In this topic, we explore basic Ramsey theory and its applications. For a set a and a natural number r, the symbol $[a]^{r}$ denotes the set of all subsets of a of cardinality r.

Theorem 0.1. For natural numbers r, k, for every function $f:[\omega]^{r} \rightarrow k$, there is an infinite set $a \subset \omega$ such that $f \upharpoonright[a]^{r}$ is constant.

The function f is often called a coloring or a partition of $[\omega]^{r}$. The set a such that $f \upharpoonright[a]^{r}$ is constant is called homogeneous, and the unique $i \in k$ such that $f(b)=i$ for all $b \in[a]^{r}$ is called the homogeneous color or homogeneous value. The arrow notation is often used for Ramsey theorems of this kind. A typical arrow notation expression is of the form $\chi \rightarrow(\lambda)_{\mu}^{\kappa}$ where $\chi, \lambda, \kappa, \mu$ are cardinals (often natural numbers). This expression means the following: whenever A is a set of cardinality χ and $f:[a]^{\kappa} \rightarrow \mu$ is a function then there is a homogeneous set of size λ. So for example, the above theorem can be restated as $\omega \rightarrow(\omega)_{k}^{r}$ for all $r, k \in \omega$.

Proof. Induce on r. The base case $r=1$ is immediate: the number k is finite and so there must be $i \in k$ such that the set $a=\{n \in \omega: f(\{n\})=i\}$ is infinite. The set a is then homogeneous, with homogeneous value i.

Suppose that we have proved the theorem for some r. To argue for $r+1$, suppose that $f:[\omega]^{r+1} \rightarrow k$ is a coloring. A piece of terminology will be useful: a set $a \subset \omega$ is end-homogeneous for f if for $b \in[\omega]^{r+1}$, the value $f(b)$ does not depend on the largest number in the set b.

Claim 0.2. There is an infinite end-homogeneous set for f.
Proof. By induction on $n \in \omega$, construct numbers i_{n} and infinite sets $c_{n} \subset \omega$ such that

- $i_{0}<i_{1}<i_{2}<\ldots$ and $c_{0} \supset c_{1} \supset c_{2} \supset \ldots$;
- $i_{n}<\min \left(c_{n}\right)$ and $i_{n+1} \in c_{n}$;
- for every set $b \subset\left\{i_{m}: m \leq n\right\}$ of size r and numbers $k, l \in c_{n+1}, f(b \cup$ $\{k\})=f(b \cup\{l\})$.

Suppose that the induction has been performed; then the set $\left\{i_{n}: n \in \omega\right\}$ is end-homogeneous by the last induction demand.

To perform the induction, let $i_{0}=0$ and $c_{0}=\omega \backslash\{0\}$. This satisfies the induction hypotheses since the last item is void. Now suppose that the numbers i_{m} for $m \leq n$, as well as the set c_{n} have been constructed. We will first thin out c_{n} to c_{n+1} to satisfy the last item. List all subsets of $\left\{i_{m}: m \leq n\right\}$ of size r in some finite list $b_{j}: j \in J$. Use a counting argument repeatedly to find infinite sets $d_{j} \subset \omega$ so that $c_{n}=d_{0} \supset d_{1} \supset \ldots$ such that for all $j \in J$ and all numbers $k, l \in d_{j}, f\left(b_{j+1} \cup\{k\}\right)=f\left(b_{j+1} \cup\{l\}\right)$. Clearly, the set $c_{n+1}=b_{J}$ will satisfy the last item. Then, let $i_{n+1} \in c_{n+1}$ be some number larger than i_{n}. The induction step is complete!

Now, use the claim to find an infinite end-homogeneous set $c \subset \omega$ for the partition f. Let $g:[c]^{r} \rightarrow k$ be the function defined by $g(b)=$ the unique value of $f(b \cup\{k\})$ for $k \in a, k>\max (b)$. This is a well-defined function since the set c is end-homogeneous. By the induction hypothesis, there is an infinite homogeneous set $a \subset c$ for the partition g. An inspection of the definitions shows that the set a is homogeneous for the partition f as well. This concludes the induction step and the whole argument.

The infinite Ramsey theorem allows for finite "miniaturizations".
Theorem 0.3. For all natural numbers n, k, r there is a natural number m such that $m \rightarrow(n)_{r}^{k}$ holds.

Proof. Suppose towards contradiction that this fails for some n, k, r. For each $m \in \omega$ let $f_{m}:[m]^{r} \rightarrow k$ be a coloring with no homogeneous set of size n. Let U be a non-principal ultrafilter on ω. (There is a simple proof which uses no ultrafilters or the Axiom of Choice.) Define a function $g:[\omega]^{r} \rightarrow k$ be setting $g(b)=i$ if the set $d_{b}=\left\{m \in \omega: f_{m}(b)=i\right\}$ belongs to the ultrafilter U. By the infinite Ramsey theorem, there has to be an infinite set $a \subset \omega$ homogeneous for the partition g. Let $c \subset a$ be the finite set of the first n elements of the set c. Consider the intersection $\bigcap\left\{d_{b}: b \in[c]^{r}\right\} \subset \omega$. This is an intersection of finitely many sets in the ultrafilter U and so it is nonempty. Let m be a number in the intersection. By the definition of the function $g, f_{m} \upharpoonright[c]^{r}=g \upharpoonright[c]^{r}$ and so c is a homogeneous set for the partition f_{m} of size n. This contradicts the choice of the partition f_{m} !

1 Negative results

Theorem 1.1. For no set $A, A \rightarrow(\omega)_{2}^{\omega}$.
In other words, for every set A there is a map f assigning each infinite countable subset of A color 0 or 1 such that there is no homogeneous infinite set for f.

Proof. Let E be the equivalence relation on $\mathcal{P}(A)$ defined by $b E c$ if $b \Delta c$ is finite. Use the Axiom of Choice to find a set S which visits each E-equivalence class in exactly one element. Define the function $f: \mathcal{P}(A) \rightarrow 2$ by $f(a)=$ parity of the number $|a \Delta b|$ where b is the unique element of S such that $a E b$.

Suppose that $c \subset A$ is an infinite set; we must show that it is not homogeneous for the partition f. To see this, let $a \subset c$ be an infinite countable set. Let $b \in S$ be the unique element of S which is E-equivalent to a. The set $a \cap b$ is infinite, so choose an element i in the intersection, and let $a^{\prime}=a \backslash\{i\}$. Then the set $a^{\prime} \Delta b$ differs from $a \Delta b$ exactly by this element i, so one of these sets has even size, while the other has an odd size. Thus $f(a) \neq f\left(a^{\prime}\right)$ and the set c is not homogeneous.

Theorem 1.2. $\mathbb{R} \rightarrow(\text { uncountable })_{2}^{2}$ fails.

In other words, there is a partition $f:[\mathbb{R}]^{2} \rightarrow 2$ such that no uncountable subset of reals is homogeneous for f.

Proof. Use the Axiom of Choice to find a well-ordering \prec on \mathbb{R}. Let $<$ be the usual ordering of \mathbb{R}. Define $f(x, y)=0$ if $x<y \leftrightarrow x \prec y$ (meaning that $<$ and \prec order the set $\{x, y\}$ in the same way) and $f(x, y)=1$ otherwise.

Suppose that $c \subset \mathbb{R}$ is a homogeneous set in color 0 ; we will show that c is countable. To see this, note that c is well-ordered by \prec and (since \prec and $<$ agree on c) it is well-ordered by $<$. Thus, for every real $r \in c$ except the largest element of c, the set $\{s \in c: s>r\}$ has a smallest element; call it r^{+}. Let $g: c \rightarrow \mathbb{Q}$ be a function which, to each $r \in c$, assigns a rational between r and r^{+}. Then g is an injection from c to a countable set, showing that c is countable.

Suppose that $c \subset \mathbb{R}$ is a homogeneous set in color 1 ; we again must show that c is countable. The proof is similar as in the previous case observing that c is well-ordered by the reverse of $<$.

2 Canonical Ramsey theorem

Given a natural number r and a set $a \subset r$, define the equivalence relation E_{a} on $[\omega]^{r}$ in the following way. Given sets $b, c \in[\omega]^{r}$, put $b E_{a} c$ if, fixing the increasing enumerations $b=\left\{n_{i}: i \in r\right\}$ and $c=\left\{m_{i}: i \in r\right\}$, it is the case that $\forall i \in a n_{i}=m_{i}$.

Theorem 2.1. For every $r \in \omega$ and every equivalence relation E on $[\omega]^{r}$ there is an infinite set $c \subset \omega$ and a set $a \subset r$ such that the equivalence relations E and E_{a} coincide on $[c]^{r}$.

Proof. We will prove the theorem in the case $r=2$. Fix the equivalence relation E on $[\omega]^{2}$; we will find the set c by a multiple application of the basic Ramsey theorem. For a set $b \in[\omega]^{4}$, write $b=\{b(0), b(1), b(2), b(3)\}$ for the increasing enumeration of the set b.

The first partition $f_{0}:[\omega]^{4} \rightarrow 2$ is defined by $f_{0}(b)=0$ if $\{b(0), b(1)\} E$ $\{b(2), b(3)\}$. Let $c_{0} \subset \omega$ be an infinite homogeneous set for f_{0}.
Claim 2.2. If the homogeneous color is 0 then any two pairs $d_{0}, d_{1} \in\left[c_{0}\right]^{2}$ are E-equivalent.

Proof. Let e be a pair of natural numbers in c_{0} which are bigger than all numbers in d_{0}, d_{1}. Then, by the homogeneity of the set c_{0}, it must be the case that $d_{0} E e$ and $d_{1} E e$ holds. By the transitivity of the equivalence relation $E, d_{0} E d_{1}$ holds.

So, if the homogeneous color is 0 then we are done $-E$ on $\left[c_{0}\right]$ is equal to E_{0}. Now assume that the homogeneous color for f_{0} is 1 . The next couple of partitions are designed to produce an an infinite set in which disjoint pairs are necessarily E-unrelated.

The second partition $f_{1}:\left[c_{0}\right]^{4} \rightarrow 2$ is defined by $f_{1}(b)=0$ if $\{b(0), b(3)\} E$ $\left\{b_{1}, b_{2}\right\}$. Let $c_{1} \subset c_{0}$ be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.3. The homogeneous color for f_{1} is 1 .
Proof. If the homogeneous color is 0 , then choose numbers $n_{0}<n_{1}<n_{2}<$ $n_{3}<n_{4}<n_{5}$ in c_{1}. By the homogeneity for the partition $f_{1},\left\{n_{0}, n_{5}\right\}$ is E-related to both $\left\{n_{1}, n_{2}\right\}$ and $\left\{n_{3}, n_{4}\right\}$. By the transitivity of the relation E, $\left\{n_{1}, n_{2}\right\} E\left\{n_{3}, n_{4}\right\}$ holds. This contradicts the homogeneity for partition f_{0}.

The third partition $f_{2}:\left[c_{1}\right]^{4} \rightarrow 2$ is defined by $f_{2}(b)=0$ if $\{b(0), b(2)\} E$ $\{b(1), b(3)\}$. Let $c_{2} \subset c_{1}$ be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.4. The homogeneous color for f_{2} is 1 .
Proof. If the homogeneous color is 0 , then choose numbers $n_{0}<n_{1}<n_{2}<$ $n_{3}<n_{4}<n_{5}$ in c_{2}. By the homogeneity for the partition $f_{2},\left\{n_{0}, n_{3}\right\}$ is E-related to both $\left\{n_{2}, n_{4}\right\}$ and $\left\{n_{1}, n_{5}\right\}$. By the transitivity of the relation $E,\left\{n_{2}, n_{4}\right\} E\left\{n_{1}, n_{5}\right\}$ holds. This contradicts the homogeneity for partition f_{1}.

A brief analysis of all possible configurations of disjoint pairs of natural numbers shows now that any two disjoint pairs of natural numbers in the set c_{2} are E-unrelated. Now we start dealing with pairs that have nonempty intersection. Let $f_{3}:\left[c_{2}\right]^{3} \rightarrow 2$ is defined by $f_{3}(b)=0$ if $\{b(0), b(1)\} E\{b(1), b(2)\}$. Let $c_{3} \subset c_{2}$ be an infinite homogeneous set guaranteed by the Ramsey theorem.
Claim 2.5. The homogeneous color for f_{3} is 1 .
Proof. If the homogeneous color is 0 , then choose numbers $n_{0}<n_{1}<n_{2}<n_{3}$ in c_{3}. By the homogeneity for the partition $f_{3},\left\{n_{0}, n_{1}\right\}$ is E-related to both $\left\{n_{1}, n_{2}\right\}$ which is in turn E-related to $\left\{n_{2}, n_{3}\right\}$. By the transitivity of the relation $E,\left\{n_{0}, n_{1}\right\} E\left\{n_{2}, n_{3}\right\}$ holds. This contradicts the homogeneity for partition f_{0}.

Finally, consider partitions f_{4} and $f_{5}:\left[c_{3}\right]^{3} \rightarrow 2$ defined as follows: $f_{4}(b)=0$ if $\{b(0), b(1)\} E\{b(0), b(2)\}$ and $f_{5}(b)=0$ if $\{b(1), b(2)\} E\{b(0), b(2)\}$. Let $c_{4} \subset c_{3}$ be an infinite set homogeneous for both of these partitions. The analysis of possible configurations of pairs of natural numbers gives the following:

- if the homogeneous colors for both f_{4}, f_{5} are 1 , then no two distinct pairs of numbers in the set c_{4} are E-related. Therefore, $E=E_{\{0,1\}}$ on c_{4};
- if the homogeneous color for f_{4} is 0 while the homogeneous color for f_{5} is 1 , then $\left.E=E_{\{ } 0\right\}$ on c_{4};
- if the homogeneous color for f_{4} is 1 while the homogeneous color for f_{5} is 0 , then $E=E_{\{1\}}$ on c_{4};
- the homogeneous colors for both f_{4} and f_{5} cannot be both 0 . To see this, choose numbers $n_{0}<n_{1}<n_{2}$, and argue that $\left\{n_{0}, n_{1}\right\} E\left\{n_{0}, n_{2}\right\}$ (homogeneity for f_{4}), $\left\{n_{0}, n_{2}\right\} E\left\{n_{1}, n_{2}\right\}$ (homogeneity for f_{5}) $\left\{n_{0}, n_{1}\right\} E$ $\left\{n_{1}, n_{2}\right\}$ (transitivity of E), and now this contradicts the homogeneity for f_{3}.

The proof of the theorem for $r=2$ is complete.

3 Applications

Theorem 3.1. Every infinite sequence of reals contains an infinite monotone subsequence.
Proof. Let $\left\langle x_{i}: i \in \omega\right\rangle$ be an infinite sequence of real numbers. Let $f:[\omega]^{2} \rightarrow 2$ be a function defined by $f(i, j)=0$ if $i<j \leftrightarrow x_{i}<x_{j}$. Ramsey theorem provides a homogeneous infinite set c. It is clear that if the homogeneous color is 0 then the sequence $\left\langle x_{i}: i \in c\right\rangle$ is increasing, and if the homogeneous color is 1 then the sequence $\left\langle x_{i}: i \in c\right\rangle$ is nonincreasing.

One interesting application is a simple proof of the Bolzano-Weierstrass theorem: a bounded infinite sequence of reals contains a convergent subsequence. To see this, use the theorem to find a monotone subsequence. Such a subsequence must be converging: if it is nonincreasing then its infimum is the limit, if it is nondecreasing then its supremum has a limit.
Theorem 3.2. For every $n \in \omega$ there is $m \in \omega$ such that among any many points in the plane, no three of which are colinear, there are vertices of convex n-gon.
Proof. Then, assume without loss that $n \geq 5$ and let m be such that $m \rightarrow(n)_{2}^{4}$; we claim that m works. Suppose that $\left\{x_{i}: i \in m\right\}$ are points in the plane, no three of which are colinear. Let $f:[m]^{4} \rightarrow 2$ be the functions defined by $f(a)=0$ if the points x_{i} for $i \in a$ form a convex quadrilateral, and $f(a)=1$ otherwise. Let $c \subset m$ be a homogeneous set of size n. We will show that the homogeneous color must be 0 and that the points $\left\{x_{i}: i \in c\right\}$ are vertices of a convex n-gon.

First of all, the homogeneous color cannot be 1, because a simple analysis of possible configurations show that among any 5 points, no three of which are colinear, there are vertices of convex quadrilateral. So, the homogeneous color is 0 . To see that the points $\left\{x_{i}: i \in c\right\}$ form vertices of a convex n-gon, note that if they do not, then there must be a number $i \in c$ such that the point x_{i} is inside the triangle with vertices $x_{j_{0}}, x_{j_{1}}$ and $x_{j_{2}}$ for some numbers $j_{0}, j_{1}, j_{2} \in c$. This would mean that $f(a)=1$ where $a=\left\{i, j_{0}, j_{1}, j_{2}\right\}$. This contradicts the assumption that the set c is homogeneous for the partition f with homogeneous color 0 .

