
no endpoints. Our first result shows that these features of Q identify it up to
isomorphism.

Theorem 4.1.1. Every countable dense linear order without endpoints is iso-
morphic to 〈Q,≤〉.

Proof. The trick used is known as a “back-and-forth argument”. Suppose that
〈P,≤P 〉 and 〈R,≤R〉 are two dense countable linear orders without endpoints.
We must prove that they are isomorphic. Let 〈pn : n ∈ ω〉 and 〈rn : n ∈ ω〉
are enumerations of P and Q respectively. By recursion on n ∈ ω, build partial
functions hn : P → R such that

• 0 = h0 ⊂ h1 ⊂ h2 ⊂;

• all maps hn are finite injections;

• pn ∈ dom(h2n+1) and rn ∈ rng(h2n+2) for every n ∈ ω;

35
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• the maps hn preserve the ordering: whenever x <P y are elements of
dom(hn) then hn(x) <R hn(y).

Once the recursion is performed, let h =
⋃
n hn. This is a function from P to

Q which preserves the ordering, and dom(h) = P and rng(h) = Q. That is, h
is the requested isomorphism of the orderings P and Q.

To perform the construction, suppose that h2n has been found. In the con-
struction of h2n+1, it is just necessary to include pn in the domain of h2n+1. If
pn ∈ dom(h2n) then let h2n+1 = h2n and proceed with the next stage of the
recursion. If pn /∈ dom(h2n), then the construction of h2n+1 divides into several
cases according to how pn relates to the finite set dom(h2n) ⊂ P : ???

Exercise 4.1.2. Show that any two countable linear dense orderings with end-
points are isomorphic.

Definition 4.1.3. A linear ordering 〈P,≤〉 is complete if every bounded subset
of P has a supremum. That is, whenever A ⊂ P is a set such that the set
B = {p ∈ P : ∀q ∈ A q ≤ p} is nonempty, then the set B has a ≤-smallest
element.

Definition 4.1.4. Let 〈P,≤P be a linear ordering. A completion of P is a
order-preserving map c : P → R to a complete linear ordering 〈R,≤R〉 such
that c′′P ⊂ R is dense.

Theorem 4.1.5. Every linear ordering has a completion. The completion is
unique up to isomorphism.

Proof. For simplicity of notation, we will consider only the case of dense linear
ordering 〈P,≤P 〉. First, construct some completion of P . Call a pair 〈A,B〉 a
Dedekind cut if A∪B = P , A∩B = 0, for every p ∈ A and every q ∈ B p <P q,
and A does not have a largest element. Let R be the set of all Dedekind cuts,
and define 〈A0, B0〉 ≤R 〈A1, B1〉 if A0 ⊆ A1.

Claim 4.1.6. 〈R,≤R〉 is a complete linear ordering.

Proof. It is immediate that ≤R is an ordering. The first challenge is its linearity.
Suppose that 〈A0, B0〉 and 〈A1, B1〉 are Dedekind cuts. We must show that
either A0 ⊆ A1 or A1 ⊆ A0 holds. If A0 = A1 then this is clear. Otherwise,
one of the sets A1 \ A0 or the set A0 \ A1 must be nonempty. Suppose for
definiteness it is the set A1 \ A0, and choose an element q ∈ A1 which is not
in A0. As 〈A0, B0〉 is a Dedekind cut, it must be the case that q ∈ B0 and
all elements of A0 are <P -smaller than q. As 〈A1, B1 is a Dedekind cut, every
element p <P q must belong to A1. Therefore, A0 ⊆ A1. This confirms the
linearity of ≤R.

Now, we have to prove that ≤R is complete. Suppose that S ⊂ R is a
bounded set. Its supremum is defined as the pair 〈A,B〉 where A =

⋃
{A′ :

∃B′ 〈A′, B′〉 ∈ S} and B =
⋂
{B′ : ∃A′ 〈A′, B′〉 ∈ S}.
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Now, we have to produce an order-preserving map c : P → R such that
c′′P ⊂ R is dense. Just let c(p) = 〈A,B〉 where A = {q ∈ P : q <P p} and
B = {q ∈ P : p ≤P q}. ???

Thus, the map c : P → R is a completion of the ordering P . The final task
is to show that any other completion of P is isomorphic to R. ???

Now it makes sense to define 〈R,≤〉 as the completion of 〈Q,≤〉, which is
unique up to isomorphism. This is again a linear ordering which has some
uniqueness features.

Theorem 4.1.7. Every linear ordering which is separable, dense with no end-
points, and complete, is isomorphic to 〈R,≤〉.

At this point, it is possible to introduce a problem which, together with the
Continuum Hypothesis, shaped modern set theory. Say that a linear ordering
〈P,≤〉 satisfies the countable chain condition if every collection of pairwise dis-
joint open intervals in P is countable. Note that every separable linear ordering
P has the countable chain condition: if D ⊂ P is a countable dense set and A
is a collection of pairwise disjoint open intervals of P , for every I ∈ A use the
density of the set D to pick a point f(I) ∈ D ∩ I. The function f is then an
injection from A to D, showing that A is countable.

Question 4.1.8. (Suslin’s problem) Suppose that a linear ordering is separable,
dense with no endpoints, complete, and has the countable chain condition. Is
it necessarily isomorphic to 〈R,≤〉?

It turns out that the answer to the Suslin’s problem cannot be decided within
ZFC set theory.

4.2 Topological spaces

Many objects in mathematics are equipped with a structure that makes it possi-
ble to speak about continuous functions from one object to another–a topology.

Definition 4.2.1. A topological space is a pair 〈X,T 〉 where X is a nonempty
set and T ⊂ P(X) is a collection of subsets of X containing 0 and X and closed
under finite intersections and arbitrary unions. The collection T is the topology
and its elements are referred to as the open sets.

Definition 4.2.2. Suppose that 〈X,T 〉 and 〈Y,U〉 are two topological spaces.
A map f : X → Y is continuous if the f -preimages of open subsets of Y are
open in X. The map f is a homeomorphism if it is a bijection and both f and
f−1 are continuous maps.

Before we pass to examples, it is useful to note that most topologies are gener-
ated from collections of sets called subbases in the following way:

Definition 4.2.3. Let X be a set and S ⊂ P(X) be any set. The topology
generated by S is the set T = {O ⊂ X : O =

⋃
B for some set B consisting of

finite intersections of elements of S} ∪ {0, X}. The set S is a subbasis of T .
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Proposition 4.2.4. Whenever X is a set and S ⊂ P(X), the collection T above
is in fact a topology on X.

Proof. Clearly, 0, X ∈ T by the definition of T . We have to prove that T is
closed under arbitrary unions and finite intersections.

The closure under arbitrary unions is immediate. If U ⊂ T is any set, we
must show that

⋃
U ∈ T . Let B = {P ⊂ X : P is an intersection of finitely

many elements of S such that for some O ∈ U , P ⊂ O} It is not difficult to
check that

⋃
B =

⋃
U and so

⋃
U ∈ T as required.

Now, we must show that T is closed under finite intersections. If U ⊂ T
is a finite set, we must show that

⋂
U ∈ T . Let B = {P ⊂ X : P is an

intersection of finitely many elements of S such that P ⊂
⋂
U}. We will show

that
⋃
B =

⋂
U ; this will prove that

⋂
U ∈ T as required. For the

⋃
B ⊆

⋂
U

inclusion, note that B by definition consists of sets which are subsets of
⋂
U . For

the
⋂
U ⊆

⋃
B inclusion, let x ∈

⋂
U be an arbitrary point. Since U ⊂ T , for

every set O ∈ U there is a set PO ⊂ O which is an intersection of finitely many
elements of S and contains the points x. Since U is finite, the set

⋂
O∈U PO is

an intersection of finitely many elements of S, it is in B, and it contains the
point x. Ergo, x ∈

⋃
B.

Example 4.2.5. The discrete topology on a set X is T = P(X). In other words,
every set is open in the discrete topology.

Example 4.2.6. If 〈L,≤〉 is a linear ordering, the order topology is generated
by the subbasis consisting of all sets of the form (p, q) where p < q are elements
of L and (p, q) is the open interval {r : p < r < q}.

Example 4.2.7. The Cantor space is the set 2ω = {f : dom(f) = ω, rng(f) ⊆
{0, 1}}, equipped with the topology generated by the subbasis consisting of all
sets of the form {f ∈ 2ω : f(n) = b} where n ∈ ω and b ∈ {0, 1}.

Example 4.2.8. The Baire space is the set ωω = {f : dom(f) = ω, rng(f) ⊆
ω}, equipped with the topology generated by the subbasis consisting of all sets
of the form {f ∈ ωω : f(n) = m} where n,m ∈ ω.

Example 4.2.9. The Stone-Čech compactification of ω is the following space
denoted by βω: its underlying set is the set of all ultrafilters on ω, and the
topology is generated by the subbasis consisting of all sets of the form {u : a ∈ u}
where a ⊂ ω is an arbitrary set.

Other examples of topological spaces are obtained by applying certain oper-
ations to preexisting spaces.

Example 4.2.10. Suppose that 〈X,T 〉 is a topological space and Y ⊂ X. The
inherited topology T � Y is the collection {A ∩ Y : A ∈ T}.

In this way, we consider for example intervals [0, 1] or (0, 1) ⊂ R with the
inherited topology as topological spaces.
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Example 4.2.11. Suppose that 〈X0, T0〉 and 〈X1, T1〉 are topological spaces.
The product space is 〈X0,×X1, U〉 where U is the topology on X0×X1 generated
by the subbasis consisting of all sets of the form O×P where O ∈ T0 and P ∈ T1.

In this way, we consider for example the Euclidean spaces R, R × R, Rn for
natural number n ∈ ω with the product topology. These spaces are pairwise
nonhomeomorphic–the proof of this statement was the beginning of the field of
dimension theory.

Example 4.2.12. Suppose that I is a set and 〈Xi, Ti〉 for i ∈ I are topological
spaces. The product space is the pair 〈

∏
iXi, U〉 where

∏
iXi = {f : dom(f) =

I, ∀i ∈ If(i) ∈ Xi} and U is generated by the subbasis consisiting of all sets of
the form {f ∈

∏
iXi : f(j) ∈ O} where j ∈ I is an index and O ∈ Tj is an open

subset of Xj .

The most notorious space obtained in this way is the Hilbert cube [0, 1]ω, the
product of countably many copies of the interval [0, 1].

The following notions are ubiquitous in the treatment of topological spaces:

Definition 4.2.13. Let 〈X,T 〉 be a topological space. A set D ⊂ X is dense
in the space if every nonempty open set O ∈ T contains an element of D.

Definition 4.2.14. A topological space 〈X,T 〉 is separable if it contains a
countable dense set.

Exercise 4.2.15. Let 〈X,S〉, 〈Y, T 〉 be topological spaces. Consider the space
X×Y with the product topology. Prove that the projection function f : X×Y →
X given by f(x, y) = x is continuous.

Exercise 4.2.16. Let 〈X,T 〉 be a topological space. Consider the space X×X
with the product topology. Show that the function f : X → X × X given by
f(x) = 〈x, x〉 is continuous.

Exercise 4.2.17. Let 〈X,S〉 and 〈Y, T 〉 be topological spaces, and f : X → Y
be a continuous function. Then f viewed as a subset of X×Y is a closed subset
of X × Y .

Exercise 4.2.18. Let 〈X,S〉 and 〈Y, T 〉 be topological spaces, and f, g : X → Y
be continuous functions. The set C = {x ∈ X : f(x) = g(x)} is closed.

4.3 Polish spaces

Topological spaces defined in the previous section are quite abstract entities.
There are many topological spaces with rather unusual properties. Fortunately,
most topological spaces occurring in mathematical analysis are of a much more
specific and concrete kind. Their topologies are in a natural sense generated
from a notion of distance on the underlying set.

Definition 4.3.1. A metric on a set X is a function d : X2 → R such that
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1. for every x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0↔ x = y;

2. d(x, y) = d(y, x)l

3. (the triangle inequality) for every x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

A pair 〈X, d〉 where d is a metric on X is a metric space.

Example 4.3.2. The discrete metric on any set X, assigning any two distinct
points distance 1, is a metric. TheEuclidean metric on Rn is a metric for every
n. The Manhattan metric is a different metric on Rn, defined by d(x, y) =∑
i∈n |x(i)− y(i)|. The unit sphere S2 in R3 can be equipped with at least two

natural metrics: the metric inherited from the Euclidean metric on R3, or the
Riemann surface metric defined by d(x, y) =the length of the shorter portion of
the large circle connecting x and y.

Definition 4.3.3. If 〈X, d〉 is a metric space, then the topology generated by d
on the set X is the topology generated by the open balls B(x, ε) = {y ∈ X :
d(x, y) < ε} for x ∈ X and real ε > 0. A topology on the set X is metrizable if
there is a metric which generates it.

We will often face the following challenge: given a metric d and a topology
T on the same set X, decide whether d generates T or not. It turns out that
there is a simple criterion for that.

Lemma 4.3.4. Let X be a set, d be a metric on X and T be a topology on X.
Then d generates T if and only if both of the following hold:

1. every open ball of the metric d is open in the topology T ;

2. for every open set O ∈ T and every x ∈ O there is a real number ε > 0
such that B(x, ε) ⊂ O.

Proof. Suppose on one hand that d generates T ; we must prove (1) and (2). For
(1), the open balls of the metric d are open in T by the definitions. For (2),
suppose that O ∈ T and x ∈ O; we must find a real number ε > 0 such that
X(x, ε) ⊂ O. Since O is an open set in the topology generated by d, there must
be finitely many open balls B(yi, εi) for i ∈ n such that

⋂
iB(yi, εi) ⊂ O and

x ∈
⋂
iB(yi, εi) ⊂ O. Find a real number ε > 0 so small that d(x, yi) < εi − ε

for every i ∈ n. Then, the triangle inequality shows that B(x, ε) ⊂ B(yi, εi) for
every i ∈ n. In other words, B(x, ε) ⊂

⋂
i∈nB(yi, εi) ⊂ O as required.

Now suppose that (1) and (2) hold; we must prove that d generates T .
Certainly all open balls of the metric are in T by (1). It will be enough to show
that every open set O ∈ T is a union of some collection of metric open balls.
Let A be the set of all metric open balls which are subsets of O and argue that
O =

⋃
A. Certainly,

⋃
A ⊆ O since every set in the collection A is a subset of

O. For the opposite inclusion O ⊆
⋃
A, let x ∈ O be an arbitrary point. Use

(2) to find a real number ε > 0 such that B(x, ε) ⊂ O, and then observe that
B(x, ε) ∈ A and so B(x, ε) ⊂

⋃
A and x ∈

⋃
A as required.
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Among all possible metrics, there is a strongly preferred kind which enables
many arguments from abstract analysis.

Definition 4.3.5. Let 〈X, d〉 be a metric space and let 〈xn : n ∈ ω〉 be a
sequence of elements of X

1. A limit of the sequence is a point y ∈ X such that limn d(xn, y) = 0.

2. the sequence is Cauchy if for every real number ε > 0 there is a number
nε ∈ ω such that for every n,m ∈ ω greater than nε it is the case that
d(xn, xm) < ε.

The metric d is complete if every Cauchy sequence has a limit.

Definition 4.3.6. A Polish space is a topological space 〈X,T 〉 which is sepa-
rable and completely metrizable.

Example 4.3.7. The Euclidean spaces are Polish as their topology is generated
by the Euclidean metric.

Example 4.3.8. The Baire space is Polish. We will consider a least difference
metric on ωω. If x 6= y ∈ ωω are two distinct points, just let ∆(x, y) = min{n ∈
ω : x(n) 6= y(n)} and d(x, y) = 2−∆(x,y). It is not difficult to verify that d is a
complete metric generating the topology of the Baire space.

There is an important point to note here. A Polish space is a topological
space. By definition, there must be a complete metric generating its topology.
However, there may not be any “canonical” choice of the metric. For example, in
the case of the Euclidean spaces, both the Euclidean metric and the Manhattan
metric generate the same topology. In the case of the Baire space, the definition
of the least difference metric includes the choice of the constant 2. If the constant
2 is replaced by any other real number > 1, then the resulting metric generates
the same topology and there is no clear reason for preferring one of these metrics
over another. In more complicated spaces, the choice of the metric becomes
more obscure still. Thus, the topology is the key feature of the Polish space, as
opposed to the metric.

Most Polish spaces in mathematical analysis are obtained by various opera-
tions from simpler ones. In these notes, we will discuss only two operations for
brevity.

Proposition 4.3.9. Let 〈X,T 〉 be a Polish space and C ⊂ X a closed set. Then
C with the inherited topology is a Polish space again.

Proof. Let d be a complete metric on X. Let d � C be the metric d restricted
to the points in the set C. It will be enough to show that the metric d � C on
the set C is complete and it generates the inherited topology on the set C.

Example 4.3.10. The two-dimensional sphere S2 ⊂ R3 is a closed subset of
R3 and therefore it is a Polish space with the inherited topology. Similarly for
all other closed surfaces in R3.
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Example 4.3.11. The middle third Cantor set is the closed set C ⊂ R defined
as follows. By recursion on n ∈ ω define sets Cn ⊂ [0, 1] which are finite unions
of closed intervals. The recursive specifications are C0 = [0, 1], and Cn+1 is
obtained from Cn by removing the middle third of every interval which appears
in Cn. Let C =

⋂
n Cn. The middle third Cantor set is a closed subset of R and

therefore Polish in the inherited topology.

Theorem 4.3.12. Every Polish space is a continuous image of the Baire space
ωω.

Proof. Let 〈X,T 〉 be a Polish space, and let d be a complete metric on X
generating the topology T . By recursion on n ∈ ω build open balls Bt for all
t ∈ ωn so that

• B0 = X;

• if t ⊂ s then the closure of Bt is a subset of Bs;

• Bt =
⋃
mBtam;

• for every n > 0 and every t ∈ ωn, the diameter of Bt is ≤ 2−n.

Suppose for the moment that this construction has been performed. For
every y ∈ ωω define f(y) to be the unique point in

⋂
nBy�n. We will show that

f is a correctly defined continuous function from ωω onto X.
First of all, we must prove that for every y ∈ ωω the set

⋂
nBy�n contains

exactly one point. There cannot be more than one point in this intersection: if
x 6= y were distinct point in it, there would be n ∈ ω such that d(x, y) > 2−n

and then both x, y cannot fit into the set By�n+1 by ??? above. On the othe
hand, if ???

Second, we must show that the function f is continuous.
Third, the function f is onto. Let x ∈ X be any point; we must produce

y ∈ ωω such that x = f(y). By induction on n ∈ ω we can build sequences
tn ∈ ωn so that 0 = t0 ⊂ t1 ⊂ t2 ⊂ . . . and x ∈ Btn–this is possible by ???
above. Then, let y =

⋃
n tn ∈ ωω and observe that x ∈

⋂
nBtn =

⋂
nBy�n and

so necessarily x = f(y).
All that remains to be done is to show that the inductive construction can be

done. Suppose that Bt has been constructed. Fix a countable dense set D ⊂ X,
and let {Btam : m ∈ ω} be an enumeration of the countable set C = {B(x, ε) :
x ∈ D ∩ Bt, ε > 0 is a rational number less than 2−|t|+1, and B̄(x, ε) ⊂ Bt}.
It is necessary to verify that the induction hypotheses are satisfied. Only the
third item may be problematic. To show that Bt ⊆

⋃
mBtam, let x ∈ Bt be an

arbitrary point. Let δ > 0 be a rational number such that B(x, δ) ⊆ Bt. Let
z ∈ B(x, δ/4) be any element of the set D, and consider the ball B(z, ε/2). It is
not difficult to verify that B(z, ε/2) ∈ C and x ∈ B(z, ε/2). Thus, x ∈

⋃
mBtam

as desired.

Exercise 4.3.13. Show that the Euclidean and Manhattan metric on a Eu-
clidean space generate the same topology.
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Exercise 4.3.14. Show that the Euclidean metric on R generates the order
topology on R.

Exercise 4.3.15. Every sequence in a metric space has at most one limit.

Exercise 4.3.16. If a sequence has a limit, then it is Cauchy.

Exercise 4.3.17. Let 〈Xn, Tn〉 be Polish spaces for every n ∈ ω such that the
sets Xn are pairwise disjoint. Consider the space X =

⋃
nXn equipped with

the topology T =
⋃
n Tn. Show that 〈X,T 〉 is Polish.

4.4 Borel sets

Open sets should be viewed as the simplest subsets of topological spaces. We
will now develope the notion of a Borel subset of a topological space. Borel sets
are more complicated than open, but they still possess many regularity features.
The development of most of mathematical analysis (such as Lebesgue measure
or Baire category) is impossible without the notion of Borel set. Intuitively,
Borel sets are those sets which can be obtained from open sets by a repeated
operations of countable union, countable intersection and complement.

Definition 4.4.1. Let X be a set. A set B ⊂ P(X) is a σ-algebra of sets if it
contains 0, X ∈ B and B is closed under countable union, countable intersection,
and complement.

For example, P(X) is a σ-algebra of sets. However, we will be interested in
algebras that contain much fewer sets than the full powerset.

Definition 4.4.2. lLet 〈X,T 〉 be a topological space. The algebra of Borel sets
is the inclusion-smallest σ-algebra of subsets of X containing the open sets.

A part of this definition is the statement that among the σ-algebras of subsets
of X containing all open sets there indeed is an inclusion-smallest one. To prove
this, let A = {C : C is a σ-algebra of subsets of X which contains all open sets}
and let B =

⋂
A. It will be enough to show that B is a σ-algebra of sets and

it contains all open sets; then, it is clearly inclusion-smallest such by virtue of
its definition. To see that B is a σ-algebra of sets, note that 0, X belong to
every C ∈ A and so they belong to B. We must show that B is closed under
complements and countable unions and intersections; it will be enough to check
the case of countable unions since the other cases are similar. Suppose that sets
Dn ⊂ X for n ∈ ω are in B. To show that

⋃
nDn ∈ B, note that for every

σ-algebra C ∈ A and for every n ∈ ω, Dn ∈ C. Since C is a σ-algebra of sets,⋃
nDn ∈ C. This means that for every C ∈ A,

⋃
nDn ∈ C, and so

⋃
nDn ∈ B.

Definition 4.4.3. Let 〈X,T 〉 be a Polish space. By transfinite recursion on
α > 0 define collections Σ0

α and Π0
α of subsets of X by the following demands:

1. Σ0
1 is the collection of all open subsets of X, Π0

1 is the collection of all
closed subsets of X;
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2. Σ0
α is the collection of all countable unions of sets in

⋃
β∈α Π0

α, and Π0
α

is the collection of all countable unions of sets in
⋃
β∈α Σ0

α.

The class of Borel sets allows a fine layering into a Borel hierarchy defined
by transfinite recursion.

Definition 4.4.4. Let 〈X,T 〉 be a Polish space. Collections Σ0
α and Π0

α of
subsets of X are defined by transfinite recursion on α > 0 by the following
demands:

1. Σ0
1 is the collection of all open subsets of X;

2. Π0
1 is the collection of all closed subsets of X;

3. for α > 1, Σ0
α is the collection of all unions

⋃
nAn where the sets An come

from
⋃
β∈α Π0

α;

4. for α > 1, Π0
α is the collection of all intersections

⋂
nAn where the sets

An come from
⋃
β∈α Σ0

α.

5. ∆0
α = Σ0

α ∩Π0
α.

Minor typographical points: the indexation of the Borel hierarchy begins
with subscript 1 (as opposed to 0) for historical reasons. The role of the super-
script 0 is not within the scope of this textbook; still, the superscript must not
be omitted. The Greek letters are boldface. Lightface hierarchies exist as well,
but again fall out of the scope of this textbook. The class Σ0

2 is often denoted
by Fσ and the class Π0

2 is often denoted by Gδ. (F stands for French “fermé”, or
closed, while G stands for German “Gebiet”, or region.) The following theorem
captures the main features of the Borel hierarchy.

Theorem 4.4.5. 1. Whenever β ∈ α are nonzero ordinals, then both Σ0
β

and Π0
β are subsets of both Σ0

α and Π0
α;

2. the sets in Π0
α are exactly the complements of the sets in Σ0

α;

3. The construction stabilizes at α = ω1 and Σ0
ω1

= Π0
ω1

=
⋃
α∈ω1

Σ0
α is

exactly the σ-algebra of Borel sets.

4. Continuous preimages of Σ0
α, resp. Π0

α sets are again Σ0
α, resp. Π0

α.

Proof. For (1), the case of 1 = β ∈ α = 2 is handled separately. It is clear
from the definitions that every closed set is Fσ and every open set is Gδ. We
must show that every open set is Fσ; Venn’s diagram reasoning then shows that
every closed set is Gδ, proving the case 1 = β ∈ α = 2. Let d be a complete
metric generating the topology of the space X. Since every open set is a union
of countably many open d-balls, it is enough to show that every open ball is Fσ.
Let B(x, ε) be an open ball for some x ∈ X and a real number ε > 0. Clearly,
B(x, ε) =

⋃
{B̄(x, δ) : δ > 0 is a rational number smaller than ε}, where B̄(x, δ)
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is the closed ball around x of radius δ. The right hand side of the equality is
a countable union of closed sets, proving the case 1 = β ∈ β = 2. To conclude
the proof of (1), the case of 1 ∈ β ∈ α follows immediately from the definitions.

(2) is proved by transfinite induction on α. The case α = 1 follows from
the definitions, as closed sets are exacly the complements of open sets. Now
suppose that α > 1 is an ordinal and (2) has been verified up to α. To verify
(2) at α, suppose that A ∈ Σ0

α. To show that X \A ∈ Π0
α, choose sets An ⊂ X

and ordinals βn ∈ α such that for every n ∈ ω, An ∈ Π0
βn

and A =
⋃
nAn.

Venn’s diagram reasoning shows that X \ A =
⋂
n(X \ An), and the induction

hypothesis shows that for every n ∈ ω, X \ An ∈ Σ0
βn

. Thus, X \ A ∈ Π0
α by

the definition of Π0
α.

For (3), I will first show that every stage of the hierarchy consists of Borel
sets only. This is proved by induction on α. For α = 1, the open sets are Borel
by definition, and the closed sets are Borel because they are complements of
open (and therefore Borel) sets and the algebra of Borel sets is closed under
complements. If α > 1 is an ordinal and the sets in all classes Σ0

β and Π0
β for

β ∈ α are already known to be Borel, then also sets in the classes Σ0
α and Π0

α

must be Borel, since they are open as countable unions or intersections of some
sets in

⋃
β∈α(Σ0

β ∪Π0
β), these sets are Borel by the induction hypothesis, and

the algebra of Borel sets is closed under countable unions and intersections.
Now, if we show that C =

⋃
α∈ω1

Σ0
α is a σ-algebra of sets, then (3) will

follow by the minimality of the algebra of Borel sets, as the previous paragraph
shows that C ⊆ B. To prove that C is a σ-algebra, verify the required closure
properties one by one. For the closure under complement, suppose that A ∈ C.
Then there is α ∈ ω1 such that A ∈ Σ0

α, so X \ A ∈ Π0
α by (2), Π0

α ⊆ Σ0
α+1

by (1), and so X \ A ∈ Σ0
α+1 ⊆ C as required. For the closure under countable

unions, suppose that An for n ∈ ω are sets in C. There are ordinals αn ∈ ω1

such that An ∈ Π0
αn

. Since ω1 is regular (Theorem ???), there is an ordinal
β ∈ ω1 such that β > αn for every n ∈ ω. Then An ∈ Σ0

β ⊂ C as required. The
closure under countable intersections is proved in a similar fashion.

In the case of a countable Polish space X, every subset of it is again countable
and therefore Fσ. The transfinite construction in this (trivial) case stabilizes
already at α = 2. However, if the space X is uncountable then the transfinite
hierarchy does not stabilize before ω1.

Example 4.4.6. Every countable set is Fσ and therefore Borel.

A fairly common task in descriptive set theory is the following. Given a Polish
space X and its subset B ⊂ X (typically defined in mathematical analysis),
decide whether B is a Borel set, and if it is, identify the smallest ordinal α such
that B ∈ Σ0

α or B ∈ Π0
α. This may be quite difficult in many instances. Here,

we will limit ourselves to two very basic examples.

Example 4.4.7. The set B = {x ∈ Rω : limx = 0} ⊂ Rω is Borel.

Exercise 4.4.8. Suppose that B,C are Borel subsets of the respective Polish
spaces X,Y . Then B × C is a Borel subset of the product space X × Y .
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Exercise 4.4.9. Suppose that X,Y are Polish spaces, α ∈ ω1 is a countable
ordinal, and B ⊂ X × Y is a Π0

α set. Then, for every x ∈ X, the set {y ∈ Y :
〈x, y〉 ∈ B} is a Π0

α as well. Similarly for Σ0
α sets.

Exercise 4.4.10. The set {x ∈ 2ω :
∑
{ 1
n+1 : x(n) = 1} <∞} is an Fσ subset

of 2ω.

4.5 Analytic sets

In the previous section, we showed that the collection of Borel sets is closed
under several operations, among them the continuous preimages. The closure of
Borel sets under continuous images leads to a much larger class of sets, identified
by the following definition.

Definition 4.5.1. Let 〈X,T 〉 be a Polish space. A set A ⊂ X is analytic if
there is a continuous function f : ωω → X such that A = rng(f).

The terminology should not be confused with the notion of analytic function
in complex analysis. The class of analytic functions is often denoted by Σ1

1. A
complement of an analytic set is coanalytic, and the class of coanalytic sets is
often denoted by Π1

1.
The original notation for analytic sets introduced by Lusin was A-sets (as

opposed to B-sets, which denoted Borel sets). One of Lusin students, Alexan-
droff (later an important contributor to the field of topology), assumed that the
A stands for his last name, and when Lusin introduced the term “analytic”, his
feelings were severely hurt. The perceived injustice blew entirely out of propor-
tion and eventually lead to a workplace trial (a common tool of bolshevik terror
in Russia in 1930’s) of Lusin for imaginary counterrevolutionary crimes. Lusin
narrowly escaped execution.

The main properties of the class of analytic sets are captured in the following
theorem.

Theorem 4.5.2. Every Polish space is analytic as a subset of itself. The class
of analytic sets is closed under the following operations:

1. continuous images;

2. continuous preimages;

3. countable unions and intersections.

The class of analytic sets is not closed under complements. This is the main
difference between analytic and Borel sets.

Proof. Every Polish space is a continuous image of the Baire space by Theo-
rem 4.3.12, and therefore analytic.

For (1), suppose that X,Y are Polish spaces, f : X → Y is a continuous
function, and A ⊂ X is an analytic set; we must prove that f ′′A is analytic as
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well. As A is analytic, there is a continuous function g : ωω → X such that
A = rng(g). Then, f ◦g is a continuous function since it is a composition of two
continuous functions, and f ′′A = rng(f ◦ g) by the definitions. Thus, f ′′A is an
analytic set as desired.

Now, (1) makes it possible to prove that a given set is analytic by showing
that it is a continuous image of a closed subset of a Polish space–the closed set
is Polish by Proposition 4.3.9, therefore analytic, and so its continuous image is
analytic. This is the road we will take in the items (2–4).

For (2), suppose that X,Y are Polish spaces, f : Y → X is a continuous
function, and A ⊂ X is an analytic set; we must prove that f−1A ⊂ Y is
analytic. As the set A is analytic, there is a continuous function g : ωω → X
such that A = rng(A). As the space Y is Polish, there is a continuous onto
function h : ωω → Y by Theorem 4.3.12. Let Z = ωω × ωω, let C ⊂ Z
be the set {z : g(z(0)) = f(h(z(1)))} and let k : C → Y be the function
defined by k(z) = h(z(1)). The space Z is Polish, the set C ⊂ Z is closed
by Proposition 4.3.9, and the function k is continuous. It is immediate that
f−1A = k′′C and so f−1A is analytic as desired.

For (3), suppose that X is a Polish space and An ⊂ X are analytic sets for
every n ∈ ω; we must prove that A =

⋃
nAn ⊂ X is an analytic set as well. Use

the assumptions to find countably many pairwise disjoint copies Yn of the Baire
space and continuous functions gn for n ∈ ω such that An = rng(gn). Let Y be
the union space

⋃
n Yn; it is Polish. Let g : Y → X be the function g =

⋃
n gn;

it is a continuous function and A = rng(g). Thus, the set A is analytic by (1).
For (4), suppose that X is a Polish space and An ⊂ X are analytic sets

for every n ∈ ω; we must prove that A =
⋂
nAn ⊂ X is an analytic set

as well. Use the assumptions to find continuous funtions gn : ωω → X such
that An = rng(gn) for every n ∈ ω. Consider the space Y = (ωω)ω, the set
C = {y ∈ Y : ∀m ∈ ω fm(y(m)) = f0(y(0)} and let g : C → X be the function
defined by g(y) = f0(y(0)). The set C ⊂ Y is closed by ???; the function g
is continuous. In view of (1), it will be enough to show that A = rng(g) since
C = dom(g) is closed in Y and therefore ???

Corollary 4.5.3. All Borel sets are analytic.

Proof. Every closed set is Polish by Proposition 4.3.9, therefore a continuous
image of the Baire space by Theorem 4.3.12, and therefore analytic. The con-
struction of the Borel hierarchy shows that every Borel set is obtained from
closed sets by a repeated application of countable union and intersection. These
operations applied to analytic sets return analytic sets by Theorem 4.5.2, and
so every Borel set is indeed analytic.

Exercise 4.5.4. Suppose that B,C are analytic subsets of the respective Polish
spaces X,Y . Then B × C is an analytic subset of the product space X × Y .

Exercise 4.5.5. Let X,Y be Polish spaces and A ⊂ X × Y be an analytic set.
The vertical section Ax = {y ∈ Y : 〈x, y〉 ∈ A} is an analytic subset of Y for
every x ∈ X.
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4.6 Lebesgue’s mistake

In 1915, Lebesgue wrote a paper containing a wrong assertion: continuous im-
ages of Borel sets are Borel. Suslin, a student of Lusin in Moscow, noticed the
error and proved several theorems about it. In our language, the basic Suslin’s
result is stated in the following way:

Theorem 4.6.1. Let X be an uncountable Polish space. There is an analytic
subset of X which is not Borel.

We will toil quite a bit to produce a single example of an analytic non-Borel
set, and this set will have no apparent mathematical meaning as it is obtained
by an application of the diagonal method. However, once a single example is
known, it proliferates through mathematical analysis like the kudzu vine, any
many other, much more meaningful examples can be identified. Most of these
examples are most commonly stated in the complementary form of coanalytic
sets which are not Borel. For example, in the natural Polish space of closed
subsets of [0, 1], the collection of countable sets is coanalytic and not Borel. In
the natural Polish space of continuous functions from [0, 1] to [0, 1], the set of
everywhere differentiable functions is coanalytic and not Borel. ???

Proof. For definiteness, we will deal with the space X = ωω. We will use an
important general tool, the universal analytic set. A set A ⊂ ωω×X is universal
analytic if it is analytic and for every analytic set B ⊂ X there is y ∈ ωω such
that B = {x ∈ X : 〈x, y〉 ∈ A}.

Lemma 4.6.2. For every Polish space X there is a universal analytic subset of
ωω ×X.

Proof. We will first prove that there is a universal open set O ⊂ ωω ×X. This
is an open set such that for every open set P ⊂ X there is y ∈ ωω such that
P = {x ∈ X : 〈x, y〉 ∈ O}.

To construct the universal open set, let D ⊂ X be a countable open set,
let d be a complete metric generating the topology of the space X, and let
{Pn : n ∈ ω} enumerate all the open balls in X with centers in D and positive
rational radii. Let O = {〈y, x〉 : for some n ∈ ω, x ∈ Py(n)}. It is not difficult
to verify that O is the requested universal open set.

To construct the universal analytic set A ⊂ ωω×X, first find a universal open
set O ⊂ ωω × (X × ωω). Let A ⊂ ωω ×X be the projection of the complement
of O into the first two coordinates. We will show that this is the universal
analytic set. It is clearly analytic, since it is the image of a closed set (the
complement of O) under a continuous function (the projection function into the
first two coordinates). Now suppose that B ⊂ X is an analytic set; we must find
y ∈ ωω such that B = {x ∈ X : 〈x, y〉 ∈ A}. Let f : ωω → X be a continuous
function such that B = rng(f). Let P = {〈x, z〉 ∈ X × ωω : f(z) 6= x}.
Since f is a continuous function, this is an open subset of X × ωω. Since
O ⊂ ωω × (X × ωω) is a universal open set, there must be y ∈ ωω such that



4.6. LEBESGUE’S MISTAKE 49

P = {〈x, z〉 ∈ X×ωω : 〈y, x, z〉 ∈ O}. Unraveling the definitions, it is clear that
B = {x ∈ X : 〈x, y〉 ∈ A} as desired.

Now, suppose that A ⊂ ωω × ωω is a universal analytic set. Let B = {x ∈
ωω : 〈x, x〉 ∈ A}; we will show that this subset of ωω is analytic and not Borel.

First of all, the set B is analytic. The function f : ωω → ωω × ωω defined
by f(x) = 〈x, x〉 is continuous and B = f−1A; thus, the analyticity of B follows
from Theorem 4.5.2 (2).

Now, we will show that the complement of B is not analytic. Suppose for
contradiction that it is. Then, as A ⊂ ωω ×ωω is a universal analytic set, there
would have to be an index x ∈ ωω such that ωω \B = Ax. Now, just like in the
argument for Russell’s paradox, x ∈ B if and only if 〈x, x〉 ∈ A (this is by the
definition of the set B) and 〈x, x〉 ∈ A if and only if x /∈ B (since Ax = ωω \B).
Putting the two equivalences together we see that x ∈ B ↔ x /∈ B, which is a
contradiction.

Now, it follows immediately that the set B is not Borel. If it were, its
complement would be Borel and therefore analytic by Corolloary 4.5.3. However,
we have just proved that this is not the case.

Theorem 4.6.3. Let X be a Polish space. A set A ⊂ X is Borel if and only if
both A and X \A are analytic subsets of X.

Exercise 4.6.4. Let X be an uncountable Polish space. Show that there is no
universal Borel set B ⊂ ωω ×X, i.e. a Borel set such that for every Borel set
C ⊂ X there is a point y ∈ ωω such that C = {x ∈ X : 〈y, x〉 ∈ B}.
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Chapter 5

Formal logic

In this chapter, we will develop the basic theory of first order logic. The first
order logic is a formal calculus that mathematicians use to form grammatically
correct mathematical expressions and formal derivations of certain expressions
from others.

The first order logic is only one of a large family of formal logics. Typically,
a formal logic consists of syntax (description of how expressions in its language
can be formed), a formal deduction system (description of how some expressions
can be derived from others), and semantics (description of how the formal
logic expressions speak about some underlying structures). The most desirable
features of a formal logic are soundness and completeness, which say that the
formal deduction system proves exactly those expressions which are true of all
possible underlying structures. The claim to fame of first order logic resides in
the fact that most trained mathematicians nowadays tend to formulate their
ideas in it or in a language that is easily equivalent to it. Many other formal
logics (modal logic, intuitionist logic etc.) have been developed and play an
important role in more specific context, such as ???.

5.1 Propositional logic

To illustrate the concerns of first order logic on a simple example, we will con-
sider the case of classical propositional logic. As is the case for most logics,
there are two faces of propositional logic, the syntactical and the semantical,
and then there is a completeness theorem tying these two faces together.

5.1.1 Propositional logic: syntax

To describe the syntax of propositional logic, its language consists of atomic
propositions, logical connectives, and parentheses. Atomic propositions are just
pairwise distinct symbols such as A,B,C . . . ; there must be at least one, there
may be finitely or infinitely many of them. The set of logical connectives must
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be adequate (capable of describing any boolean combination). Common choices
are ¬,∧, lor (this is often used with Gentzen natural deduction system), ¬,→
(this is used with Hilbert deduction system, and it is our choice in this book),
and | (Sheffer stroke or NAND, popular in computer science since this single
connective is complete; it has a deduction system of its own). The parentheti-
sation can be handled in a number of satisfactory ways, and we will not be
particularly careful about it.

The language of propositional logic can be used to form formulas. Every
atomic proposition is a formula; if φ, ψ are formulas then ¬(φ) and φ → ψ are
formulas; and every formula is obtained by a repeated application of these two
rules. We will often prove various proposition by induction on complexity of
formulas.

Part of the syntactical face of propositional logic is a choice of formal deduc-
tion system. Every deduction system has logical axioms and rules of inference.
In this book, we will use Hilbert deduction system. The axioms of this system
are described by the following list. If φ, ψ, χ are formulas, then the following
are axioms of Hilbert deduction system:

A1. φ→ φ

A2. φ→ (ψ → φ)

A3. (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

A4. (¬ψ → ¬φ)→ (φ→ ψ).

The only rule of inference is modus ponens: from φ and φ→ ψ we are allowed to
infer ψ. A formal proof from a set Γ of formulas is a finite sequence of formulas
φ0, φ1, . . . φn such that each of the formulas is either a logical axiom, an element
of Γ, or a formula derived by modus ponens from the previous formulas. We
write Γ ` φ (and read Γ proves φ) if there is a formal proof from Γ in which φ
appears. φ is a theorem of propositional logic if 0 ` φ.

5.1.2 Propositional logic: semantics

The semantics of propositional logic uses truth assignments. An atomic truth
assignment is any map V from the set of atomic propositions to a two element
set {T, F}. A truth assignment is a function V from the set of all formulas to
{0, 1} such that

• whenever φ is a formula and V (φ) = 0 then V (¬φ) = 1. If V (φ) = 1 then
V (¬φ) = 0;

• whenever φ, ψ are formulas then V (φ → ψ) = 0 if and only if V (φ) = 1
and V (ψ) = 0.

We write Γ |= φ (and read φ is a tautological consequence of Γ) if for every
truth assignment V , if V (ψ) = T for every formula ψ ∈ Γ then V (φ) = T . φ is
a tautology if 0 |= φ.
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5.1.3 Propositional logic: completeness

The completeness theorem for every type of logic will assert something to the
effect that relations ` and |= are the same. In the case of propositional logic,
this is indeed true:

Theorem 5.1.1. (Completeness theorem for propositional logic) Whenever Γ
is a set of formulas and φ is a formula, then Γ ` φ if and only if Γ |= φ.

The proof of the completeness theorem will be preceded by a number of lemmas,
each of which is interesting in its own right.

Lemma 5.1.2. (Deduction) Suppose that Γ is a set of formulas and φ, ψ are
formulas. Γ ` φ→ ψ if and only if Γ, φ ` ψ.

Proof. The left-to-right implication is an immediate application of modus po-
nens. The right-to-left implication is more difficult. Suppose that Γ, φ ` ψ, and
let 〈θi : i ≤ n〉 be the formal proof of ψ from Γ, φ. We will rewrite it to get
a formal proof of φ → ψ from Γ. Each formula θi will be replaced by several
formulas according to the following cases. In each case, a formula of the form
φ→ θi will appear in the rewritten proof.
Case 1. If θi is a formula in Γ or a logical axiom, replace θi with the statements
θi → (φ→ θi) (logical axiom), θi, and φ→ θi (modus ponens).
Case 2. If θi = φ then replace θi by φ→ φ (logical axiom).
If θi is obtained by modus ponens from some previous formulas θj and θk =
θj → θi for some j, k < i, then replace θi with (φ → (θj → θi)) → (φ → θj) →
(φ → θi)) (logical axiom), (φ → θj) → (φ → θi) (modus ponens), and φ → θi
(modus ponens).

This completes the argument.

Definition 5.1.3. A set Γ of formulas is contradictory or inconsistent if there
is a formula φ such that Γ ` φ and Γ ` ¬φ. Otherwise, Γ is consistent.

Lemma 5.1.4. Let Γ be an inconsistent theory. Then for every formula φ,
Γ ` φ.

Proof. Fix a formula θ such that Γ proves both θ and ¬θ. Concatenate the
two formal proofs and adjoin the following formulas: ¬θ → (¬φ→ ¬θ) (axiom)
¬φ → ¬θ (modus ponens) (¬φ → ¬θ) → (θ → φ) (axiom) θ → φ (modus
ponens) φ (modus ponens).

Lemma 5.1.5. (Proof by contradiction) If Γ is a set of formulas and φ is a
sentence, Γ ` φ if and only if Γ,¬φ is contradictory.

Proof. For the right-to-left implication, suppose that Γ,¬φ is contradictory. By
Lemma 5.1.4, Γ,¬φ ` ¬(φ → (φ → φ)). By Lemma 5.1.2, Γ ` ¬φ → ¬(φ →
(φ → φ)). Adjoin to this formal proof the following formulas. ¬φ → ¬(φ →
(φ → φ)) → ((φ → (φ → φ)) → φ) (axiom) (φ → (φ → φ)) → φ (modus
ponens) φ → (φ → φ) (axiom) φ (modus ponens). This demonstrates that
Γ ` φ.
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For the left-to-right implication of the lemma, if Γ ` φ then also Γ,¬φ ` φ
and so Γ,¬φ is contradictory, as it proves both φ and ¬φ.

Lemma 5.1.6. (Proof by cases) If Γ is a set of formulas and φ, ψ are sentences,
if both Γ, φ ` ψ and Γ,¬φ ` ψ hold, then Γ ` ψ holds.

Proof. Assume that both Γ, φ ` ψ and Γ,¬φ ` ψ hold. By Lemma 5.1.5, it
is enough to show that Γ,¬ψ is contradictory. It is clear that Γ,¬ψ,¬φ is
contradictory, since it proves both ψ (as Γ, φ ` ψ) and ¬ψ (assumption). By
Lemma 5.1.5, Γ,¬ψ ` φ. Now, as Γ, φ ` ψ, Lemma 5.1.2 shows that Γ ` φ→ ψ.
By modus ponens Γ,¬ψ ` ψ, and so Γ,¬ψ is contradictory as desired.

Definition 5.1.7. A theory Γ is complete if for every formula φ, either φ ∈ Γ
ot ¬φ ∈ Γ holds.

Lemma 5.1.8. (Lindenbaum’s theorem) Every consistent theory can be ex-
tended into a complete consistent theory.

Proof. We will treat only the case where there are only countably many atomic
propositions. In such a case, there are only countably many formulas, and we
can list them as 〈φn : n ∈ ω〉.

Let Γ be a consistent theory. By induction on n ∈ ω build theories Γn such
that

• Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . . and each theory Γn is consistent;

• φn ∈ Γn+1 or ¬φn ∈ Γn+1 holds.

The construction of Γn+1 from Γn uses the proof by cases lemma. We claim
that for at least one of Γn ∪ {φn}, Γn ∪ {¬φn} is a consistent theory, which can
then serve as Γn+1. Suppose for contradiction that both of these theories are
inconsistent. By Lemma 5.1.4, for any fixed formula θ they both prove both θ
and ¬θ. Bby Lemma 5.1.6, Γn proves both θ and ¬θ. This means that Γn is
inconsistent, contradicting the induction hypothesis.

After the induction has been performed, let ∆ =
⋃
n Γn. This is certainly

a complete theory by the second item of the induction hypothesis. It is also
consistent: any putative proof of inconsistency from ∆ uses only finitely many
formulas from ∆, which then must all be included in some Γn for some n ∈ ω.
This contradicts the consistency of the theory Γn.

Complete consistent theories have one key feature: if a formula is provable
from such a theory then it belongs to it, as its negation cannot be provable by
consistency and so does not belong to Γ.

Definition 5.1.9. A truth assignment V is a model of a theory Γ if V (φ) = 1
for every φ ∈ Γ.

Lemma 5.1.10. A theory Γ is consistent if and only if it has a model.
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Proof. For the right-to-left direction, suppose that V is a model of Γ. To show
that Γ is consistent, we will argue that every formula φ which occurs on a formal
proof from Γ satisfies V (φ) = 1. In such a case Γ cannot be inconsistent, since
a formula and its negation have opposite truth values in V . So, let φ0, φ1, . . . φn
be a formal proof from Γ and by induction on i ≤ n proof that V (φi) = 1.
At stage i of the induction, there are several cases. Either φi ∈ Γ and then
V (φi) = 1 by the assumptions. Or, φi is an axiom of logic, in which case we
easily check that all axioms of logic are tautologies and V (φi) = 1 again. Or, φi
is obtained via modus ponens from some φj and φk = φj → φi for some j, k < i.
In this case, as V (φj) = V (φk) = 1 by the inductive assumption, V (φi) = 1 as
desired again. This completes the proof of the right-to-left direction.

For the left-to-right direction, assume that Γ is a a consistent theory. Expand
Γ to a complete consistent theory and by a slight abuse of notation call this
possibly larger theory Γ again. Let V be the function from the set of all formulas
to {0, 1} defined by V (φ) = 1 if and only if φ ∈ Γ. We claim that V is a model
of Γ; for this, it is just enough to confirm that V is indeed a truth assignment.
The verification of the requisite truth assignment properties breaks into cases.

• if V (φ) = 1 then we should verify that V (¬φ) = 0. Since φ ∈ Γ, ¬φ /∈ Γ
by the consistency of Γ, and so indeed V (¬φ) = 0.

• if V (φ) = 0 then we should verify that V (¬φ) = 1. Since φ /∈ Γ, ¬φ ∈ Γ
by the completeness of Γ, and so indeed V (¬φ) = 1.

• if V (ψ) = 1 and φ is a formula then it should be the case that V (φ →
ψ) = 1. The following formulas are in Γ: ψ (assumption), ψ → (φ → ψ)
(axiom of logic), φ→ ψ (modus ponens). So V (φ→ ψ) = 1 as required.

• if V (φ) = 0 and ψ is a formula then it should be the case that V (φ →
ψ) = 1. Here, the following formulas belong to Γ: ¬φ (assumption plus
the second item) ¬φ → (¬ψ → ¬φ) (axiom of logic) ¬ψ → ¬φ (modus
ponens) (¬ψ → ¬φ)→ (φ→ ψ) (axiom of logic) φ→ ψ (modus ponens).
Thus V (φ→ ψ) = 1 as desired.

• if V (φ) = 1 and V (ψ) = 0 then it should be the case that V (φ→ ψ) = 0.
Here, if φ → ψ ∈ Γ, then also φ ∈ Γ (assumption) and so ψ ∈ Γ (modus
ponens), contradicting the assumption. So φ→ ψ /∈ Γ and V (φ→ ψ) = 0
as desired.

The completeness theorem for propositional logic follows. If Γ is a theory
and φ is a formula, then the following are equivalent:

• Γ |= φ;

• Γ,¬φ has no model;

• Γ,¬φ is inconsistent;
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• Γ ` φ.

The equivalence of the first two items follows from the definition of a model.
The second and third items are equivalent by Lemma 5.1.10, and the third and
fourth item are equivalent by the lemma on proof by contradiction.

Exercise 5.1.11. Without the use of the completeness theorem, prove that for
every formula φ, φ ` ¬¬φ and ¬¬φ ` φ. Hint. Use proof by cases.

Exercise 5.1.12. (Compactness theorem for propositional logic) Let Γ be a
theory. Γ has a model if and only if every finite subset of Γ has a model.

5.2 First order logic

5.2.1 First order logic: syntax

The language of a first order logic consists of several types of symbols.

• variables. There are infinitely many of them;

• equality symbol. The interest in languages without equality symbol is
limited;

• the universal quantifier ∀. One can equivalently use existential quantifier
∃ or both;

• logical connectives. Our choice is again ¬,→;

• parentheses;

• special functional or relational symbols. Each symbol has a fixed arity.
0-ary functional symbols are called constants.

The language of first order logic can be used to form terms and formulas.
A variable is a term; if a functional symbol f has arity n and t0, t1, . . . tn−1 are
terms, then f(t0, t1, . . . tn−1) is a term; and all terms are obtained by repeated
application of these two rules. If t, s are terms then t = s is a formula; if R is a
relational symbol of arity n and t0, t1, . . . tn−1 are terms, then R(t0, t1, . . . tn−1)
is a formula; if φ, ψ are formulas then (φ) → (ψ) and ¬(φ) are formulas; if φ
is a formula and x is a variable then ∀x (φ) is a formula; and all formulas are
obtained by a repeated application of the previous rules.

We will have to pay closer attention to variables in formulas. If φ is a formula
containing as a subformula the expression ∀x ψ, then ψ is called the scope of
the quantifier ∀x and every occurence of x inside a scope of a quantifier ∀x is
called bounded. An occurence of x is free if it is not bounded. x is free in φ
if it has a free occurence in φ. A sentence is a formula with no free variables.
A list of free variables of a formula is often appended to it in parentheses: the
expression φ(~x) intends to say that φ is a formula, ~x is a finite list of variables
which includes all free variables of φ.
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The process of term substitution (plugging in) is common in first order logic.
If t is a term then φ(t/x) denotes the formula obtained from φ by replacing all
free occurences of x with t. Similar notation applies to plugging in a list of terms
into a list of variables of the same length: φ(~t/~x). A substitution is proper if
no variables occurring in the substituted terms become bounded in φ. We will
have no opportunity to consider any other substitutions besides proper ones.

We will use the Hilbert–Ackermann deduction system for first order logic;
a close competitor is the Gentzen natural deduction system. The Hilbert–
Ackermann deduction system has many logical axioms. The first group of ax-
ioms deals only with logical connectives.

A1. φ→ φ

A2. φ→ (ψ → φ)

A3. (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

A4. (¬ψ → ¬φ)→ (φ→ ψ).

The second group of axioms shows the interaction between the universal quan-
tifier and other expressions.

A5. (∀x φ)→ φ(t/x) whenever t is a term that can be substituted properly to
x in φ

A6. (∀x φ→ ψ)→ ((∀xφ)→ (∀xψ))

A7. φ→ ∀x φ if x is not a free variable of φ.

The third group of axioms describes the behavior of equality.

A8. x = x for every variable x;

A9. (x = y)→ (φ(x/z)→ φ(y/z) if x, y can be substituted properly to x.

Finally, every formula obtained from the previously mentioned logical axiom by
preceding it with any string of universal quantifications is again an axiom of
logic.

Let Γ be a set of formulas. A formal proof from Γ is a finite sequence
of formulas φm for m < n such that every entry on this sequence is either a
formula from Γ, an axiom, or else it is obtained from the previous formulas on
the sequence via modus ponens. If φ is a formula, write Γ ` φ (Γ proves φ) if
there is a formal proof from Γ which contains φ. We write Γ ` φ if there is a
formal proof from Γ on which φ appears. φ is said to be a theorem of logic if
0 ` φ.

A first order theory is a set of sentences in a fixed language. There are
many first order theories of interest to mathematicians, some of them simple,
others very complicated. Given a theory, the most commonly asked question is
whether it is consistent, and if so, if one can recognize the theorems (formally
provable sentences) of it with a computer algorithm.
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Example 5.2.1. The theory of dense linear order without endpoints has a
language with a single binary relational symbol ≤ and the following axioms:

• ∀x∀y∀z x ≤ y ∧ y ≤ z → x ≤ z, x ≤ y ∧ y ≤ x→ y = x, x ≤ y ∨ y ≤ x;

• ∀x∀y x < y → ∃z x < z < y;

• ∀x∃z z < x ∧ ∃z x < z.

The theory of dense linear order without endpoints has the pleasing property
of being complete–i.e. for every sentence in its language, it either proves the
sentence or its negation. As a consequence, there is a computer algorithm which
decides whether a given sentence is a theorem of the theory or not.

Example 5.2.2. The theory of groups has a language with a binary functional
symbol for multiplication, a unary symbol for inverse, and a constant symbol
for the unit. The axioms are

• ∀x∀y∀z x(yz) = (xy)z;

• ∀x x1 = 1x = x;

• ∀x xx−1 = x−1x = 1.

Despite the terminology, one should not get the impression that mathematicians
working in group theory just prove sentences of this first order formal theory.
In fact, their work mostly concentrates on properties of groups that are not
expressible in such a simple language.

Example 5.2.3. The theory of real closed fields is designed to capture the first
order properties of the real line with addition and multiplication. It has constant
symbols 0, 1, binary relational symbol ≤, and binary functional symbols +, ·.
The axioms say

• +, · form a field: i. e. + is a commutative group operation with neutral
element 0, · is a group operation on the nonzero elements with neutral
element 1, and ∀x∀y∀z (x+ y)z = xy + xz;

• ≤ is a linear ordering and it is a group ordering vis-a-vis addition: i.e.
∀x, y ≥ 0 x+ y ≥ 0;

• every polynomial of odd degree has a root. This is a collection of infinitely
many axioms, one for each odd number. For example, for cubic polynomi-
als we have the sentence ∀y0, y1, y2, y3 if y3 6= 0 then there is x such that
y3xxx+ y2xx+ y1x+ y0 = 0.

A classical theorem of Tarski [11] shows that (among other things) the theory
of real closed fields is complete. There is an algorithm which checks whether
a given sentence is a theorem of the theory of real closed fields which runs in
double exponential time in the length of the sentence [2], and this is best possible
[3].
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Example 5.2.4. The Peano Arithmetic is a first order theory which records
our intuitions about natural numbers. It has functional special symbols for 0,
successor, addition, multipication, and exponentiation, and a special relational
symbol for the ordering. The axioms are

• ≤ is an ordering with least element 0, Sx (the successor of x) is the
least element larger than x, and every element larger than zero has a
predecessor;

• ∀x∀y S(x + y) = x + Sy, x + xy = x(Sy), and similar statement for
exponentiation;

• the induction scheme: whenever φ(x) is a formula, the following is an
axiom: (φ(0) ∧ (∀x (φ(x)→ φ(Sx)))→ ∀x φ(x).

There is no computer algorithm that correctly recognizes theorems of Peano
Arithmetic. Ergo, this theory is much more complicated than the previous
examples.

Example 5.2.5. Zermelo–Fraenkel set theory is a first order theory.

Thus, essentially all of modern mathematics can be formulated within the scope
of a fixed first order theory. Still, it is interesting to study other theories as well–
in a more restrictive context there may be more information available.

5.2.2 First order logic: semantics

Let L be a language of first order logic. This is to say, L specifies the special
functional and relational symbols with their arities that we want to use. Let
Ri, Fj be the relational and functional symbols of L for indices i coming from
some index sets I, J . An L-model (or L-structure) is a tuple M = 〈M,RM

i :
i ∈ I, . . . FM

j : j ∈ J〉 where M is a set (the universe of the model M), for each

i ∈ I RM
i is a relation on M of the same arity as Ri (the realization of Ri in

M), and for each j ∈ J FM
j is a function on M of the same arity as Fj (the

realization of Fj in M).
Given a term t(~x) and a list ~m of elements of the universe M of the same

length as the list ~x of variables of the term t, we may substitute and get another
element tM(~m/~x) of the set M . This is defined by induction on the complexity
of the term t as follows:

• if t = x then t(m/x) = m;

• if t = Fj(t0, . . . ) then tM = FM
j (tM0 (~m/~x) . . . ).

Given a formula φ(~x) and a list ~m of elements of the universe M of the same
length as the list ~x of variables of the formula φ, we may consider the question
whether M satisfies the formula φ(~m/~x), or written in symbols, whether M |=
φ(~m/~x). This is again defined by induction on the complexity of the formula φ:
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• if φ is an atomic formula of the form t0 = t1 then M |= φ(~m/~x) if
tM0 (~m/~x) = tM1 (~m/~x);

• if φ is an atomic formula of the form Ri(t0, . . . ) then M |= φ(~m/~x) if
〈tM0 (~m/~x), . . . 〉 ∈ RM

i ;

• if φ = ¬ψ then M |= φ if M |= ψ fails. Similarly for the implication;

• if φ = ∀y ψ(y, ~x) then M |= φ if for every n ∈M , M |= ψ(n, ~m/y, ~x).

If Γ is a theory the M is a model of Γ if M |= φ for every φ ∈ Γ. Γ |= φ
denotes the situation that every model of Γ satisfies φ. The theory of the model
M is the set of all sentences that it satisfies. A sentence φ is valid if 0 |= φ.

The most immediate concerns at this stage are the following questions. Given
a first order theory, is there a model of it? How many models? Given a model,
can we decide which sentences in the appropriate first order language it satisfies?
Questions such as these can be easy or difficult, and in most cases good answers
are highly desirable.

Example 5.2.6. The theory of dense linear order without endpoints has exactly
one countable model up to isomorphism, the rational numbers.

Example 5.2.7. Every group is a model of the theory of groups.Thus, the
theory of groups has many different countable models, among them abelian
groups (satisfying the sentence ∀x∀y xy = yx) and nonabelian groups.

This together with the soundness of the proof system shows that the theory
of groups does not prove the sentence ∀x∀y xy = yx nor its complement. One
famous result says that there is an algorithm which decides which sentences Fn
for n ≥ 2 (the free groups on two generators) satisfy [4]. While these groups are
pairwise nonisomorphic, they all satisfy the same sentences [10].

Example 5.2.8. Consider the structure M = 〈R, 0, 1,≤,+, ·〉. The theory of
M is axiomatized by the axioms of the theory of real closed fields.

Example 5.2.9. The model 〈N, 0, 1, S,+, ·〉 is a model of Peano Arithmetic.

Despite the suggestive nature of the terminology, there are many other models
of Peano Arithmetic. There is no computer algorithm which can decide whether
a given sentence is satisfied by N or not.

5.2.3 Completeness theorem

Theorem 5.2.10. (Gödel’s completeness theorem for first order logic) A theory
is consistent if and only if it has a model.

As was the case in propositional logic, the proof is preceded by several syn-
tactical lemmas of independent interest. The deduction theorem, the theorems
on proof by contradiction and proof by cases transfer verbatim from the treat-
ment of propositional logic.
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Lemma 5.2.11. (Generalization rule) Suppose that Γ is a theory and x is
a variable that does not appear in any sentences of Γ. Then Γ ` φ implies
Γ ` ∀x φ.

Proof. Let φi : i ∈ n be a formal proof of φ. We will rewrite each formula φi
with several others among which ∀x φi occurs and so that the result is still a
formal proof from Γ. This will complete the proof.

If φi is an axiom of logic then rewrite it with ∀x φi, which is also an axiom
of logic. If φi ∈ Γ then by assumption x does not appear in φi, and we can
replace φi with φi (axiom of Γ), φi → ∀x φi (axiom of logic), ∀x φi (modus
ponens). If φi is obtained from previous formulas φj and φk = φj → φi by
modus ponens, replace it with the sequence ∀x (φj → φi) (proved previously),
∀x (φj → φi) → (∀xφj → ∀x φi) (axiom of logic) ∀xφj → ∀x φi (modus
ponens), ∀x φj (proved previously) ∀x φi (modus ponens). This completes the
rewriting process and the proof of the lemma.

Lemma 5.2.12. (Change of variables) Suppose that φ(y) is a formula and x is
a variable that does not occur in φ. Then ` ∀y φ(y)↔ ∀x φ(x/y).

Proof. For the left-to-right direction of the equivalence, ∀y φ(y)→ φ(x/y) is an
axiom of logic. Thus, ∀y φ(y) ` φ(x/y). By the generalization rule, ∀y φ(y) `
∀x φ(x/y). The deduction lemma completes the proof of this direction.

For the other direction, let ψ(x) = φ(x/y). Then y can be properly substi-
tuted to x in ψ and ψ(y/x) = φ. So, ∀x φ(x/y)→ φ is an axiom of logic. Thus,
∀x φ(x/y) ` φ and by the generalization rule, ∀x φ(x/y) ` ∀y φ. Now apply
the deduction lemma again and complete the proof.

Lemma 5.2.13. (Elimination of constants) Suppose that Γ is a theory, c is a
constant that does not appear in any sentence in Γ, and φ(x) is a formula such
that Γ ` φ(c/x). Then Γ ` ∀x φ.

Proof. Let φi : i ∈ n be a formal proof of φ(c/x). Let y be a variable that does
not appear in the proof. Directly verify that φi(y/c) : i ∈ n is a formal proof of
φ(y/x). Let Γ0 ⊂ Γ be the set of sentences used in this proof. Then Γ0 ` φ(y/x)
and so by the Generalization Rule, Γ0 ` ∀y φ(y/x) and Γ ` ∀y φ(y/x). The
proof is completed by a reference to the Change of variables lemma.

The most efficient proof of the completeness theorem is based on the follow-
ing notion.

Definition 5.2.14. A theory Γ is Henkin if for every formula φ(x) there is a
constant c such that the sentence ¬∀xφ→ ¬φ(c/x) appears in Γ.

The definition of Henkin property is often stated in the literature in an equiva-
lent form using the existential quantifier.

Lemma 5.2.15. Every consistent Henkin theory has a model.
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Proof. Let Γ be a consistent Henkin theory. Extend it if necessary to a complete
consistent theory. This extension will be again Henkin. For constants c, d of
the language of the theory Γ, write c ≡ d if Γ ` c = d. It is not difficult to
verify that ≡ is an equivalence relation. The model M of the theory Γ under
construction will use as its universe M the set of all ≡-classes. Below, for a
constant symbol c write [c]≡ to denote the only equivalence class containing c.
If ~c is a finite tuple of constant symbols with possible repetitions, let [~c]≡ be the
tuple of equivalence classes containing the respective symbols on the tuple ~c.

To construct the realizations of the special relational symbols, let Ri be a
relational symbol of arity ni. Let RM

i be the set of all ni-tuples ~m of elements
of M such that for any ni-tuple ~c of constant symbols such that [~c]≡ = ~m

it is the case that Γ ` Ri(~c). Note that if ~c and ~d are ni-tuples of constant
symbols such that corresponding symbols on both tuples are equivalent, then
Γ ` Ri(~c)↔ Ri(~d) by the last logical axiom of equality.

To construct the realizations of the special functional symbols, let Fj be a
relational symbol of arity nj . Let FM

j be the function defined by FM
j (~m) = n

if for any nj-tuple ~c of constant symbols and a constant symbol d such that
[~c]≡ = ~m and [d]≡ = n, it is the case that Γ ` Fj(~c) = d. Note that this is well
defined. Whenever ~c is an nj-tuple of constant symbols, then Γ ` ¬∀x ¬x =
Fj(~c) (why?). As the theory Γ is Henkin, there indeed is a constant symbol d
such that Γ ` d = Fj(~c). If d, e are constant symbols such that Γ ` d = Fj(~c)
and e = Fj(~c) then d ≡ e by the first axiom of equality.

It is now necessary to prove that the model M = 〈M,RM
i : i ∈ I, FM

j : j ∈ J〉
is indeed a model of Γ. By induction on complexity of a formula φ(~x) with some
list ~x of all its free variables, we will prove that for every list ~c of functional
symbols of the same length, M |= φ([~c]≡/~x) if and only if Γ ` φ(~c/~x). This will
complete the proof.

For atomic formulas φ this follows essentially directly from the definitions.
If φ = ¬ψ and we know the result for ψ, this follows from the completeness
of the theory Γ and the induction hypothesis. The implication is similar. The
only challenging step is the universal quantification. So, suppose that φ(~x) =
∀y ψ(~x, y), we have handled the formula ψ successfully, and ~c is a sequence
of constant symbols of the same length as ~x. In this case, the following are
equivalent:

• M |= φ([~c]≡/~x);

• for every m ∈M , M |= ψ([~c]≡,m/y);

• for every constant symbol d, M |= ψ([~c]≡, [d]≡/y);

• for every constant symbol d, ψ(~c/~x, /.y) ∈ Γ;

• ∀y ψ(~c/~x, y) ∈ Γ.

The equivalence of the first and second item is the definition of satisfaction for
universal formulas, the equivalence of the second and third is the construction of
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the universe M (it consists solely of equivalence classes of constant symbols), the
equivalence of third and fourth is the induction hypothesis, and the equivalence
of fourth and fifth follows from the assumption that Γ is a complete Henkin
theory.

Lemma 5.2.16. Every consistent theory can be extended to a complete consis-
tent Henkin theory.

Proof. We are going to handle only the case in which the underlying language
L has countably many special relational and functional symbols. Let L′ be a
language obtained from L by adding new constant symbols {cn : n ∈ ω}. Enu-
merate all sentences of the expanded language by {φn : n ∈ ω}. By induction
on n ∈ ω build theories Γn in the expanded language so that

• Γ = Γ0 ⊆ Γ1 ⊆ . . . , each theory is consistent and uses only finitely many
of the new constant symbols;

• for every n ∈ ω, the theory Γ2n+1 contains either φn or its negation;

• for every n ∈ ω, if φn is a sentence of the form ∀y ψ(y) then Γ2n+2 contains
either φn or the sentence ¬ψ(c/y) for some constant sumbol c.

Once the induction is performed, let Γ′ =
⋃
n Γn. This theory in the expanded

language is consistent, since it is an increasing union of consistent theories. It is
complete by the second inductive item, and it is Henkin by the third inductive
item. This will complete the proof of the lemma.

To perform the induction, suppose that n ∈ ω is a number and the theory
Γ2n has been constructed. To find Γ2n+1, use the lemma on proof by cases. If
both theories Γ2n, φn and Γ2n,¬φn were inconsistent, Γ2n would be inconsistent
as well, contradicting the induction hypothesis. So, one of Γ2n, φn and Γ2n,¬φn
is consistent, and this consistent choice will be our Γ2n+1. Since Γ2n contains
only finitely many of the new constant symbols and φn does as well, also Γ2n+1

contains only finitely many new constant symbols.
Now suppose that n ∈ ω is a number and the theory Γ2n+1 has been obtained.

To construct Γ2n+2, if φn is not of the form ∀y ψ(y) then let Γ2n+2 = Γ2n+1.
If φn = ∀y ψ(y), then choose a new constant symbol d which does not appear
in Γ2n+1. Observe that Γ2n+1,¬ψ(d/y) is inconsistent if and only if Γ ` ψ(d/y)
if and only if Γ ` ∀y ψ(y)–the first equivalence is by the lemma on proof by
contradiction, and the second equivalence is by the lemma on elimination of
constants. Thus, there are two possibilities. Either, Γ2n+1 ` φn–in this case,
just let Γ2n+2 = Γ2n+1, φ and proceed with the induction. Or, Γ2n+1,¬ψ(d/y) is
consistent–in this case let Γ2n+2 = Γ2n+1,¬ψ(d/y) and proceed. The induction
step has been completed.

The completeness theorem has a long list of attractive corollaries. The first
group of the corollaries is centered around the compactness theorem:

Corollary 5.2.17. (Compactness theorem for first order logic) A theory Γ has
a model if and only if every finite subset of Γ has a model.



64 CHAPTER 5. FORMAL LOGIC

Proof. The completeness theorem shows that Γ has a model if and only if it is
consistent. Since every formal proof from Γ uses only finitely many sentences in
Γ, the theory Γ is consistent if and only if every finite subset of it is consistent.
By the completeness theorem again, this latter statement is equivalent to the
assertion that every finite subset of Γ has a model.

Example 5.2.18. A construction of nonstandard model of Peano Arithmetic;
i.e. a model which is not isomorphic to the “standard” model 〈N, 0, S,≤,+, ·〉.
Add a constant symbol c to the language. Add the infinitely many statements
0 < c, S0 < c, SS0 < c, . . . to the theory. Every finite subset of the resulting
theory has a model (the standard model with c realized as some large natural
number), so the whole theory has a model M. The realization cM must be
larger than all the “standard” natural numbers 0, S0, SS0, . . . and so this
model cannot be isomorphic to the standard model of Peano Arithmetic.

Example 5.2.19. Consider the language with no special symbols. I claim that
there is no sentence φ in this language such that M |= φ just in case the universe
of M is finite. (In other words, finiteness/infiniteness is not expressible in this
language.) Suppose for contradiction that φ is such a sentence. Let ψn is the
sentence “there are at least n distinct objects”, or ∃x0 . . . ∃xn−1 x0 6= x1 ∧x0 6=
x2 ∧ . . . xn−2 6= xn−1. Consider the theory Γ = {φ, ψn : n ∈ ω}. Every finite
subset of this theory has a model: just look at a sufficiently large finite set–it
satisfies φ by the assumption on φ. Thus, Γ has a model. This model has to be
an infinite model of φ, contradicting the properties of φ.

The second group of immediate corollaries to the completeness theorem ais
centered around the notion of categoricity. It offers us a ready tool to show that
various theories are complete.

Definition 5.2.20. Let M and N be models for the same language, with re-
spective universes M,N . The models are isomorphic if there is a bijection
h : M → N which transports the M realizations to the N-realizations. A the-
ory Γ is countably categorical if every two countable models of Γ are isomorphic.

Corollary 5.2.21. If a countable theory Γ is countably categorical, it is com-
plete.

Proof. Suppose for contradiction that φ is a sentence such that Γ proves neither
φ nor its negation. Then both theories Γ, φ and Γ,¬φ are consistent and by
the completeness theorem, they both must have countable models. These two
models cannot be isomorphic, since one satisfies φ and the other does not. This
contradicts our initial assumptions on Γ.

Example 5.2.22. The theory of dense linear order without endpoints is com-
plete. We showed that every two countable dense linear orders without end-
points are isomorphic. Thus, the theory is countably categorical, and therefore
complete.
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Exercise 5.2.23. Let Γ be a consistent theory in some language L. Let L′

be an expansion of this language by some new functional or relational symbols.
Then Γ is still consistent in this new language.

Exercise 5.2.24. If a theory Γ has arbitrarily large finite models (i.e. for every
n ∈ ω there is a finite model of Γ whose universe has size larger than n) then it
has an infinite model.
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Chapter 6

Model theory

Model theory is the branch of mathematics that compares and classifies models
of various theories. Its goal is to improve the understanding of first order con-
sequences of these theories, as well as the understanding of the complexity of
objects that can be defined in various models.

6.1 Basic notions

Let L be a language of first order logic, containing special relational symbols Ri
of arity ni for i ∈ I and special functional symbols Fj of arity nj for j ∈ J . Let
M, N two L-models with respective universes M,N .

Definition 6.1.1. The models M and N are elementarily equivalent if Th(M) =
Th(N).

Clearly, if the models are isomorphic, then they are elementarily equivalent.
The reverse implication does not hold though: the free groups on two and three
generators respectively are elementarily equivalent, but they are not isomorphic.

Definition 6.1.2. M is a submodel of N if M ⊆ N and RM
i = RN

i ∩Mni , and
FM
j = FN

j �Mnj for all i ∈ I and all j ∈ J .

For example, if G is a subgroup of some group H with group operation ·, then
〈G, ·〉 is a submodel of 〈H, ·〉.

Definition 6.1.3. M is an elementary submodel of N if it is a submodel and
for every formula φ(~x) of the language with free variables ~x, and every tuple
~m of elements of M of the same length as ~x, M |= φ(~m/~x) if and only if
N |= φ(~m/vecx).

For example, 〈Z,≤〉 is a submodel of 〈Q,≤〉, but it is not an elementary sub-
model: the former satisfies ∀x¬0 < x < 1, while the latter satisfies the opposite.
On the other hand, 〈Q,≤〉 is an elementary submodel of 〈R,≤〉. We will prove
this later.

67
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Definition 6.1.4. An injection j : M → N is an elementary embedding of ~M
to ~N if for every formula φ(~x) of the language with free variables ~x, and every
tuple ~m of elements of M of the same length as ~x, M |= φ(~m/~x) if and only if
N |= φ(j ~m/vecx).

It is customary in model theory to order models of a given complete theory
by elementary embeddability. A prime model of a theory Γ is one which can be
elementarily embedded into every other model of Γ, and ???

Definition 6.1.5. Let n0 be a natural number. A set A ⊂ Mn is definable
(with parameters) if there is an L-formula φ(~x, ~y) with free variable lists ~x0, ~x1

of respective lengths n0 and some n1, and some n1-tuple ~m1 of elements of M
such that A = {~m0 ∈ Mn0 : M |= φ(~m0, ~m1)}. The set A is definable without
parameters if the formula φ can be chosen so that the variable list ~x1 is empty.

It is always of great interest to find a simple characterization of sets definable
in a given model. For example, the famous Tarski theorem on real closed fields
shows among other things that the only subsets of R definable in the model
〈R, 0, 1,≤,+, ·〉 are finite unions of open intervals and singletons. Therefore,
sets such as Z are not definable. Also, all functions f : R → R definable in
this model have polynomial rate of growth, i.e. there is a number n such that
for all large enough real numbers r, f(r) < rn. Thus, for example the function
f(x) = ex is not definable in this model.

On the other hand, definable sets in complicated structures such as 〈N, 0, S,≤
,+, ·〉 cannot be characterized in any useful way.

6.2 Ultraproducts and nonstandard analysis

The purpose of this section is to build a solid logical foundation to nonstan-
dard analysis. Nonstandard analysis is an attempt to formalize calculus with
infinitesimals (infinitely small numbers), to make sense of the original, logically
rather incoherent, language and argumentation of Newton. On our way to this
goal, we have to introduce the important model-theoretic tool of ultraproduct.

Ultraproducts are a common way of producing complicated models of the-
ories. Let L be a first order language, and let Mi for i ∈ ω be L-models with
respective universes Mi. We want to define a product N such that if φ is a
sentence satisfied by all models Mi then it is also satisfied by N–so for example
the product of groups will be again a group, a product of linear orders will be
again a linear order etc. For this, we need an important tool:

Definition 6.2.1. A filter on ω is a set U ⊂ P(ω) such that

1. 0 /∈ U, ω ∈ U ;

2. a, b ∈ U → a ∩ b ∈ U (closure under intersections);

3. a ∈ U and a ⊂ b implies b ∈ U (closure under supersets).
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An ultrafilter is a filter U on ω such that for every partition ω = a ∪ b, either
a ∈ U or b ∈ U .

Now, suppose that U is an ultrafilter on ω; we will form an ultraproduct N =∏U
i Mi, which will again be a L model. To form the universe N of the model

N, consider first the ordinary product ΠiMi, which is the set of all functions
u with domain ω such that for every i ∈ ω, f(i) ∈ Mi. Consider the following
relation E on ΠiMi: u E v if {i ∈ ω : u(i) = v(i)} ∈ U .

Claim 6.2.2. E is an equivalence relation.

Let N , the universe of the model N, is the set of all E-equivalence classes
of functions in

∏
iMi. We must define the relatizations of special relational

and functional symbols in the model N. Suppose that R is a special relational
symbol of the language L of arity n. Define the realization RN to be the set of
all n-tuples [~u]E such that the set {i ∈ ω : ~u(i) ∈ RMi} ∈ U . Suppose that F is
a special functional symbol of the language L of arity n. Define the realization
FN to be the function which assigns to each n-tuple ~u]E of elements of the set
N the value [v]E , where v ∈

∏
iMi is the function defined by v(i) = FMi(~u(i)).

Theorem 6.2.3. ( Loś) For every formula φ(~x) of the language L with n free
variables, and every n-tuple ~u of functions in

∏
iMi, the following are equiva-

lent:

1. N |= φ([~u]E/~x);

2. the set {i ∈ ω : Mi |= φ(~u(i)/~x)} belongs to the ultrafilter U .

In particular, if φ is a sentence satisfied by all models Mi, then it is also satisfied
by the model N.

Proof. The proof goes by induction on the complexity of the formula φ. To
make the induction go as smoothly as possible, we choose the language with
logical connectives ¬ and ∧ and the existential quantifier.

Suppose that the statement of the theorem has been proved for φ; we must
verify it for ¬φ. We will neglect the parameters of φ. The following chain
of equivalences verifies the statement for ¬φ. N |= ¬φ if and only if (by the
definition of satisfaction relation) N |= φ fails if and only if (by the induction
hypothesis) {i ∈ ω : Mi |= φ} /∈ U if and only if (as U is an ultrafilter)
{i ∈ ω : Mi |= φ fails} ∈ U if and only if (by the definition of satisfaction
relation) {i ∈ ω : Mi |= ¬φ} ∈ U .

Suppose that the statement of the theorem has been proved for φ and ψ;
we must verify it for φ ∧ ψ. Here, N |= φ ∧ ψ if and only if (by the definition
of the satisfaction relation) N |= φ and N |= ψ if and only if (by the induction
hypothesis) {i ∈ ω : Mi |= φ} ∈ U and {i ∈ ω : Mi |= ψ} ∈ U if and
only if (as U is closed under intersections and supersets) {i ∈ ω : Mi |= φ
and Mi |= ψ} ∈ U if and only if (by the definition of satisfaction relation)
{i ∈ ω : Mi |= φ ∧ ψ} ∈ U .

???
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As an important special case, consider the situation that the models Mi are
all equal to some model M with universe M . Let j : M → N be the map defined
by j(m) = [cm]E where cm is the map with domain ω such that for every i ∈ m,
cm(i) = m. The  Loś theorem then says precisely that the map is and elementary
embedding. In this special case, the model N is called an ultrapower of M.

One fairly well-known application of ultrapowers is found in the field of
nonstandard analysis. The nonstandard analysis is an attempt to provide se-
mantics to Newton’s language of “infinitesimals” in the development of calculus
and mathematical analysis.

Consider the model R = 〈R,P(R),PP(R), . . . ,∈〉. Let U be a nonprincipal
ultrafilter on natural numbers, and let R∗ be the ultrapower of R. The model
R∗ is of the form 〈R∗, . . . ε〈; the elements of R∗ are often called hyperreals. The
ultrapower elementary embedding is traditionally denoted by the star symbol:
thus, if r ∈ R is a real, r∗ ∈ R∗ is its image among the hyperreals etc. The set
N of all natural numbers is viewed naturally as a subset of the reals, and then
N∗ is its image under the ultrapower embedding.

Note that the hyperreals are elementarily equivalent to reals, and therefore
their version of addition, multiplication, ordering etc. satisfy the same first
order properties is those of the reals. However, the hyperreal line is in some
sense richer than the real line, as is obvious from the following central definition
and claim:

Definition 6.2.4. Let ε > 0∗ be a hyperreal. We call ε an infinitesimal if for
every positive real number r ∈ R, ε < r∗.

Claim 6.2.5. Infinitesimals exist in R∗.

Proof. Consider the map c : ω → R defined by c(n) = 1/n. We will show that
the equivalence class of this function in the ultrapower, [c]E , is an infinitesimal.

Now, the stage is set for finding equivalent restatments of limits, continuity,
differentiability etc. using Neton’s original language of infinitely small or ifnin-
tely large quantities. We will prove only one illustrative theorem among many
possibilities.

Definition 6.2.6. Hyperreals r, s are infinitesimally close if the difference |r−s|
is infinitesimal. A hyperreal r is finite if it is infinitesimally close to s∗ for some
real s. Otherwise, the hyperreal is infinite.

Theorem 6.2.7. Let s : N → R be a sequence of real numbers and L a real
number. Then the following are equivalent:

1. lim s = L;

2. for every infinite hypernatural n ∈ N, the value s∗(n) is infinitesimally
close to L∗.

Theorem 6.2.8. Let f : R→ R be a function. The following are equivalent:
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1. f is continuous;

2. for every real r ∈ R, whenever a hyperreal s is infinitesimally close to r∗,
the functional value f∗(s) is infinitesimally close to f∗(r∗).

6.3 Quantifier elimination and the real closed
fields

Let R be the model 〈R, 0, 1,≤,+, ·〉. This is one of the more popular structures
in mathematics. The purpose of this section is to state and outline the proof of
a theorem of Tarski, which axiomatized the theory of R, showed that the theory
is decidable, and characterized the sets definable in the structure. On the way
to this goal, we will develop the powerful model theoretic concept of quantifier
elimination.

Definition 6.3.1. A theory Γ has quantifier elimination if for every formula
φ in the language of Γ (perhaps with some free variables) there is a formula ψ
containing no quantifiers such that Γ ` φ↔ ψ.

Elimination of quantifiers typically offers a (highly desirable) algorithmic
way of deciding which sentences are provable from Γ, and whether various for-
mulas are satisfied in models of Γ. The question is, can we (efficiently) eliminate
quantifiers from any formula? Which theories have quantifier elimination?

We prove several results on quantifier elimination, ordered by difficulty.

Theorem 6.3.2. The theory of infinite set has quantifier elimination.

As a motivational example, note that the theory of equality (without any non-
logical axioms) does not have quantifier elimination, since the formula ∃y y 6= x
does not have a quantifier-free equivalent. There are essentially only two candi-
dates for such an equivalent, x = x and x 6= x. However, in the model with only
one element m, the formula x = x is satisfied at m while the formula ∃y y 6= x
is not, showing that x = x and ∃y y 6= x are not equivalent. In the model with
at least two elements m,n, the formula x 6= x is not satisfied at m while the
formula ∃y y 6= x is, showing that x 6= x and ∃y y 6= x are not equivalent.

Proof. Recall that the theory Γ of infinite set uses no special relational or
functional symbols, and for each natural number n, it contains the statement
∃x0∃x1 . . . ∃xn x0 6= x1 ∧ x0 6= x2 ∧ . . . (there are at least n + 1 many distinct
elements).

Let ~x be a list of variables. A formula φ(~x) is complete if it is a conjunction
of atomic formulas x = y or their negations where x, y range over all variables on
the list ~x. We will show that for every formula ψ of the language with equality,
there is a disjunction θ of complete formulas such that Γ ` ψ ↔ θ.

The proof proceeds by induction of complexity of the formula ψ. We will
work with the language with logical connectives ¬,∨ and the existential quan-
tifier ∃. The atomic case is trivial, since every atomic formula is complete.
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Finally, suppose that a formula φ(~x, y) is provably equivalent to some dis-
junction of complete formulas. We want to show that ∃y φ is also equivalent
to disjunction of complete formulas. Since the existential quantifier distrubutes
over disjunction (∃z θ0 ∨ θ1 is provably equivalent to (∃z θ0) ∨ (∃z θ1)), it is
enough to treat the case where φ is (equivalent to) a single complete formula.
Let ψ(~x) be the formula obtained from φ(~x, y) by erasing all conjuncts that
mention y. We claim that Γ ` ∃y φ(~x, y)↔ ψ(~x). This is proved in two distinct
cases.
Case 1. Either there is a variable z in the list ~x such that φ contains z = y
as one of the conjuncts. In this case, ∃y φ(~x, y) is implied by ψ(~x) since the
existential quantifier is witnessed by z = y. (Example. ∃y y = x0 ∧ x0 6= x1 is
logically equivalent to x0 6= x1.)
Case 2. Or, φ contains a conjunct of the form z 6= y for every variable z on
the list ~x. In this case, φ(~x, y) is equivalent to the conjunction of ψ(~x) and
the statement “y is not equal to anything on the list ~x”. Now, Γ ` ψ(~x) ↔
∃y φ(~x, y), since the existence of y which is not equal to anything on the (finite)
list ~x follows immediately from the axioms of the theory Γ. (Example. Γ proves
that ∃y y 6= x0 ∧ y 6= x1 ∧ x0 6= x1 is equivalent to x0 6= x1.)

Corollary 6.3.3. Suppose that M is an infinite set. The sets definable in the
model 〈M,=〉 are exactly the finite and cofinite subsets of M .

Recall that a subset N ⊂M is cofinite if M \N is finite.

Proof. On one hand, every finite or cofinite set is clearly definable in the model.
For example, the set {c0, c1, c2} is definable by the formula φ(x, y0, y1, y2) equal
to x = y0 ∨ x = y1 ∨ x = y2 with the parameters c0, c1, c2.

On the other hand, every definable set in the structure is either finite or
cofinite. Since every definition can be replaced with an equivalent quantifier-
free definition, it is enough to show that every set defined by a quantifier free
formula is finite or cofinite. This is proved by induction on complexity of the
defining quantifier-free formula φ.

Theorem 6.3.4. The theory of dense linear order without endpoints has quan-
tifier elimination.

As a motivational example, note that the theory of linear order (without
the density axiom) does not have quantifier elimination. Consider the formula
φ(x, y) = ∃z x < z < y; it does not have a quantifier free equivalent. There are
essentially only three options for the quantifier-free equivalent, x < y, y < x,
and y = x, and neither of them is equivalent to φ(x, y). Note though that x < y
is equivalent to φ in dense linear orders.

Proof. The proof follows the lines of the argument for Theorem 6.3.2. Let Γ
denote the first order theory of dense linear order without endpoints. We will
use x < y as the shorthand for x ≤ y∧x 6= y. A formula φ(~x) is called complete
if it is a conjunction of atomic formulas or their negations and for every pair of
variables x, y on the list ~x, the conjuncts include x = y or x 6= y, and they also
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include x < y or x 6< y. Note that for a given finite list of variables, there are
onfly finitely many complete formulas up to logical equivalence. We will show
that for every formula φ(~x) there is a disjunction ψ(vecx) of complete formulas
such that Γ ` φ(~x) ↔ ψ(~x). This will complete the proof. The argument
proceeds by complexity of the formula φ. We will use the first order language
that contains logical connectives ¬,∨ and the existential quantifier ∃.

The case of atomic formulas, as well as the induction step for disjunction
and negation are dealt with literally as in the previous proof. To perform the
induction step for existential variables, assume that φ is a complete formula
with variables ~x and y; we must show that ∃y φ(~x, y) is equivalent to a complete
formula. Consider the formula θ that obtains from φ by erasing all conjuncts
mentioning y; we will show that Γ ` ∃yφ(~x, y)↔ θ(~x).
Case 1. Suppose that φ contains a conjunct of the form x = y for some
variable x on the list ~x. In such a case ∃y φ(~x, y) is logically equivalent to
θ(~x) since satisfaction of the existential quantifier is witnessed by x. (Example.
∃y x0 = y < x1 is logically equivalent to x0 < x1.)
Case 2. Suppose that φ contains conjuncts of the form x 6= y for every variable
x on the list ~x. Consider where y stands in the <-order of the other variables as
specified by the formula φ. There are three distinct cases: either φ asserts that
y is smaller than all variables on the list ~x, or it is greater than all of them, or
there are two variables x0, x1 on the list such that φ asserts that x0 < y < x1

and there is no variable on the list ~x strictly between x0, x1. Let us consider the
third case. The dense liner order axiom then proves x0 < x1 → ∃y x0 < y < x1

and therefore also ∃y φ(~x, y) → θ(~x). (Example. The density of the ordering
implies that ∃y x0 < y < x1 is equivalent to x0 < x1.)

Corollary 6.3.5. Let 〈L,≤〉 be a dense linear order without endpoints. The
sets definable in the model 〈L,≤〉 are exactly the finite unions of open intervals
and singletons.

Proof. On one hand, a finite union of open intervals and singletons is clearly
definable in the model. A set such as (l0, l1) ∪ (l2, l3) ∪ {l4, l5} is definable via
the formula φ(x, y0, y1, y2, y3, y4, y5) = (y0 < x < y1) ∨ (y2 < x < y3) ∨ x =
y4 ∨ x = y5 with the parameters l0, l1, l2, l3, l4, l5.

On the other hand, every definable set is a finite union of open intervals and
singletons. Since every formula is equivalent to a quantifier-free formula, it is
enough to check that quantifier-free formulas can define only finite unions of
open intervals and singletons. This is verified by induction on complexity of the
quantifier-free formula φ.

Theorem 6.3.6. The theory of algebraically closed fields has quantifier elimi-
nation.

Recall that the theory of fields has constant symbols 0, 1 and binary functional
symbols +, · and the following axioms:

• + is a commutative group operation with 0 as the neutral element;
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• · is a commutative group operation on nonzero elements, with 1 as the
neutral element. Moreover, ∀x x · 0 = 0 · x = 0;

• (distributivity) ∀x∀y∀z x(y + z) = xy + xz and (x+ y)z = xz + yz.

The algebraically closed fields are obtained by adding axioms saying that ev-
ery polynomial of degree larger than zero has roots. This is an infinite col-
lection of axioms. For every natural number n > 0, there is a statement
∀y0∀y1 . . . ∀yn yn 6= 0→ ∃x ynxn + yn−1x

n−1 + · · ·+ y0 = 0.
As a motivational example, the theory of fields without the additional alge-

braic closure axioms does not have quantifier elimination. Consider the formula
φ(x) = ∃y y · y = x; it does not have a quantifier-free equivalent in this theory.
Suppose for contradiction that ψ(x) is such a quantifier-free equivalent. ψ is
just some boolean combination of statements of the form p(x) = 0 where p is
a polynomial with integer coefficients. Consider the two fields Q and R with
the usual addition and multiplication. Both fields evaluate the polynomials in
the same way, and so Q |= ψ(2) if and only if R |= ψ(2). However, R |= φ(2)
while Q |= ¬φ(2), since the square root of 2 is well-known to be irrational. This
contradicts the equivalence of φ(x) and ψ(x).

Proof. We will adopt the subtraction operation into the language to simplify
the resulting expressions. The terms of the language are than just polynomials
in several variables and integer coefficients, and every atomic formula can be
rearranged into the form p = 0 where p is such a polynomial. The proof of
quantifier elimination proceeds by induction on the complexity of formulas. As
in the previous proofs, it is necessary to show how to eliminate the existential
quantifier. There are several interesting special cases, which will be used to deal
with the general case.

Claim 6.3.7. If p(x, ~y) is a polynomial with integer coefficients, then ∃x p(x, ~y) =
0 is equivalent to a quantifier-free formula.

Proof. In an algebraically closed field, the formula ∃x p(x, ~y) = 0 is equivalent
to the statement that p as a polynomial in x has nonzero degree or otherwise
it is a zero polynomial. In other words, if ai : i ≤ n are terms in the variables
on the list ~y such that p = Σi≤naix

i, the formula ∃x p(x, ~y) = 0 is equivalent
to the formula (a1 6= 0 ∨ a2 6= 0 ∨ · · · ∨ an 6= 0) ∨ a0 = 0.

Claim 6.3.8. If p(x, ~y) is a polynomial with integer coefficients, then ∃x p(x, ~y) 6=
0 is equivalent to a quantifier-free formula.

Proof. In every field, a polynomial with nonzero coefficients has at least one
nonzero value. Thus, if ai : i ≤ n are terms in the variables on the list ~y such
that p = Σi≤naix

i, the formula ∃x p(x, ~y) 6= 0 is equivalent to the formula
a0 6= 0 ∨ a1 6= 0 ∨ a2 6= 0 ∨ · · · ∨ an 6= 0.

Claim 6.3.9. If p(x, ~y) and q(x, ~y) are polynomials with integer coefficients,
then ∃x p(x, ~y) = 0 ∧ q(x, ~y) 6= 0 is equivalent to a quantifier-free formula.
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Proof. In an algebraically closed field, the formula ¬∃x p(x, ~y) = 0∧ q(x, ~y) 6= 0
(or “all roots of p are also roots of q) is equivalent to the statement that the
polynomial p divides qn where n is the degree of p: both polynomials factorize
into linear factors, every linear factor of p must show up in q, and it can repeat
at most n many times in the factorization of p. Thus it will be enough to show
that the statement “p divides q” is equivalent to a quatifier-free formula.

This is essentially the long division algorithm. Divide q with p and consider
the remainder, which is some polynomial r of degree less than the degree of p
Let ai : i ≤ m are terms in the variables on the list ~y such that r = Σi≤maix

i.
Then “p divides q” is equivalent to the quantifier-free formula a0 = 0 ∧ a1 =
0 ∧ · · · ∧ am = 0.

Claim 6.3.10. If pi(x, ~y) : i < n and qi(x, ~y) : i < m are polynomials with
integer coefficients, then φ = ∃x p0 = 0 ∧ p1 = 0 ∧ · · · ∧ q0 6= 0 ∧ q1 6= 0 ∧ . . . is
equivalent to a quantifier-free formula.

Proof. In every field, the condition q0 6= 0 ∧ q1 6= 0 ∧ . . . is equivalent to q 6= 0
where q is the polynomial which is the product of all polynomials on the list
q0, q1 . . . . Thus, it is enough to deal with the case where m = 1, i.e. there is
only one q-polynomial.

The proof goes by induction on k, where k is the sum of the degrees of
all polynomials on the list pi : i < n. In the base case that k = 0, all the p-
polynomials have degree zero, therefore do not mention x at all, and the formula
φ is equivalent to p0 6= 0 ∧ p1 = 0 ∧ · · · ∧ ∃x q 6= 0, which is equivalent to a
quantifier-free formula by Claim 6.3.8.

Now suppose that the induction hypothesis has been verified for some k,
and argue that it holds at k + 1. Suppose that pi(x, ~y) : i < n and q(x, ~y) are
polynomials with integer coefficients such that the degrees of the polynomials
pi add up to k + 1. We must verify that φ = ∃x p0 = 0 ∧ p1 = 0 ∧ · · · ∧ q 6= 0
is equivalent to a quantifier-free formula. If there is only one p-polynomial
(i.e. n = 1), then this is the content of Claim 6.3.9. So suppose that n > 1,
and (renumbering the polynomials if necessary) assume that the degree of p0 is
some d0, the degree of p1 is some d1 with d1 ≤ d0, and a0, a1 are the respective
leading coefficients of the polynomials p0, p1. Then φ is equivalent to the formula
(a1 = 0 ∧ ψ) ∨ (a1 6= 0 ∧ θ), where

• ψ = ∃x p0 = 0 ∧ p̄1 = 0 ∧ · · · ∧ q 6= 0 where p̄1 = p1 − a1x
d
1. Observe that

the degree of p̄1 is smaller than the degree of p1;

• θ = ∃x p̄0 = 0 ∧ p1 = 0 ∧ · · · ∧ q 6= 0 where p̄0 = a1p0 − a0x
d0−d1p1.

Observe that the degree of p̄0 is smaller than the degree of p0.

The sum of degrees of polynomials mentioned in ψ or θ is in both cases at most
k, and so by the induction hypothesis, both ψ, θ are equivalent to a quantifier-
free formula. Ergo, φ is equivalent to a quantifier-free formula and the induction
step has been performed.
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Now for the general case of eliminating the existential quantification, suppose
that ψ is an arbitrary quantifier-free formula and x is a variable; we want to show
that ∃x ψ is equivalent to a quantifier-free formula. Rearranging ψ if necessary,
we may assume that ψ is a disjunction θ0 ∨ θ1 ∨ . . . where each θi is in turn
a conjunction of atomic formulas or their negations. Then, ∃x ψ is equivalent
to ∃x θ0 ∨ ∃x θ1 ∨ . . . , and each formula ∃x θi is equivalent to a quantifier-free
formula by Claim 6.3.10. This completes the proof of the theorem.

Corollary 6.3.11. Let 〈C, 0, 1,+, ·〉 be the field of complex numbers with addi-
tion and multiplication. The definable sets in this model are exactly the finite
and cofinite sets.

Proof. On one hand, every finite or cofinite set is clearly definable in the model.
For example, the set {c0, c1, c2} is definable by the formula φ(x, y0, y1, y2) equal
to x = y0 ∨ x = y1 ∨ x = y2 with the parameters c0, c1, c2.

On the other hand, every definable set in the structure is either finite or
cofinite. Since every definition can be replaced with an equivalent quantifier-
free definition, it is enough to show that every set defined by a quantifier free
formula is finite or cofinite. This is proved by induction on complexity of the
defining quantifier-free formula φ. The important case is that of atomic formu-
las. An atomic formula φ(x, ~y) is (after perhaps some reorganization) just an
equation p(x) = 0 where p is a polynomial in x with parameters that are some
combination of the parameters on the list ~y. A nonzero polynomial in a field
has only finitely many roots, so the atomic formula defines a finite set.

Theorem 6.3.12. (Tarski 1951) The theory of real closed fields is complete and
has quantifier elimination.

Recall that the theory of real closed fields has constant symbols 0, 1, binary
functional symbols x, y, and a binary relational symbol ≤ and axioms as follows:

• 0, 1,+, · form a field;

• ≤ is a linear order such that ∀x∀y (0 ≤ x ∧ 0 ≤ y)→ 0 ≤ x+ y (in other
words, + is an ordered group);

• every polynomial of odd degree has a root.

The intended model of the theory of real closed fields is R = 〈R, 0, 1,+,≤, ·〉.
The proof of the theorem is too long to include in these notes. We will only

discuss two motivational examples of quantifier elimination in the structure R.

Example 6.3.13. The existential formula ∃x ax2 + bx+ c = 0 is equivalent to
the quantifier-free formula b2 + 4ac ≥ 0.

Example 6.3.14. If p(x) is a polynomial and a < b are real numbers, the
Sturm’s algorithm provides an algorithmic way to decide whether ∃x p(x) =
0 ∧ a ≤ x ≤ b holds. A more careful look at the algorithm will show that it
in fact reduces this existential formula to a quantifier-free formula. There are
many other root-finding algorithms.
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Example 6.3.15. The ordering ≤ is deinable in the structure R from the other
functions: x ≤ y if and only if ∃z z2 + x = y. However, without the symbol
≤, the quantifier elimination fails: the set A = {x : 0 ≤ x} is not definable
without quantifiers from the remaining functions. To see this, suppose that
φ(x, ~y) is a quantifier-free formula not mentioning ≤, and ~r is a sequence of real
numbers of the same length as ~y. I will produce a real number s > 0 such that
R |= φ(s/x,~r/~x) ↔ φ(−s/x,~r/~y). This shows that φ(x,~r/~y) does not define
the set A in the model R.

The atomic subformulas in φ(x,~r/~y) are of the form p(x) = 0 where p is
some polynomial with real coefficients. Nonzero polynomials have only finitely
many roots, so there is some real number s > 0 such that neither s nor −s is
a root of any nonzero polynomial mentioned in φ(x,~r/~y). It is clear that the
number s works as desired.

Example 6.3.16. The function f(x) = ex is not definable in the structure
R. In fact, for every definable function g there is a number n ∈ ω and a real
number r ∈ R such that for every x > r, g(x) ≤ xn. To see this, suppose that
g(x) = y is defined via some formula φ(x, y, ~z) and a string ~r of parameters of
the same length as ~z. By the quantifier elimination, we may assume that φ is
quantifier free. For any real number s, the atomic formulas in φ(s/x, y, ~r/~z) are
inequalities of the form p(x) ≥ 0 where p is a polynomial with real coefficients.
Let h(s) be the largest real number which is a root of some nonzero polynomials
mentioned in φ(s/x, y, ~r/~z). We will show that g(s) ≤ h(s) and h is bounded
by a polynomial.

First of all, if t, u > h(s) are real numbers, then R |= φ(s/x, t/y, ~r/~y) ↔
φ(s/x, u/y, ~r/~z), since no polynomial mentioned in φ(s/x, y, ~r/~z) changes sign
past h(s). This means that g(s) ≤ h(s).

Second, to bound the function h by a polynomial, we must use one of the
theorems bounding roots of a polynomial. Theorem ??? of ??? states that if
p(y) = Σi≤naiy

i is a polynomial with leading coefficient an 6= 0 then all of its
complex roots have absolute value ≤ 1

|an|Σi<n|ai|. Now note that the coefficients

of the polynomials in the formula φ(s/x, y, ~r/~z) are themselves polynomials in
s. This means that there is some real number s0 and a constant ε > 0 such
that the leading coefficients of these polynomials are in absolute value > ε for
all s > s0. The function h(s) for s > s0 is then bounded by 1/ε times the sum
of 1 + a2 for all coefficients a of the polynomials appearing in the formula φ.

Corollary 6.3.17. Every subset of R definable in R is a finite union of open
intervals and singletons.

Proof. The atomic formulas of the language of RCF can be written in the form
of p(~x) ≥ 0 or p(~x) = 0 for polynomials p of some variables ~x. Polynomials
are continuous functions, and number of roots is bounded by the degree of the
polynomial. Therefore, the atomic formulas can define only a finite union of
open intervals and singletons. A general quantifier-free formula is a boolean
combination of atomic formulas, and so it also can only define a finite union of
open intervals and singletons.
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The corollary is very attractive; it immediately leads to the following defini-
tion:

Definition 6.3.18. A model M is o-minimal if its language contains a binary
relation symbol ≤ such that ≤M is a linear ordering and every definable subset
of the universe of M is a finite union of open intervals in this ordering and
singletons.

Which models are o-minimal? In particular, which relations or functions can be
added to R while preserving its o-minimality?

Theorem 6.3.19. (Wilkie 1996) Let E = 〈R, 0, 1,≤,+, ·, ex〉. The structure E
is o-minimal.

The theory of the structure E does not allow quantifier elimination. It is not
known if the theory is decidable.



Chapter 7

The incompleteness
phenomenon

The purpose of this chapter is to prove the famous first Gödel’s incompleteness
theorem.

7.1 Peano Arithmetic

Since the incompleteness theorem is most commonly stated for Peano Arith-
metic, we will first take some time to describe this first order theory in some
detail. Its language has a constant symbol 0, a unary functional symbol S (suc-
cessor), binary functional symbols +, ·, and a binary relational symbol ≤. Its
axioms are:

• ≤ is a linear ordering with 0 as the least element;

• for every x, S(x) is the ≤-smallest element larger than x, and every
nonzero x is S(y) for some y;

• for all x, y, x+0 = x and x+Sy = S(x+y), x ·0 = 0 and x ·Sy = x ·y+x;

• (the induction scheme) Whenever φ(~x, y) is a formula with all free vari-
ables listed, the following statement is an instance of the induction axiom
scheme: ∀~x (φ(~x, 0) ∧ (φ(~x, y)→ φ(~x, Sy))→ ∀y φ(~x, y)).

To illustrate the use of the induction scheme, we prove the following simple
formal theorem of Peano Arithmetic.

Theorem 7.1.1. PA proves the commutativity of addition, ∀y ∀x x+y = y+x.

Proof. To prepare the ground, by induction on y prove the statement ∀x ∀y x+
Sy = Sx+y. For the base step, x+S0 = S(x+0) by the third group of axioms,
S(x+ 0) = Sx and Sx = Sx+ 0 by the neutrality of 0, and so x+S0 = Sx+ 0.

79
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For the induction step, suppose that x+ Sy = Sx+ y holds and work to prove
x + SSy = Sx + Sy. To see how this is done, x + SSy = S(x + Sy) by the
third axiom group, S(x + Sy) = S(Sx + y) by the induction hypothesis, and
S(Sx+ y) = Sx+ Sy by the third axiom group again.

Another useful preliminary fact is that ∀x x+ 0 = 0 + x. This is proved by
induction on x. The base step 0 + 0 = 0 + 0 follows from the logical axioms
of equality. For the induction step, the induction hypothesis x + 0 = 0 + x
must be shown to imply Sx + 0 = 0 + Sx. The following string of equalities
proves exactly that: 0 + Sx = S(0 + x) by the third group of axioms of PA,
S(0 +x) = S(x+ 0) by the induction hypothesis, S(x+ 0) = Sx since x+ 0 = x
by the third group of axioms of PA, and Sx = Sx + 0 by the third group of
axioms of PA again.

Finally, we are ready to prove the commutativity by induction on y. The
base step is the statement ∀x x+ 0 = 0 + x proved in the previous paragraph.
For the successor step, we must show that the induction hypothesis x+y = y+x
implies x+Sy = Sy+x. Indeed, x+Sy = Sx+ y by the first paragraph of this
proof, Sx + y = y + Sx by the induction hypothesis, and y + Sx = Sy + x by
the first paragraph of this proof again.

7.2 Outline of proof

Theorem 7.2.1. (First Incompleteness Theorem) Peano Arithmetic is not com-
plete. There is a sentence φ of the language of Peano Arithmetic such that PA
proves neither φ nor ¬φ.

We will present a slightly simplified proof of the incompleteness theorem. It
consists of three parts.

Arithmetization of syntax. Plainly speaking, this says that the syntax
of Peano Arithmetic can be encoded by natural numbers in a sensible way. We
will produce injective maps φ 7→ φ̂ and t 7→ t̂ that send formulas and terms of
the language of PA to natural numbers so that simple syntactical notions are
definable in N. In particular, there are formulas

• Form such that N |= Form(n) just in case there is a formula φ such that

n = φ̂;

• Plug such that N |= Plug(k, l,m) just in case there is a formula φ with a

single free variable x, and m = φ̂(t/x) where t is the numeral for l;

• Prov such that N |= Prov(n) just in case there is a sentence φ which is a

theorem of PA and n = φ̂.

In fact, essentially every imaginable syntactical notion will be definable using
the coding in question. There are many equivalent ways to arithmetize syntax,
but all of them require some tedious moves.

Diagonalization. This is the crux of the proof, a simple and confusing
lemma with a simple and confusing proof.
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Lemma 7.2.2. For every formula θ of one free variable, there is a sentence φ
such that N |= φ↔ θ(φ̂).

A more precise form of the lemma makes the conclusion that PA` φ↔ θ(φ̂).
This is slightly more difficult to prove and we are not going to need it. In both
cases, the arithmetization of syntax is necessary for the proof.

Proof. Let θ(x) be a formula of one free variable. Let y be a variable which
does not appear in θ. Let ψ(y) be the formula ∀z Plug(y, y, z) → θ(z/x). Let

φ be the sentence ψ(t/y) where t is the numeral for ψ̂. We claim that φ works
as required. Observe the equivalence of the following items:

• N |= φ;

• N |= ψ(ψ̂);

• N |= θ(ψ̂(t/y)) where t is the numeral for ψ̂;

• N |= θ(φ̂).

The first and second item are equivalent by the definition of φ. The second and
third item are equivalent by the definition of ψ and Plug, and the third and
fourth item are equivalent by the definition of φ again.

Final cinch. Once the diagonalization is proved, the incompleteness theo-
rem is an easy corollary. Apply the diagonalization lemma with θ(x) = ¬Prov(x).

Find a sentence φ such that N |= φ ↔ θ(φ̂). We claim that the sentence φ is
not decidable in Peano Arithmetic:

• if PA` φ then N |= φ and so N |= ¬Prov(φ̂), and therefore φ is not
provable; this is a contradiction;

• if PA` ¬φ then N |= ¬φ, and so N |= Prov(φ̂), and so φ is provable in
PA. This contradicts the consistency of PA.

7.3 Arithmetization of syntax

7.4 Other sentences unprovable in Peano Arith-
metic

Gödel’s incompleteness theorem provides a sentence unprovable in Peano Arith-
metic. The sentence is in logical sense the simplest possible. However, in mathe-
matical sense, it has the disadvantage of carrying no clear content. Over time, a
number of mathematically meaningful sentences formalizable, but not provable,
in Peano Arithmetic appeared.
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Example 7.4.1. Ramsey’s theorem. For every number k ∈ ω, every r ∈ ω and
every coloring c : [ω]k → r there is an infinite set a ⊂ ω such that all k-element
subsets of a are colored with the same color. This theorem is not formalizable in
the language of Peano Arithmetic due to the quantification over infinite objects.

We consider a finitization of this statement due to Paris and Harrington.
For every k, r ∈ ω there is m such that for every coloring c : [m]k → r there is a
nonempty set a ⊂ m such that min(a) < |a| and all k-element subsets of a are
colored with the same color. This statement is formalizable, but not provable,
in PA. The function k, r 7→ m grows very fast.

Example 7.4.2. Kruskal’s tree theorem. A tree is a (finite) partially ordered
set 〈T,≤〉 such that for every t ∈ T , the set {s ∈ T : s ≤ t} is linearly ordered
by ≤. For t, s ∈ T write inf(t, s) for the ≤-largest element u such that u ≤ t
and u ≤ s. For trees T, S write T ≺ S if there is an injection h : T → S which
preserves the ordering and infima.

Kruskal’s tree theorem states that for every infinite sequence 〈Tn : n ∈ ω〉
there are n0 < n1 such that Tn0 ≺ Tn1 . This is not formalizable in Peano
Arithmetic due to the quantification over infinite objects. We consider a fini-
tization of this statement. For every k ∈ ω there is m ∈ ω such that for every
sequence 〈Tn : n < m〉 in which every tree Tn has size at most n+ k, there are
n0 < n1 < m such that Tn0

≺ Tn1
.

The finite version is formalizable, but not provable in Peano Arithmetic.
The function k 7→ m grows extremely fast. Kruskal’s theorem plays important
role in computer science, proving termination of important algorithms for word
problems.



Chapter 8

Computability

In this chapter, we formalize the notion of a “computable” function from natural
numbers to natural numbers. There is a number of different approaches devel-
oped by separate research groups at about the same time in mid-1930’s. They
all lead to the same class of functions. This remarkable coincidence lead math-
ematicians to believe that this class of functions is truly the class of functions
computable in an intuitive sense. This belief is encapsulated in a nonmathe-
matical statement known as Church’s thesis.

In the first three sections we develop three competing concepts of a com-
putable function. In the fourth section, we show that these three concepts yield
the same class of functions. The ultimate application of the concept of com-
putability from mathematician’s point of view is proving that certain naturally
occurring problems are algorithmically unsolvable. In the last section of the
chapter we will discuss some of these tough problems.

In several sections, we will speak about formal languages, and this is a
suitable place to develop the appropriate notational conventions. An alphabet
will always be just a finite nonempty set of symbols. A word in an alphabet
Σ is just a finite sequence of symbols in Σ. One possible word is the empty
word, denoted by 0. If a ∈ Σ is a symbol and n ∈ ω is a natural number, an

denotes the word consisting of n many a’s. If v, w are words then vw denotes
their concatenation. A language is a set of words in a fixed alphabet.

8.1 µ-recursive functions

Definition 8.1.1. Let f : ωn → ω be a partial function. The symbol f(xi : i ∈
n) ↑ denotes the fact that f(xi : i < n) is not defined. The function f is total if
f(xi : i < n) is defined for each n-tuple 〈xi : i < n〉 ∈ ωn.

Definition 8.1.2. The class of partial µ-recursive functions is the smallest class
containing

• the coordinate functions f(xi : i < n) = xj for each n > 0 and j < n;
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• the successor function f(x) = x+ 1,

and closed under the following operations:

• composition: if f is a function of n variables and gi for i < n are all func-
tions ofm variables, obtain the function h(g0(x, y, z, . . . ), g1(x, y, z, . . . ), . . . gn−1(x, y, z . . . );

• primitive recursion: if f is a function of n+ 2 variables and g is a function
of n variables, obtain the function h of n + 1 variables given by h(0, xi :
i < n) = g(xi : i < n) and h(m+ 1, xi : i < n) = f(h(m,xi : i < n),m, xi :
i < n);

• minimalization: if f is a function of n+ 1 variables then obtain a function
µf of n variables, defined by µf(xi : i < n) = y if for every z ≤ y the
functional value f(xi : i < n, z) is defined, if z < y then this value is not
zero, and if z = y then this value is zero. If such y does not exist, then
the value of µf(xi : i < n) is undefined.

Definition 8.1.3. The class of primitive recursive functions is the smallest
class containing the coordinate functions and the successor function, and closed
under the operation of composition and primitive recursion.

In particular, every primitive recursive function is total.

Example 8.1.4. Addition and multiplication are primitive recursive.

Proof. x+ y is defined by the recursive scheme 0 + y = y and (x+ 1) + y = (x+
y)+1. x·y is defined by the recursive scheme 0·y = 0 and (x+1)·y = x·y+y.

Example 8.1.5. The function x .− y, defined by x .− y = 0 if x ≤ y and
x .− y = x− y if x > y, is primitive recursive.

Proof. First, check that the function g(x) = x .− 1 is primitive recursive: g(0) =
0, g(x+1) = x. Then, define x .−y by recursion on y: x .−0 = x and x .−(y+1) =
(x .− y) .− 1.

Example 8.1.6. The Ackermann function is total µ-recursive function which
is not primitive recursive. It is uniquely given by the demands A(0, n) = n+ 1,
A(m, 0) = A(m− 1, 1), and A(m,n) = A(m− 1, A(m,n− 1)) if m,n > 0.

8.2 Turing machines

Another approach towards formalizing the notion of computability relies on
modeling of computational devices. We will develop the simplest possibility,
the deterministic finite automaton, as a baby case of the ultimate model, the
Turing machine.
Remark. For Turing, the models were intended to model the work of secre-
taries in his office, as opposed to the (as yet nonexistent) computing devices.
The (typically female) computing associates are the unsung heroes of applied
mathematics before 1950. Armies of them were necessary to complete any sig-
nificant job.
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Definition 8.2.1. A deterministic finite automaton is a tuple 〈Σ, S,A, s, T 〉
such that

• Σ is a finite nonempty set (the alphabet);

• S is a finite set (the set of states)

• A ⊂ S is a set (the set of accepting states);

• s ∈ S is the starting state;

• T : S × Σ→ S is a function.

Definition 8.2.2. If Σ is a finite set (an alphabet) then Σ∗ is the set of all
finite strings of elements of Σ (words). A language is a subset of Σ∗.

Definition 8.2.3. Let 〈Σ, S,A, s, T 〉 be a finite automaton and w ∈ Σ∗ be a
word of length n. A computation with input w is a sequence 〈si : i ≤ n〉 of states
such that s0 = s and for every i < n, si+1 = si = T (si, w(i)). The automaton
accepts the word w if sn ∈ A; it rejects the word if sn /∈ A. A language L is
recognizable by a finite automaton if there is an automaton such that for every
word w, w ∈ L if and only if the automaton accepts w.

Example 8.2.4. The language of all words of even length in a given alphabet is
recognizable by finite automaton. Just let S = {s, t}, let the function T flip the
state on any given input, and let A = {s}. Thus, for any given input word w,
the computation on input w keeps oscillating between the states s, t. If it ends
in the state s, the word has even length, otherwise the word has odd length.

Example 8.2.5. The language L of all words in the alphabet {a, b} with equal
number of occurences of letters a, b is not recognizable by finite automaton.

Proof. Suppose for contradiction that 〈Σ, S,A, s, T 〉 is a finite automaton rec-
ognizing L. Let n be the size of the set S, and consider the word w = an+1bn+1.
In the computation on input w, the same state (call it t) must appear on
two distinct positions i < j < n + 1. Let m = j − i and consider the word
v = an+1+m+1bn+1. The computation on input v proceeds similarly as the
computation on input w, with the difference that it traverses the cycle between
the positions i < j twice. Therefore, the computations on input v, w end in
the same state. This is impossible, since w ∈ L while v /∈ L and so w must be
accepted while v must be rejected.

The last example makes it clear that finite automaton is too weak a model
for computation. The computing device must have an unlimited amount of
memory for notes, otherwise the sheer amount of data may overwhelm it even
in the case of very simple tasks.

Definition 8.2.6. A Turing machine is a tuple 〈Σ, S,A, s, T 〉 such that

• Σ is a finite set of size at least two, with a designated ”blank” symbol (the
alphabet accepted by the machine);
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• S is a finite set (the set of states);

• A is a subset of S (the set of accepting states);

• s ∈ S is an element of S (the starting state);

• T : S × σ → S × Σ× {−1, 0, 1} is a function (the action of the machine).

Intuitively speaking, the machine has a tape, which is a sequence of boxes
indexed by (both positive and negative) integers. Each box can hold a single
letter of the alphabet. The machine has a head that can read a single symbol on
the tape. At a given stage of the computation, the machine reads the symbol in
the location of its head, and depending on the state in which it is in, it moves to
a different state, rewrites the symbol, and moves the head to the left or right on
the tape (or the head stays in the same location). This intuition is formalized
in the following definition.

Definition 8.2.7. Let z : Z → Ω be a function. A run of the machine on the
input z is a sequence 〈zi, bi, ni : i ∈ ω〉 such that

• zi is a function from Z to Σ, si ∈ S, and ni ∈ Z;

• z0 = z, s0 = s, n0 = 0;

• if T (si, zi(ni)) = (c, u, v) then si+1 = c, zi+1 = zi except that the ni-th
entry of zi is replaced with u, and ni+1 = ni + v.

The machine accepts the input z if the run on the input z visits one of the
accepting states, in other words halts. A language L is recognizable by a Turing
machine if there is a Turing machine such that for every finite word w, the
machine accepts w if and only if w ∈ L.

One of the most important differences between Turing machines and finite
automatons is that computations of Turing machines may never halt; in such a
case, the programmer never gets the information he most likely seeks.

There are many other computing devices that one can formalize. There
may be multiple tapes, or FIFO or LIFO stacks present. These variations may
make it easier to construct various machines, but they do not change the overall
computational power of the device.

8.3 Post systems

Still another approach to computability was developed by Emil Leon Post in
1936. It is intended to model simple manipulations in algebra or calculus, but
its computational power turns out to be equivalent to Turing machines. In this
approach, the word, instead of serving as in input of a computational device, is
obtained from a finite list of initial words (axioms) using a finite list of editing
rules (productions).
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Definition 8.3.1. Let Σ be an alphabet. A production rule is an expression of
the form

g0S0g1S1 . . . Sngn+1 → h0Si0h1Si1 . . . Simhm

where

1. g0, g1, . . . and h0, h1, . . . are words (perhaps null words);

2. i0, i1, . . . are numbers between 0 and n.

The production rule can be applied to a word w if w is of the form g0v0g1v1 . . . vngn+1

for some (perhaps null) words v0, v1, . . . vn, and the application of the rule to
the word w then results in a word h0vi0h1vi1 . . . vimhm.

Example 8.3.2. The production rule xSxyT → xSSTxy can be applied to the
word xyxyxyx in two ways. In the first, we let S = y and T = xyx and produce
xyyxyxxy. The second way obtains if we let S = yxy and T = x and produce
xyxyyxyxxy.

Definition 8.3.3. A Post system is a pair 〈A,P 〉 where A is a finite set of
words (the axioms) and P is a finite set of production rules. The language
generated by the Post system is the set of all words that can be obtained from
some word in A by a finite succession of applications of the production rules
in P . A language L in a finite alphabet Σ is Post-generable if there is a Post
system in a possibly larger alphabet ∆ ⊃ Σ such that the language K generated
by it satisfies K ∩ Σ∗ = L.

Example 8.3.4. The language L consisting of all words in the language Σ =
{a, b} which have the same number of a’s and b’s is Post-generable.

Proof. Consider the Post system with just one axiom 0 and productions ST →
SabT and ST → SbaT . First of all, the word 0 is in the language L and the
production rules applied to words in L lead again to words in L. Therefore,
only words in L can be generated by the production rules in the system.

On the other hand, we can prove by induction on the length of the word
w ∈ L that w can be generated by repeated application of the production rules
in the system. This is clear if the length of w is 0, since then w = 0 and w
is the initial axiom. Suppose that the length of w is greater than 0 and for
shorter words the induction hypothesis has been verified. The word w must
contain either the group ab or the group ba, so it must be of the form g0abg1 or
g0bag1 for some strings g0, g1. Now the word v = g0g1 is in the language L, it is
shorter than w, and so by the induction hypothesis it is obtained from 0 using
the production rules in the system. Now, the word w is obtained from v using
a single application of the production rules by the definition of v.

Switching from generating languages to computing functions is easy.
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Definition 8.3.5. A partial function f : ωm → ω is Post-computable if the
language L consisting of all expressions of the form 1n0 : 1n1 : . . . 1nm−1 :
1f(n0,n1,... ) in the language {1, :} is Post-generable.

Example 8.3.6. The function f(n) = n2 is Post–computable.

Proof. The equality (n+1)2 = n2+2n+1 (itself a rewriting rule of sorts) plays a
key role. Just let : be the only axiom of the Post system and S : T → S1 : TSS1
be the only rewriting rule. It is easy to verify that the system produces the
desired function.

8.4 Putting it together

Theorem 8.4.1. The following classes of functions are equal:

1. the class of µ-recursive functions;

2. the class of Turing-computable functions;

3. the class of Post-computable-functions;

4. the class of functions Σ1-definable in N.

To prove that every µ-recursive function is Σ1, we will show that the basic
functions are Σ1 and that the generating operations applied to Σ1 functions
yield again Σ1 functions.

The basic functions are easily Σ1: for example, the function f(x, y, z) = x is
the set of all quadruples 〈x, y, z, u〉 such that u = x–so in fact it is definable by
an atomic formula.

For the primitive recursion operation, suppose for definiteness that we are
defining a function of two variables. Suppose that g, h are Σ1 functions, g is
a function of one variable and h is a function of three variables, and define f
by the recursive scheme f(0, y) = g(y) and f(x + 1, y) = h(x, y, f(x, y)). Then
f(x, y) = z is equivalent to the following formula φ(x, y, z): there is a code for
a sequence s such that s(0) = g(y) and ∀u < x s(x + 1) = h(x, y, s(x)) and
s(x) = z. The formula φ is Σ1 by the closure properties of Σ1 properties in ???

For the search operation, suppose for definiteness that we are defining a
function of one variable. Suppose that g is a Σ1 function of two variables, and
f is defined by the search operator: f(y) = µg(x, y) = 0. Then f(y) = z is
equivalent to the following formula φ(y, z): ∀x < z ∃u u 6= 0 ∧ g(x, y) = u and
g(z, y) = 0. The formula φ is Σ1 by the closure properties of the class of Σ1

formulas.
For composition, suppose for definiteness that we are composing functions of

a single variable. Let g, h be Σ1 functions, and let f be their composition: f =
g ◦ h. Then f(x) = y is equivalent to the following formula φ(x, y): ∃z h(x) =
z ∧ g(z) = y.

To prove that every Σ1 function is µ-recursive, we will first show that



8.5. DECIDABILITY 89

Claim 8.4.2. The characteristic function of any ∆0 formula is primitive-recursive.

Here, the characteristic function of a ∆0 formula φ(x, y) of say two free variables
is the function χφ : ω2 → 2 defined by χφ(x, y) = 1↔ φ(x, y) holds.

Proof. The proof proceeds by induction on the complexity of the ∆0 formula
φ. The atomic formulas are of the form s ≤ t for some terms s, t. The terms
are primitive recursive functions of their variables, as they are built from the
variables and 0 by adding one, addition, and multiplication. Then χs≤t is
equivalent to (t .− s) which is primitive recursive by Example 8.1.5.

If φ, ψ are formulas whose characteristic functions are primitive-recursive,
then also φ ∧ ψ has the same property, since its characteristic function is the
product of χφ and χψ. The negation is just as easy, since χ¬φ = 1 .− χφ.

Finally, consider the case of bounded quantifiers. Suppose that φ is a formula
such that χφ is primitive recursive. Let x, y be variables such that y does not
appear in φ. Then the characteristic function of ∀x < y φ is defined by primitive
recursion on y as follows: f(0) = 1 and f(y + 1) = f(y) · χφ(y). If s is a term
not mentioning x then the characteristic function of ∀x < s φ is defined as f ◦s.
The case of a bounded existential quantifier is similar.

8.5 Decidability

Loosely speaking, a problem is algorithmically undecidable if it is a question
whose inputs and outputs can be coded efficiently with natural numbers and
the function input7→output is not computable. There are many algorithmi-
cally undecidable problems in mathematics. Certain algorithmically undecid-
able problems are related to the notion of computation itself:

Example 8.5.1. (Halting problem) Decide whether a given Turing machine
will terminate on blank input.

Example 8.5.2. (Busy beaver problem) Among the finitely many Turing ma-
chines on fixed number of states and fixed alphabet, find one which on blank
input writes the longest sequence of nonblank symbols and halts.

A large class of undecidable problems comes from first order theories of
various structures.

Example 8.5.3. (Tarski 1953) Theory of groups is undecidable. There is no
algorithm deciding whether a sentence φ in the language of group theory is
formally provable from axioms of group theory. By the completeness theorem,
this is the same as to say that φ holds in all groups.

Example 8.5.4. Theory of finite groups is undecidable. There is no algorithm
deciding whether a sentence in the language of group theory holds in all finite
groups or not.

Example 8.5.5. (Robinson 1969) The theory of 〈Q,+, ·〉 is undecidable.
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Example 8.5.6. The theory of 〈C,+, ·, exp〉 is undecidable.

Other undecidable problems come from algebraic/combinatorial challenges.

Example 8.5.7. (Hilbert’s 10th problem) (Matiyasevich) There is no algo-
rithm deciding whether a given multivariate polynomial equation with integer
coefficients has an integer solution.

Example 8.5.8. (Word problem ???)
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