
In this topic, we explore basic Ramsey theory and its applications. For a set
a and a natural number r, the symbol [a]r denotes the set of all subsets of a of
cardinality r.

Theorem 0.1. For natural numbers r, k, for every function f : [ω]r → k, there
is an infinite set a ⊂ ω such that f � [a]r is constant.

The function f is often called a coloring or a partition of [ω]r. The set a such
that f � [a]r is constant is called homogeneous, and the unique i ∈ k such that
f(b) = i for all b ∈ [a]r is called the homogeneous color or homogeneous value.
The arrow notation is often used for Ramsey theorems of this kind. A typical
arrow notation expression is of the form χ→ (λ)κµ where χ, λ, κ, µ are cardinals
(often natural numbers). This expression means the following: whenever A is a
set of cardinality χ and f : [a]κ → µ is a function then there is a homogeneous
set of size λ. So for example, the above theorem can be restated as ω → (ω)rk
for all r, k ∈ ω.

Proof. Induce on r. The base case r = 1 is immediate: the number k is finite
and so there must be i ∈ k such that the set a = {n ∈ ω : f({n}) = i} is infinite.
The set a is then homogeneous, with homogeneous value i.

Suppose that we have proved the theorem for some r. To argue for r + 1,
suppose that f : [ω]r+1 → k is a coloring. A piece of terminology will be useful:
a set a ⊂ ω is end-homogeneous for f if for b ∈ [ω]r+1, the value f(b) does not
depend on the largest number in the set b.

Claim 0.2. There is an infinite end-homogeneous set for f .

Proof. By induction on n ∈ ω, construct numbers in and infinite sets cn ⊂ ω
such that

• i0 < i1 < i2 < . . . and c0 ⊃ c1 ⊃ c2 ⊃ . . . ;

• in < min(cn) and in+1 ∈ cn;

• for every set b ⊂ {im : m ≤ n} of size r and numbers k, l ∈ cn+1, f(b ∪
{k}) = f(b ∪ {l}).

Suppose that the induction has been performed; then the set {in : n ∈ ω} is
end-homogeneous by the last induction demand.

To perform the induction, let i0 = 0 and c0 = ω \ {0}. This satisfies the
induction hypotheses since the last item is void. Now suppose that the numbers
im for m ≤ n, as well as the set cn have been constructed. We will first thin
out cn to cn+1 to satisfy the last item. List all subsets of {im : m ≤ n} of size
r in some finite list bj : j ∈ J . Use a counting argument repeatedly to find
infinite sets dj ⊂ ω so that cn = d0 ⊃ d1 ⊃ . . . such that for all j ∈ J and all
numbers k, l ∈ dj , f(bj+1 ∪ {k}) = f(bj+1 ∪ {l}). Clearly, the set cn+1 = bJ
will satisfy the last item. Then, let in+1 ∈ cn+1 be some number larger than in.
The induction step is complete!
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Now, use the claim to find an infinite end-homogeneous set c ⊂ ω for the
partition f . Let g : [c]r → k be the function defined by g(b) =the unique value
of f(b ∪ {k}) for k ∈ a, k > max(b). This is a well-defined function since the
set c is end-homogeneous. By the induction hypothesis, there is an infinite
homogeneous set a ⊂ c for the partition g. An inspection of the definitions
shows that the set a is homogeneous for the partition f as well. This concludes
the induction step and the whole argument.

The infinite Ramsey theorem allows for finite “miniaturizations”.

Theorem 0.3. For all natural numbers n, k, r there is a natural number m such
that m→ (n)kr holds.

Proof. Suppose towards contradiction that this fails for some n, k, r. For each
m ∈ ω let fm : [m]r → k be a coloring with no homogeneous set of size n. Let
U be a non-principal ultrafilter on ω. (There is a simple proof which uses no
ultrafilters or the Axiom of Choice.) Define a function g : [ω]r → k be setting
g(b) = i if the set db = {m ∈ ω : fm(b) = i} belongs to the ultrafilter U . By the
infinite Ramsey theorem, there has to be an infinite set a ⊂ ω homogeneous for
the partition g. Let c ⊂ a be the finite set of the first n elements of the set c.
Consider the intersection

⋂
{db : b ∈ [c]r} ⊂ ω. This is an intersection of finitely

many sets in the ultrafilter U and so it is nonempty. Let m be a number in the
intersection. By the definition of the function g, fm � [c]r = g � [c]r and so c is
a homogeneous set for the partition fm of size n. This contradicts the choice of
the partition fm!

1 Negative results

Theorem 1.1. For no set A, A→ (ω)ω2 .

In other words, for every set A there is a map f assigning each infinite countable
subset of A color 0 or 1 such that there is no homogeneous infinite set for f .

Proof. Let E be the equivalence relation on P(A) defined by b E c if b∆c is
finite. Use the Axiom of Choice to find a set S which visits each E-equivalence
class in exactly one element. Define the function f : P(A)→ 2 by f(a) =parity
of the number |a∆b| where b is the unique element of S such that a E b.

Suppose that c ⊂ A is an infinite set; we must show that it is not homoge-
neous for the partition f . To see this, let a ⊂ c be an infinite countable set. Let
b ∈ S be the unique element of S which is E-equivalent to a. The set a ∩ b is
infinite, so choose an element i in the intersection, and let a′ = a \ {i}. Then
the set a′∆b differs from a∆b exactly by this element i, so one of these sets has
even size, while the other has an odd size. Thus f(a) 6= f(a′) and the set c is
not homogeneous.

Theorem 1.2. R→ (uncountable)22 fails.
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In other words, there is a partition f : [R]2 → 2 such that no uncountable subset
of reals is homogeneous for f .

Proof. Use the Axiom of Choice to find a well-ordering ≺ on R. Let < be the
usual ordering of R. Define f(x, y) = 0 if x < y ↔ x ≺ y (meaning that < and
≺ order the set {x, y} in the same way) and f(x, y) = 1 otherwise.

Suppose that c ⊂ R is a homogeneous set in color 0; we will show that c
is countable. To see this, note that c is well-ordered by ≺ and (since ≺ and
< agree on c) it is well-ordered by <. Thus, for every real r ∈ c except the
largest element of c, the set {s ∈ c : s > r} has a smallest element; call it r+.
Let g : c → Q be a function which, to each r ∈ c, assigns a rational between
r and r+. Then g is an injection from c to a countable set, showing that c is
countable.

Suppose that c ⊂ R is a homogeneous set in color 1; we again must show
that c is countable. The proof is similar as in the previous case observing that
c is well-ordered by the reverse of <.

2 Canonical Ramsey theorem

Given a natural number r and a set a ⊂ r, define the equivalence relation Ea
on [ω]r in the following way. Given sets b, c ∈ [ω]r, put b Ea c if, fixing the
increasing enumerations b = {ni : i ∈ r} and c = {mi : i ∈ r}, it is the case that
∀i ∈ a ni = mi.

Theorem 2.1. For every r ∈ ω and every equivalence relation E on [ω]r there
is an infinite set c ⊂ ω and a set a ⊂ r such that the equivalence relations E
and Ea coincide on [c]r.

Proof. We will prove the theorem in the case r = 2. Fix the equivalence relation
E on [ω]2; we will find the set c by a multiple application of the basic Ramsey
theorem. For a set b ∈ [ω]4, write b = {b(0), b(1), b(2), b(3)} for the increasing
enumeration of the set b.

The first partition f0 : [ω]4 → 2 is defined by f0(b) = 0 if {b(0), b(1)} E
{b(2), b(3)}. Let c0 ⊂ ω be an infinite homogeneous set for f0.

Claim 2.2. If the homogeneous color is 0 then any two pairs d0, d1 ∈ [c0]2 are
E-equivalent.

Proof. Let e be a pair of natural numbers in c0 which are bigger than all numbers
in d0, d1. Then, by the homogeneity of the set c0, it must be the case that d0 E e
and d1 E e holds. By the transitivity of the equivalence relation E, d0 E d1
holds.

So, if the homogeneous color is 0 then we are done–E on [c0] is equal to
E0. Now assume that the homogeneous color for f0 is 1. The next couple of
partitions are designed to produce an an infinite set in which disjoint pairs are
necessarily E-unrelated.

3



The second partition f1 : [c0]4 → 2 is defined by f1(b) = 0 if {b(0), b(3)} E
{b1, b2}. Let c1 ⊂ c0 be an infinite homogeneous set guaranteed by the Ramsey
theorem.

Claim 2.3. The homogeneous color for f1 is 1.

Proof. If the homogeneous color is 0, then choose numbers n0 < n1 < n2 <
n3 < n4 < n5 in c1. By the homogeneity for the partition f1, {n0, n5} is
E-related to both {n1, n2} and {n3, n4}. By the transitivity of the relation
E, {n1, n2} E {n3, n4} holds. This contradicts the homogeneity for partition
f0.

The third partition f2 : [c1]4 → 2 is defined by f2(b) = 0 if {b(0), b(2)} E
{b(1), b(3)}. Let c2 ⊂ c1 be an infinite homogeneous set guaranteed by the
Ramsey theorem.

Claim 2.4. The homogeneous color for f2 is 1.

Proof. If the homogeneous color is 0, then choose numbers n0 < n1 < n2 <
n3 < n4 < n5 in c2. By the homogeneity for the partition f2, {n0, n3} is
E-related to both {n2, n4} and {n1, n5}. By the transitivity of the relation
E, {n2, n4} E {n1, n5} holds. This contradicts the homogeneity for partition
f1.

A brief analysis of all possible configurations of disjoint pairs of natural num-
bers shows now that any two disjoint pairs of natural numbers in the set c2 are
E-unrelated. Now we start dealing with pairs that have nonempty intersection.
Let f3 : [c2]3 → 2 is defined by f3(b) = 0 if {b(0), b(1)} E {b(1), b(2)}. Let
c3 ⊂ c2 be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.5. The homogeneous color for f3 is 1.

Proof. If the homogeneous color is 0, then choose numbers n0 < n1 < n2 < n3

in c3. By the homogeneity for the partition f3, {n0, n1} is E-related to both
{n1, n2} which is in turn E-related to {n2, n3}. By the transitivity of the relation
E, {n0, n1} E {n2, n3} holds. This contradicts the homogeneity for partition
f0.

Finally, consider partitions f4 and f5 : [c3]3 → 2 defined as follows: f4(b) = 0
if {b(0), b(1)} E {b(0), b(2)} and f5(b) = 0 if {b(1), b(2)} E {b(0), b(2)}. Let
c4 ⊂ c3 be an infinite set homogeneous for both of these partitions. The analysis
of possible configurations of pairs of natural numbers gives the following:

• if the homogeneous colors for both f4, f5 are 1, then no two distinct pairs
of numbers in the set c4 are E-related. Therefore, E = E{0,1} on c4;

• if the homogeneous color for f4 is 0 while the homogeneous color for f5 is
1, then E = E{0} on c4;
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• if the homogeneous color for f4 is 1 while the homogeneous color for f5 is
0, then E = E{1} on c4;

• the homogeneous colors for both f4 and f5 cannot be both 0. To see
this, choose numbers n0 < n1 < n2, and argue that {n0, n1} E {n0, n2}
(homogeneity for f4), {n0, n2} E {n1, n2} (homogeneity for f5) {n0, n1} E
{n1, n2} (transitivity of E), and now this contradicts the homogeneity for
f3.

The proof of the theorem for r = 2 is complete.

3 Applications

Theorem 3.1. Every infinite sequence of reals contains an infinite monotone
subsequence.

Proof. Let 〈xi : i ∈ ω〉 be an infinite sequence of real numbers. Let f : [ω]2 → 2
be a function defined by f(i, j) = 0 if i < j ↔ xi < xj . Ramsey theorem
provides a homogeneous infinite set c. It is clear that if the homogeneous color
is 0 then the sequence 〈xi : i ∈ c〉 is increasing, and if the homogeneous color is
1 then the sequence 〈xi : i ∈ c〉 is nonincreasing.

One interesting application is a simple proof of the Bolzano–Weierstrass the-
orem: a bounded infinite sequence of reals contains a convergent subsequence.
To see this, use the theorem to find a monotone subsequence. Such a subse-
quence must be converging: if it is nonincreasing then its infimum is the limit,
if it is nondecreasing then its supremum has a limit.

Theorem 3.2. For every n ∈ ω there is m ∈ ω such that among any m many
points in the plane, no three of which are colinear, there are vertices of convex
n-gon.

Proof. Then, assume without loss that n ≥ 5 and let m be such that m→ (n)42;
we claim that m works. Suppose that {xi : i ∈ m} are points in the plane,
no three of which are colinear. Let f : [m]4 → 2 be the functions defined by
f(a) = 0 if the points xi for i ∈ a form a convex quadrilateral, and f(a) = 1
otherwise. Let c ⊂ m be a homogeneous set of size n. We will show that the
homogeneous color must be 0 and that the points {xi : i ∈ c} are vertices of a
convex n-gon.

First of all, the homogeneous color cannot be 1, because a simple analysis
of possible configurations show that among any 5 points, no three of which are
colinear, there are vertices of convex quadrilateral. So, the homogeneous color
is 0. To see that the points {xi : i ∈ c} form vertices of a convex n-gon, note
that if they do not, then there must be a number i ∈ c such that the point xi is
inside the triangle with vertices xj0 , xj1 and xj2 for some numbers j0, j1, j2 ∈ c.
This would mean that f(a) = 1 where a = {i, j0, j1, j2}. This contradicts the
assumption that the set c is homogeneous for the partition f with homogeneous
color 0.
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