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Abstract

We show that for many structures X, the open subgroups of the au-
tomorphism group Aut(X) can be classified in great detail. This has
implications to the theory of the associated permutation models of ZF.

1 Introduction

Given a topological group, its open subgroups form a quite special company,
which normally has only a few, select members. The Polish groups for which
this collection is potentially larger than for others are the non-archimedean ones,
equivalently closed subgroups of S∞, or the automorphisms of structures with
countable universe and countable language. In this paper, I will show that
for many countable structures X, the open subgroups of the group Aut(X) of
all automorphisms of X with its usual Polish topology admit a very detailed
classification. This leads to an interesting and novel collection of Fraissé classes
whose limit has this desirable property, and an application to the theory of
permutation models of ZF.

The initial definitions are standard:

Definition 1.1. Let X be a countable structure and Aut(X) its group of au-
tomorphisms.

1. If x ∈ X, I write stab(x) = {γ ∈ Aut(X) : γ · x = x}. If A ⊂ X is a set,
write pstab(A) =

⋂
x∈A stab(x);

2. if A ⊂ X is a set and x ∈ X is an element, say that x is algebraic over A
if the set {g(x) : g ∈ pstab(A)} is finite;

3. the algebraic closure of a set A ⊂ X is the set of all elements of x algebraic
over A;
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4. a set is algebraically closed if it is equal to its algebraic closure;

5. the structure X is locally finite if algebraic closure of any finite set is finite.

It is well known that the collection of algebraic sets is closed under arbitrary
intersections, and the algebraic closure of any set is algebraically closed. Now,
for the central definition of this paper:

Definition 1.2. Let X be a countable structure and Aut(X) its group of auto-
morphisms with its usual Polish group topology. We say that X admits classifi-
cation of open subgroups if for any two finite algebraically closed sets a, b ⊂ X,
the union pstab(a) ∪ pstab(b) generates the group pstab(a ∩ b).

The terminology is justified by the following nearly trivial proposition.

Proposition 1.3. Let X be a countable, locally finite structure and Aut(X) its
group of automorphisms. The following are equivalent:

1. X allows classification of open subgroups;

2. for every open subgroup ∆ ⊂ Aut(X) there is a finite set c ⊂ X and a
subgroup G of the symmetric group on c such that ∆ = {g ∈ Aut(X) : g �
c ∈ G}.

Proof. Suppose first that (1) fails, as witnessed by finite algebraically closed sets
a, b ⊂ X. Let ∆ be the subgroup of Aut(X) generated by pstab(a) ∪ pstab(b);
since the set of generators is open, this is an open subgroup. I will prove that
∆ witnesses the failure of (2). Let c ⊂ X be a finite set with a subgroup G of
the symmetric group on c, put Γ = {g ∈ Aut(X) : g � c ∈ G}, and work to show
that ∆ = Γ fails.

If c ⊆ a fails, then pick an element x ∈ c \ a and use the algebraic closure
of a to find an element g ∈ pstab(a) such that g(x) /∈ c; then g ∈ ∆ \ Γ. If
c ⊆ b fails, then there is an element in ∆ \ Γ for a symmetric reason. Finally, if
c ⊆ a ∩ b holds, then use the failure of (1) to find an element g ∈ pstab(a ∩ b)
which is not in ∆, and observe that g ∈ pstab(c) so g ∈ Γ\∆ holds. These three
cases cover all possible configurations of a, b and c, and failure of (2) follows.

Suppose now that (1) holds, and let ∆ ⊂ Aut(X) be an open subgroup. The
set {a ⊂ X : a is finite, algebraically closed, and pstab(a) ⊆ ∆} is nonempty, it
is closed under intersections by (1), and therefore contains an inclusion-smallest
element c. Now, let G be the set of all permutations π of c such that there is
g ∈ ∆ such that g � c = π, set Γ = {g ∈ Aut(X) : g � c ∈ G} and argue that
∆ = Γ.

For the right-to-left inclusion, if g ∈ ∆ then a diagram-chasing argument
shows that g′′c is an algebraically closed set and pstab(g′′c) ⊆ ∆; the minimal
choice of the set c then implies that c ⊆ g′′c, so c = g′′c. Therefore, g permutes
the set c and g ∈ Γ holds by the definition of Γ. For the left-to-right-inclusion,
suppose that g ∈ Γ holds. Use the definition of Γ to find a group element
h ∈ ∆ such that g � c = h � c. Then h−1 ◦ g ∈ pstab(c) ⊆ ∆, in consequence
g = h ◦ (h−1 ◦ g) is in ∆ and the proof is complete.
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In Section 2, I will show that for a natural collection of relational Fraissé classes
F (the bootstrapping ones, Definition 2.4), their limit structure admits classifi-
cation of open subgroups (Theorem 2.15). There are also examples of structures
which are very far from admitting any type of open subgroup classification (the
Urysohn rational metric space of Example 2.2) and very many examples of struc-
tures for which I do not know the status of the classification (Question 2.18). In
Section 3, I deal with the impact of open subgroup classification on the theory
of the derived permutation model of ZF. It turns out that the classification has
been used in a non-systematic way to analyze such models for a long time. The-
orem 3.1 includes some of its abstract consequences, which are quite difficult to
obtain otherwise.

The notation of the paper is standard and follows the textbook [1].

2 Examples of structures

It is not difficult to find simple structures which do not admit classification of
open subgroups.

Example 2.1. Let X be a structure with a single equivalence relation E with
at least two infinite equivalence classes. Let A ⊂ X be one of these classes,
and consider the group ∆ ⊂ Aut(X) of all automorphisms which permute the
equivalence class A. It is not difficult to check that this is an open subgroup
of Aut(X). If x ∈ A is any element then pstab({x}) ⊂ ∆, but pstab(0) =
Aut(X) 6= ∆ holds, so classification of open subgroups fails.

In the above example, the number of open subgroups is countable. This very
weak consequence of classification is violated in the following example.

Example 2.2. Let X be the countable rational Urysohn ultrametric space.
Then Aut(X) has uncountably many distinct open subgroups.

Proof. Let d be the ultrametric on X. Let Y be the rational ultrametric space
defined on the positive rationals by setting d(x, y) =the larger of the numbers
x, y whenever x and y are distinct. Using the universality of X, Y is isomorphic
to a metric subspace of X; to simplify the notation, I assume that Y ⊂ X holds.
For a positive real number r > 0, consider the group ∆r ⊂ Aut(X) generated
by pstab({y}) for y < r. Since this group is generated by open groups, it is
open itself, and it will be enough to show that distinct positive real numbers
give distinct open subgroups.

To this end, let r < s be distinct positive reals, and let y ∈ Y be a rational
number between them. Let x ∈ X be a point such that it has distance y from
y and also from some element z ∈ Y which is smaller than r. Such a point
has to exist by the universality properties of the space X. Let g ∈ Aut(X) be
an isometry such that g(y) = y and g(z) = x and g(x) = z; such an isometry
has to exist by the universality properties of X. It will be enough to show that
g ∈ ∆s \∆r.
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It is clear that g ∈ ∆s holds, since g fixes the point y. To show that g /∈ ∆r

holds, consider the set A = {u ∈ X : for some rational v < r, d(u, v) > r},
which by the ultrametric condition is equal to {u ∈ X : for all rational v < r,
d(u, v) > r}. The generators of the group ∆r all permute the set A, since they
are isometries; as a result, all elements of ∆r permute the set A. However, g
does not permute the set A as x ∈ A and g(x) = z /∈ A.

It seems to be much harder to identify examples of structures which admit
classification of open subgroups. To this end, I isolate a novel collection of
Fraissé classes.

Definition 2.3. Let F be a relational Fraissé class.

1. StructuresA,B ∈ F form an amalgamation pair ifA � (dom(A)∩dom(B)) =
B � (dom(A) ∩ dom(B);

2. for an amalgamation pair A,B ∈ F , a minimal amalgamation of A and
B is a structure C on dom(A) ∪ dom(B) such that C � dom(A) = A and
C � dom(B) = B.

Definition 2.4. Let F be a relational Fraissé class. Let A,B ∈ F be an
amalgamation pair and C,D be minimal amalgamations of A and B.

1. A walk from C to D is a finite sequence 〈Ci : i ≤ n〉 of minimal amalga-
mations of A and B such that C0 = C, Cn = D, and for every i ∈ n there
is a point xi ∈ dom(B)\dom(A) such that Ci � dom(A)∪dom(B)\{xi} =
Ci+1 � dom(A) ∪ dom(B) \ {xi};

2. the point xi ∈ B \A as above is a focus of difference between Ci and Ci+1;

3. F is a bootstrapping class if it has disjoint amalgamation and for any
amalgamation pair A,B ∈ F and any two minimal amalgamations C,D
of A and B, there is a walk from C to D.

All proofs showing that a certain relational Fraissé class is a bootstrapping class
are quite natural: among all minimal amalgamations of A and B, they identify
an optimal one and then show how an arbitrary minimal amalgamation can be
transformed to the optimal one one point at a time. An important issue to keep
in mind is that the points all have to be on the same side of the amalgamation
diagram.

To kick off the list of examples, recall that a relational Fraissé class F is
hereditary if it is closed under subsets in the sense that if A,B are structures
for its relational language with the same domain, A ∈ F , and all relations in B
are subsets of the corresponding relations in A, then B ∈ F holds.

Proposition 2.5. If F is a relational, hereditary Fraissé class with finite lan-
guage and disjoint amalgamation, then F is a bootstrapping class.
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Proof. Let A,B be an amalgamation pair of structures in F . Let D be the
minimal disjoint amalgamation of A and B obtained by taking the union of
the corresponding relations in A and B. This is indeed a structure in F since
its relations are subsets of any minimal disjoint amalgamation of A and B.
Now, if C is any minimal disjoint amalgamation of A and B, it is possible to
produce a walk from C to D by setting C0 = C and Ci+1 to be the structure
obtained from Ci by erasing (if it exists) one tuple ūi which appears in some
relation of the structure Ci but not in D. Note that it must be the case that
ūi contains some points from both dom(A) \ dom(B) and dom(B) \ dom(A)–
otherwise, the tuple would be in the optimal amalgamation D. Picking any
point xi ∈ dom(B) \ dom(A) in the tuple ūi, it is clear that xi is a focus of
difference between Ci and Ci+1. It is easy to prove by induction on i that all
the structures Ci are in fact in the Fraissé class F as F is hereditary. By the
finiteness of the language of F , for some number n ∈ ω it will be the case that
Cn = D. The proof is complete.

Example 2.6. The class of all graphs is bootstrapping.

Example 2.7. For any number k > 2, the class of all graphs not containing a
clique of cardinality k is bootstrapping.

The non-hereditary bootstrapping classes are much more interesting.

Example 2.8. The class of linear orderings is bootstrapping.

Proof. Let A and B be an amalgamation pair of linear orderings. There is
an optimal amalgamation D of A and B, in which if a ∈ dom(A) \ dom(B)
and b ∈ dom(B) \ dom(A) are consecutive points, then b ≤ a holds. There
is only one amalgamation satisfying this property: inside every interval of A �
dom(A)∩dom(B), first the appropriate elements of dom(B) are all smaller than
the appropriate elements of dom(A). Now, given an arbitrary minimal disjoint
amalgamation C of A and B, it is possible to produce a walk from C to D by
setting C0 = C and Ci+1 to be the structure obtained from Ci by finding (if it
exists) a pair 〈ai, bi〉 such that ai ∈ dom(A) \ dom(B), bi ∈ dom(B) \ dom(A),
and ai ≤ bi are consecutive in Ci. The linear ordering obtained by switching ai
and bi will then be the amalgamation Ci+1. Note that bi is the focus of difference
between amalgamations Ci and Ci+1. The walk has to end after finitely many
steps: for every element a ∈ A, the sets B(a, i) = {b ∈ B : b ≤ a in Ci} are
nondecreasing in i, and the only way how B(a, i) = B(a, i + 1) can occur for
all a ∈ dom(A) simultaneously is that the pair 〈ai, bi〉 has not been found. The
final element of the walk must be the amalgamation D.

Example 2.9. The class of rational metric spaces is bootstrapping.

Proof. Let A and B be an amalgamation pair of rational metric spaces, with
metrics dA and dB . There is an optimal minimal amalgamation D of A and
B, in which if a ∈ dom(A) \ dom(B) and b ∈ dom(B) \ dom(A) are points
then the distance of a and b is the minimum of the set {dA(a, c) + dB(c, b) : c ∈
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dom(A)∩ dom(B)}. In view of the triangle inequality, this is the largest metric
available. Now, given an arbitrary minimal amalgamation C of A and B, it is
possible to find a walk from C to D in the following way.

Find a positive rational number q such that every distance used in the amal-
gamation C is an integer multiple of q. Note that then also every distance used
in D is an integer multiple of q. To get a walk from C to D, start with C0 = C,
and construct Ci+1 from Ci by finding (if it exists) a pair 〈ai, bi〉 such that
ai ∈ dom(A) \ dom(B), bi ∈ dom(B) \ dom(A), and adding q to the distance
between ai and bi in Ci still results in a metric space; this new metric space will
be called Ci+1. Note that bi is the focus of difference between Ci and Ci+1. By
induction on i it can easily be proved that Ci is a minimal disjoint amalgama-
tion of A and B, and every distance in Ci is an integer multiple of q. The walk
has to end after finitely many steps: the sum of all distances used in Ci is an
integer multiple of q, it cannot overtake the sum of all distances used in D, and
the only way how it can stop increasing is that the pair 〈ai, bi〉 has not been
found.

The final element Cn of the walk must be the amalgamation D. To see
this, towards a contradiction assume otherwise, and find a pair 〈a, b〉 such that
a ∈ dom(A) \ dom(B), b ∈ dom(B) \ dom(A) such that dCn

(a, b) < dD(a, b),
and dCn

(a, b) is the smallest possible. Since adding q to the distance between a
and b will not result in a metric space, there has to be a triangle in which the
triangle inequality will not hold after this operation. Call the third vertex c, and
without loss assume that c ∈ dom(A). Since dCn(a, b)+q > dCn(a, c)+dCn(c, b)
and all numbers in question are integer multiples of q, it must be the case
that dCn

(a, b) = dCn
(a, c) + dCn

(c, b). Now, if c ∈ dom(A) ∩ dom(B), this
contradicts the assumption that dCn

(a, b) < dD(a, b). If, on the other hand,
c ∈ dom(A) \ dom(B) holds, then by the minimal choice of the points a and b
it has to be the case that dCn(c, b) = dD(c, b). Pick an element e ∈ dom(A) ∩
dom(B) such that dCn(c, b) = dA(c, e) + dB(e, b), By the triangle inequality in
dA, dA(a, e) ≤ dA(a, c) + dA(c, e). The strict inequality is impossible here, since
it would violate the triangle inequality in Cn in the triangle with vertices a, b, e.
However, the equality leads to the conclusion that dCn

(a, b) = dA(a, e)+dB(e, b),
violating the choice of the pair 〈a, b〉.

Example 2.10. The class of selectors is bootstrapping.

This is the class of all finite structures A equipped with a function fA which, to
each nonempty subset dom(A), assigns one of its elements. It is not difficult to
restate this class as one with an infinite relational language.

Proof. The proof is slightly different from the previous ones in that one does
not need to find an optimal amalgamation to streamline the argument. Let
A and B be an amalgamation pair and C and D two of its minimal disjoint
amalgamations. To get a walk from C to D, start with C0 = C, and construct
Ci+1 from Ci by finding (if it exists) a finite set ui ⊂ dom(A) ∪ dom(B) such
that fCi

(ui) 6= fD(ui), and switching this only value to get fCi+1
(ui) = fD(ui).

Note that the set ui must contain some elements of both dom(A) \dom(B) and
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dom(B) \ dom(A), and any element xi ∈ ui ∩ dom(B) \ dom(A) is a focus of
difference between Ci and Ci+1.

Since the number of disagreements between Ci and D is an integer and it
keeps decreasing, the walk has to end after finitely many steps, reaching Cn = D.
The proof is complete.

An essentially identical argument provides the following:

Example 2.11. The class of tournaments is bootstrapping.

Finally, there is a simple but powerful proposition regarding superposition of
bootstrapping classes. If F and G are two Fraissé classes in disjoint languages
LF and LG respectively, then F +G, the superposition of F and G, is the class
in the language LF ∪ LG consisting of all structures A such that A � LF ∈ F
and A � LG ∈ G.

Proposition 2.12. The superposition of two bootstrapping Fraissé classes is
bootstrapping again.

Proof. Suppose that F,G are bootstrapping classes, and A and B is an amal-
gamation pair of structures in the class F + G, and C and D are two minimal
disjoint amalgamations of A and B. First, consider the F -structures C � LF

and D � LF . These are minimal disjoint amalgamations of A � LF and B � LF .
By the bootstrapping property of the class F , there is a walk 〈CF

i : i ≤ n〉 from
C � LF to D � LF . Similarly, there is a walk 〈CG

j : j ≤ m〉 from C � LG

to D � LG. Now, a walk from C to D will consist first of superpositions of
the structures CF

i and C � LG for i ≤ n and then from superpositions of the
structures D � LF and CG

j for j ≤ m.

Example 2.13. The class of all linearly ordered graphs is bootstrapping, as it
is a superposition of graphs and linear orderings.

Example 2.14. The class of all linearly ordered rational metric spaces is boot-
strapping, as it is a superposition of rational metric spaces and linear orderings.

Theorem 2.15. Let F be a relational bootstrapping Fraissé class with limit X.
Then X admits classification of open subgroups.

Proof. Note that as F has the disjoint amalgamation property, every finite sub-
set of X is algebraically closed.

Now, let a, b ⊂ X are finite sets. It will be enough to show that pstab(a) ∪
pstab(b) generate a group Γ ⊂ Aut(X) which is dense in the set pstab(a ∩ b).
Then, since Γ ⊂ Aut(X) is open, it is also closed (???), it will follow that
Γ = pstab(a ∩ b) holds, proving the theorem.

Thus, suppose that c, d ⊂ X are finite sets containing a ∩ b and h : c→ d is
an isomorphism of X � c and X � d which is equal to the identity on a ∩ b. We
must find an element g ∈ Γ such that h ⊂ g.
Case 1. c∩d = a∩b and (c∪d) is disjoint from a∆b. In this case, let A = X � c
and B = X � a ∪ b. This is an amalgamation pair, and there are two minimal
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amalgamations: C = X � a∪ b∪ c and D which is the preimage of X � a∪ b∪ d
under the function which is equal to the identity on a∪ b and to h−1 on d. The
bootstrapping assumption yields a walk 〈Ci : i ≤ n〉 from C to D, with foci of
difference 〈xi : i ∈ n〉; these are all points in a∆b. By the universality properties
of the structure X, there are finite sets ci ⊂ dom(X) disjoint from a ∪ b and
functions hi for i ≤ n so that

• hi : a ∪ b ∪ c → a ∪ b ∪ ci is a bijection and an isomorphism between Ci

and X � a ∪ b ∪ ci which is the identity on a ∪ b;

• c0 = c and h0 is the identity;

• cn = d and hn is the function which is equal to the identity on a ∪ b and
to h on c.

Now, if i ∈ n and xi is the focus of difference between Ci and Ci+1 then hi+1◦h−1i

is an isomorphism between X � a ∪ b ∪ ci \ {xi} and X � a ∪ b ∪ ci+1 \ {xi}.
The point xi must belong to either a or to b, but not to both. In the former
case, the universality properties of X imply that there is an automorphism
γi ∈ Aut(X) which extends hi+1◦h−1i � b∪ci. In the latter case, the universality
properties of X imply that there is an automorphism γi ∈ Aut(X) which extends
hi+1 ◦ h−1i � a∪ ci. In either case, γi ∈ Γ. A review of the definiions shows that
the composition g of γi for i ∈ n in decreasing order extends h : c→ d.
Case 2. The general case. Here, the following claim is useful in reducing Case
2 to Case 1:

Claim 2.16. Let e ⊂ X be a finite set. Then there is an element g ∈ Γ such
that g′′e is disjoint from a∆b.

Proof. First, find an element ga ∈ pstab(a) such that g′′a(e \ a) is disjoint from
b. Then, find an element gb ∈ pstab(b) such that g′′b ((e \ b)∪ g′′a(e \ a) is disjoint
from a ∪ b. Then g = gb ◦ ga works.

Now, use the claim to find g ∈ Γ such that g′′(c ∪ d) is disjoint from a∆b. Let
c′ = g′′c, d′ = g′′d, and h′ : c′ → d′ be the composition g ◦ h ◦ g−1. Apply Case
1 to find an element g′ ∈ Γ such that h′ ⊂ g′. Then, h ⊂ g−1 ◦ h′ ◦ g and the
latter expression is an element of Γ.

Finally, I want to produce an example of a structure which allows classification
of open subgroups even though it is not a limit of a relational bootstrapping
Fraissé class.

Example 2.17. Let X be an infinitely branching acyclic graph with a graph
relation G, and a unary predicate A for one of the two classes of the equivalence
relation on X connecting two vertices of the tree if they have even distance in
the graph G. Then X allows classification of open subgroups.
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Proof. It is clear that algebraically closed finite sets are exactly those finite
sets which are connected in X. Now, suppose that a, b ⊂ X are connected
finite sets; we need to show that the clopen group Γ ⊂ Aut(X) generated by
pstab(a) ∪ pstab(b) is dense in pstab(a ∩ b). This is proved via a discussion of
several cases.
Case 1. a ∩ b 6= 0. ???
Case 2. a = {x0} and b = {x1} for distinct points x0, x1 ∈ X. In this case,
we need to show that Γ = Aut(X). This was proved by Anton Bernshteyn
in private communication; his argument is the following. Write c for the path
between x0 and x1, including both of these vertices.

First, let x be any vertex at even distance from x0. We will show that some
element of Γ moves x to x0. The proof proceeds by induction on the distance
of x from x0. If the distance is smaller or equal to the length of b, first find
an automorphism π0 in stab(x0) moving x to some point y ∈ c. Then, let
d be the path from x0 to y and find an automorphism π1 ∈ stab(x0) which
fixes exactly the first half of the path d. This is possible as the length of d is
even. Then, the distance of x1 from x0 and from π1(y) is the same, so there
is an automorphism π2 ∈ stab(x1) such that π2π1(y) = x0. As a result, the
composition π2 ◦ π1 ◦ π0 ∈ ∆ moves x to x0.

Now, if the distance of x to x0 is larger than the length of c, first find
an automorphism π0 ∈ stab(x0) so that c is the part of the path from x0 to
π0(x). Then, find an automorphism π1 ∈ stab(x1) so that either (if the distance
between x1 and π0(x) is at most equal to the length of b) π1π0(x) is on the path
b, or (if the distance is longer) b is a subset of the path from x1 to π1π0(x). This
way, π1π0(x) is closer to x0 than x. By the induction hypothesis, there is δ ∈ Γ
such that δ ◦ π1 ◦ π0 ∈ Γ moves x to x0, as desired.

Now, suppose that γ ∈ Aut(X) be any automorphism. Let x be any vertex at
even distance from x0; then γ(x) is also at even distance from x0. Let δ0 ∈ Γ be
any automorphism such that δ0(x) = x0; let δ1 ∈ Γ be any automorphism such
that δ1(γ(x)) = x0. These automorphisms exist by the previous two paragraphs.
Now δ1 ◦ γ ◦ δ−10 belongs to stab(x0) and therefore to Γ. It follows that γ =
δ−11 ◦ (δ1 ◦ γ ◦ δ−10 ) ◦ δ0 belongs to Γ, completing the proof of Case 2.
Case 3. a ∩ b = 0, the general case. Let x0 ∈ a, x1 ∈ b be the closest points in
a, b and let c be the path connecting and including them. Then stab(x0) is the
group generated by pstab(a) ∪ pstab(b ∪ c) by Case 1; in particular, stab(x0) is
a subset of the group generated by pstab(a) ∪ pstab(b). For the same reason,
stab(x1) is a subset of the group generated by pstab(a)∪ pstab(b). Apply Case
2 to see that stab(x0) ∪ stab(x1) generates the whole group Aut(X); the proof
is complete.

There are many locally finite structures for which the classification of open
subgroups is an open questions. Most importantly, the techniques of this paper
do not address the case of structures with functions on them.

Question 2.18. Do the following structures admit classification of open sub-
groups?
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1. countable atomless Boolean algebra;

2. the countably infinite dimensional vector space over a given finite field;

3. same as above but with additional structure such as a generic linear or-
dering.

3 Impact on permutation models of ZFA

Classification of open subgroups has immediate and thorough impact on the the-
ory of permutation models derived from the structures in question. I will discuss
a rather special case of permutation models, leaving the general exposition to a
different paper.

Let X be a countable structure and Γ its group of automorphisms, with
the usual Polish topology. Build a model V [[X]] of ZFC with atoms by using
elements of dom(X) as atoms (declaring for example that each of them is an
element of itself and has no other elements) and then building a cumulative
hierarchy over dom(X) in the usual way. Note that the application action of
Γ on dom(X) extends to an action on V [[X]] by ∈-automorphisms. Now, let
the permutation model W [[X]] be the transitive part of the class {A ∈ V [[X]] :
there is a finite set a ⊂ dom(X) such that pstab(a) ⊂ stab(A)}. It is a standard
fact ??? that X belongs to W [[X]], W [[X]] is a model of ZF with atoms, and
W [[X]] is a Γ-invariant subclass of V [[X]].

Theorem 3.1. Suppose that the structure X is locally finite and admits clas-
sification of open subgroups. Then the permutation model W [[X]] derived from
X satisfies the following:

1. the class of well-orderable sets is closed under increasing unions;

2. if X is linearly orderable then so is every set;

3. if the set of nonempty finite subsets of X has a selector then so does every
set of nonempty finite sets.

For the proof of the theorem, fix a countable locally finite structure X ad-
mitting classification of open subgroups. The following definition is central.

Definition 3.2. For every set A ∈ W [[X]] define supp(A) to be the smallest
algebraically closed finite subset a ⊂ X such that pstab(a) ⊆ stab(A).

The assumption that X is locally finite and admits classification of open sub-
groups implies that the definition is sound: the set {a ⊂ X : a is finite, al-
gebraically closed, and such that pstab(a) ⊆ stab(A)} is nonempty (as A ∈
W [[X]]) and closed under intersections (as the classification of open subgroups
shows), and therefore contains an inclusion-smallest element. A diagram chas-
ing argument shows that the map A 7→ supp(A) is invariant under the group
action. Therefore, whenever B ∈ W [[X]] is a set, the function with domain B,
assigning to each A ∈ B its support, is an element of W [[X]].
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Claim 3.3. A set B ∈W [[X]] is well-orderable in W [[X]] if and only if the set⋃
A∈B supp(A) is finite.

Proof. For the left-to-right direction, if ≤∈W [[X]] is a well-ordering on B and
a = supp({B,≤}), then by transfinite induction along ≤ one can show that
every element of pstab(a) fixes every element of B. Thus, a must be a superset
of all sets supp(A) for A ∈ B and

⋃
A∈B supp(A) is a subset of a and therefore

finite. For the right-to-left direction, if
⋃

A∈B supp(A) is finite, just choose any
well-ordering ≤ on B in the model V [[X]] whatsoever, let b ⊂ X be any finite
algebraically closed superset of

⋃
A∈B supp(A), observe that every element of

pstab(b) fixes ≤, and conclude that ≤∈W [[X]] holds as required.

For (1) of the theorem, work in W [[X]]. Let C be a set consisting of well-
orderable sets which are in addition linearly ordered by inclusion; we must show
that

⋃
C is well-orderable. By the claim, this means to show that

⋃
A∈

⋃
C supp(A)

is finite. Towards a contradiction, assume that this set is infinite. Consider the
set D = {

⋃
A∈B supp(A) : B ∈ C}. By the claim and the initial assumptions on

C, this is a set consisting of finite sets, and it is linearly ordered by inclusion.
By the contradictory assumption, the union of D is infinite. This means that
D can be listed in a strictly increasing order as L = 〈an : n ∈ ω〉 and this list is
indeed infinite. Let b = supp(L). Let n ∈ ω be so large that an 6⊆ b, and find
an element γ ∈ pstab(b) and an element x ∈ an such that γ(x) /∈ an. It follows
that γ · an 6= an, therefore γ does not fix the list L. This is in contradiction
with the choice of the set b.

For (2) and (3) of the theorem, another claim will be useful.

Claim 3.4. In W [[X]], assume that there is a selector function on the set of
all finite nonempty subsets of dom(X). Then every set can be injected into
[dom(X)]<ℵ0 × α for some ordinal α.

Proof. In W [[X]], find a selector f on the set of all finite nonempty subsets of
dom(X). Let B be an arbitrary set; I need to produce an injection from B into
[dom(X)]<ℵ0 × α for some ordinal α. To this end, let a = supp({f,B}) and
move to the model V [[X]].

Observe that pstab(a) permutes the set B. Consider the resulting orbit
equivalence relation E and any injection g from the set of all E-classes into
an ordinal α. Note that E as well as each of its orbits is pstab(a)-invariant,
and so is g. In consequence, g ∈ W [[X]]. It will be enough to show that
inside any given E-class, the support function is injective, because then the
map h : B → [dom(X)]<ℵ0 × α defined by h(A) = 〈supp(A), g([A]E)〉 is the
desired injection in W [[X]].

To prove the injectivity, suppose that A0, A1 ∈ B are elements of the same
pstab(a)-orbit with the same support, and work to show that A0 = A1. Let
γ ∈ pstab(a) be the group element such that γ ·A0 = A1. Then γ · supp(A0) =
supp(A1) by the invariance of the support function. By the initial assumption
then, g · supp(A0) = supp(A0) holds. It will be enough to show that γ fixes
supp(A0) pointwise, because then γ ∈ pstab(supp(A0)), and γ · A0 = A0 and
A0 = A1 follows.
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Let b ⊆ supp(A0) be the set {x ∈ supp(A0) : γ(x) 6= x}; it will be enough
to show that the set b is empty. Towards a contradiction, assume that it is
nonempty. By its definition, the set b is permuted by γ. Since γ fixes the
injection f , it must be that γ · (f(b)) = (γ · f)(γ · b) = f(b) and f(b) is fixed by
γ. Since f(b) ∈ b, this contradicts the definition of the set b.

For (2) of the theorem, I will use a nearly trivial ZF claim.

Claim 3.5. (ZF) The class C2 of all linearly orderable sets is closed under the
following operations:

1. injective preimages;

2. product;

3. taking the set of all finite subsets.

Proof. (1) is trivial and (2) and (3) use the lexicographic ordering. To elaborate
on (3), if Y is a set with a linear ordering ≤ then on [Y ]<ℵ0 define the relation
b ≤∗ c if either c ⊆ b or else the ≤-first element of b∆c belongs to the set b. It
is not hard to check that ≤∗ is a linear ordering on [Y ]<ℵ0 .

Now, work in W [[X]] and suppose that there is a linear ordering on dom(X).
Note that there is a selector on the set of all nonempty finite subsets of dom(X)–
namely, the map choosing the smallest element in a given linear ordering of
dom(X). By Claim 3.4, every set can be injectively mapped into [dom(X)]<ℵ0×
α for some ordinal α. By Claim 3.5, every set can be linearly ordered. (2)
follows.

For (3) of the theorem, I will use another tnearly trivial ZF claim.

Claim 3.6. (ZF) The class C3 of all sets Y such that there is a selector on the
set of all nonempty finite subsets of Y is closed under the following operations:

1. injective preimages;

2. product;

3. taking the set of all finite subsets.

Proof. The first item is trivial. For the second item, let Y,Z be sets and g, h be
their associated selectors. Write πY , πZ for the projections from Y ×Z to Y and
Z respectively. To produce a selector f on the set of all nonempty finite subsets
of Y × Z, for every such a set a ⊂ Y × Z let f(a) = 〈y, z〉 where y = g(π′′Y a)
and z = h(π′′Z(({y} × Z) ∩ a). The last item is somewhat more involved. Let
Y be a set and let f be a selector on the set of all nonempty finite subsets of
Y . Consider the set Z = [Y ]<ℵ0 ; we need to find a selector g on the set of all
nonempty finite subsets of Z. For every nonempty finite set b ⊂ Z, first define
a linear ordering ≤b on the finite set

⋃
b ⊂ Y as the unique one satisfying the

condition ∀x ∈
⋃
b x = f({y ∈

⋃
b : x ≤b y}). Then, define a linear ordering ≤∗b

on P(
⋃
b) as in the proof of Claim 3.5, and define g(b) to be the first element

of b in the linear ordering ≤∗b .
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Now, work in W [[X]] and suppose that there is a setector on the set of all
nonempty finite subsets of X. By Claim 3.4, every set can be injectively mapped
into [dom(X)]<ℵ0 × α for some ordinal α. By Claim 3.6, for every set B there
is a selector on a set of all nonempty finite subsets of B. (3) follows.
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