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Introduction

The study of algorithmically random closed sets was initiated by a
working group led by Doug Cenzer at the 2006 AIM meeting on
algorithmic randomness.

The primary notion of random closed set that emerged from this
work is sometimes referred to as Florida random (or less elegantly
as BBCDW-random).

This has proven to be a fruitful area of study, with interesting
connections to topics such as

I Galton-Watson processes,

I the hit-or-miss topology on the space of closed subsets of 2ω,
and

I Choquet capacity and potential theory.



Work of Cenzer and Weber

In a 2013 paper, Cenzer and Weber considered the intersection and
union of various types of random closed sets with respect to
different underlying probability measures.

In particular, these underlying measures are derived from Bernoulli
measures on 3ω, which we will explain shortly.

Here we will focus on their results on intersections of random
closed sets.



The main Cenzer/Weber result on intersections

Their main result obtained by Cenzer and Weber on the
intersection of randomness closed sets is this:

Theorem (Cenzer, Weber - Informal Version)

The intersection of Bernoulli random closed sets that are random
relative to each other is itself a Bernoulli random closed set.

Our interest in this work stems from the fact that they left the
converse open, which we derive.

We also investigate multiple intersections of relatively random
closed sets (with respect to some underlying Bernoulli measure)
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Part 1: Background



Computable Probability Measures on 3ω

Definition
A probability measure µ on 3ω is computable if σ 7→ µ(JσK) is
computable as a real-valued function.

Hereafter, for i ∈ {0, 1, 2} and σ ∈ 3<ω, I will use the shorthand

µ(σi | σ) =
µ(JσiK)

µ(JσK)
.

Let us consider some examples.



Bernoulli measures on 3ω

Let p, q ∈ [0, 1] satisfy p + q ≤ 1. Then the measure µ〈p,q〉 defined
by the conditional probabilities

I µ〈p,q〉(σ0 | σ) = p

I µ〈p,q〉(σ1 | σ) = q

I µ〈p,q〉(σ2 | σ) = 1− p − q

for σ ∈ 3<ω defines a Bernoulli measure on 2ω.

µ〈p,q〉 is a computable measure if and only if p and q are both
computable.



Symmetric Bernoulli measures on 3ω

Let p ∈ (0, 1
2 ). Then the measure µp defined by the conditional

probabilities

I µp(σ0 | σ) = p

I µp(σ1 | σ) = p

I µp(σ2 | σ) = 1− 2p

for σ ∈ 3<ω defines a symmetric Bernoulli measure on 2ω.

µp is a computable measure if and only if p is computable.



Martin-Löf randomness

Let µ be a computable measure on 3ω.

Definition
A µ-Martin-Löf test is a uniformly Σ0

1 sequence (Ui )i∈ω of subsets
of 3ω such that for each i ,

µ(Ui ) ≤ 2−i .

A sequence X ∈ 3ω passes the µ-Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

X ∈ 3ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X passes
every µ-Martin-Löf test.

Note that we can relative this definition to any oracle.



Algorithmically random closed sets

Let K(2ω) be the collection of closed subsets of 2ω.

One way to define an algorithmically random closed subset of 2ω,
due to Barmpalias, Brodhead, Cenzer, Dashti, and Weber:

I A closed set C ⊆ 2ω is random if it can be coded by an
algorithmically random sequence X ∈ 3ω as shown by the
following example.
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Uniformly random closed sets

This definition was originally given for the case p = q = 1
3 , i.e.,

with respect to the Lebesgue measure on 3ω.

It was later extended to more general measures on 3ω in a number
of other Cenzer-led projects.







p



q



1-p-q



Convention about measures on K(2ω)

If µ is a measure on 3ω, then we write µ∗ to stand for the
corresponding measure on K(2ω).

That is, µ∗-random closed sets are those closed sets coded by a
µ-random sequence in 3ω.



Turing functionals and computable measures

Fix n,m ∈ ω.

A computable measure µ on nω and a Turing functional
Φ : nω → mω satisfying µ(dom(Φ)) = 1 together induce a
computable probability measure on mω, denoted µΦ, defined by

µΦ(X ) = µ(Φ−1(X ))

for every Borel X ⊆ mω.



Randomness preservation

Theorem (Levin)

Let µ be a computable measure on nω.

Suppose that Φ : nω → mω is a Turing functional satisfying
µ(dom(Φ))) = 1 and X ∈ nω is µ-Martin-Löf random.

Then Φ(X ) ∈ MLRµΦ
.

Heuristic: A random input yields a random output.



No randomness ex nihilo

Theorem (Shen)

Suppose that µ is a computable measure on nω and Φ : nω → mω

is a total Turing functional satisfying µ(dom(Φ)) = 1.

Then for every µΦ-Martin-Löf random Y ∈ mω, there is some
µ-Martin-Löf random X ∈ nω such that Φ(X ) = Y .

Heuristic: Randomness in the codomain must come from some
randomness in the domain.



Part 2: The intersection of random closed
sets



Cenzer/Weber on the intersection of random closed sets

Theorem (Cenzer, Weber)

Suppose that p, q, r , s ≥ 0 are computable, 0 ≤ p + q ≤ 1 and
0 ≤ r + s ≤ 1.

Suppose that P ∈ K(2ω) is µ∗〈p,q〉-random relative to Q ∈ K(2ω)
and that Q is µ∗〈r ,s〉-random relative to P.

Then one of three possibilities occurs:



The first possibility

I If p + q + r + s ≥ 2 + pr + qs, then P ∩ Q = ∅.

This technical condition guarantees that neither P nor Q have a
sufficient amount of branching to guarantee a non-empty
intersection.



The second possibility

I If p + q + r + s < 1 + pr + qs, then P ∩Q = ∅ with probability

ps + qr

(1− p − q)(1− r − s)
.

In this case, there may be a sufficient amount of branching in P
and Q, but we see that the intersection is empty due to some finite
level of both P and Q.



The third possibility

I If p + q + r + s < 1 + pr + qs and P ∩ Q 6= ∅, then P ∩ Q is
Martin-Löf random with respect to the measure
µ∗〈p+r−pr ,q+s−qs〉.

Now we have a sufficient amount of branching in P and Q and
some infinite path in their intersection.

The amount of branching in the resulting closed set is computable
in the Bernoulli parameters of both P and Q.



What about the converse?

Question: Given computable p, q, r , s ≥ 0 satisfying the conditions
of the theorem, can every µ∗〈p+r−pr ,q+s−qs〉-random closed set be
obtained as the intersection of relatively random closed sets, one
µ∗〈p,q〉-random and the other µ∗〈r ,s〉 in this way?

Yes!
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A problem with the measure induced by intersections

Idea: Reprove the Cenzer/Weber result using randomness
preservation, and then answer the question using no randomness ex
nihilo.

There is a challenge with this approach, as illustrated by the next
set of slides.
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The solution

In order to answer the Cenzer/Weber question, we think of the
intersection of random closed sets as given by a kind of
Galton-Watson process, which may result in a tree with dead ends
or even finite tree.

We then generalize work of Kjos-Hanssen and Diamondstone to
show that infinite, random Galton-Watson correspond to random
closed sets.



μ⟨p,q⟩



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
They are 
trimmed with 
probability q.



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Left branches 
survive with 
probability 

μ⟨p,q⟩1 − q.
Right branches 

survive with

probability           .1 − p

They are 
trimmed with 
probability q.

They are 
trimmed with 
probability   .   p



Another problem

The map induced by the intersection of random closed sets can
thus seen as a map from 3ω × 3ω to 4ω (where an element of 4ω

codes a tree T ⊆ 2≤ω possibly with dead ends).

However, this map will yield the empty set as output with positive
probability, so we cannot immediately use the machinery of
randomness preservation.



The solution

The solution is to use the machinery of layerwise computability,
first developed by Hoyrup and Rojas.

We adopt a construction due to Bienvenu, Hoyrup, and Shen.

Layerwise computable transformations satisfy randomness
preservation and no randomness ex nihilo, so we can apply these
tools to derive the converse of the Cenzer/Weber theorem.



Part 3: Multiple intersections



A corollary of the Cenzer/Weber intersection theorem

Corollary (Cenzer, Weber)

For p ∈ (0, 1/2), let P,Q ∈ K(2ω) be relatively µ∗p-random.

1. If p ≥ 1−
√

2
2 , then P ∩ Q = ∅.

2. If p < 1−
√

2
2 , then P ∩ Q = ∅ with probability 2p2

(1−2p)2 .

3. If p < 1−
√

2
2 and P ∩ Q 6= ∅, then P ∩ Q is Martin-Löf

random with respect to the measure µ∗2p−p2 .

What’s so special about 1−
√

2
2 ?
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0 1/21 − 1
2

For any parameter p in this interval,

the intersection of relatively       -random closed  

sets is always empty.

μ*p

For any parameter p in this interval,

the intersection of relatively       -random closed  

may be non-empty.

μ*p
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Generalizing the corollary

For n ∈ ω, let fn(x) = 1− (1− x)n.

Theorem
For p ∈ (0, 1

2 ) and n ≥ 2, given n mutually relatively µ∗p-random
closed sets P1, . . . ,Pn, the following hold:

1. If p ≥ 1− 1
n√2

, then
⋂n

i=1 Pi = ∅.

2. If p < 1− 1
n√2

, then
⋂n

i=1 Pi = ∅ with probability 1− 1−2fn(p)
(1−2p)n .

3. If p < 1− 1
n√2

and
⋂n

i=1 Pi 6= ∅, then
⋂n

i=1 Pi is Martin-Löf

random with respect to the measure µ∗fn(p).
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What about the converse?

The converse holds as well:

Theorem
For any p ∈ [0, 1/2] and n ≥ 2, a µ∗p-random closed set can be
written as the intersection of n mutually relatively random
µ∗
f −1
n (p)

-random closed sets.



Thank you!


