In this topic, we explore basic Ramsey theory and its applications. For a set a and a natural number r, the symbol $[a]^r$ denotes the set of all subsets of a of cardinality r.

Theorem 0.1. For natural numbers r, k, for every function $f : [\omega]^r \to k$, there is an infinite set $a \subset \omega$ such that $f \upharpoonright [a]^r$ is constant.

The function f is often called a *coloring* or a *partition* of $[\omega]^r$. The set a such that $f \upharpoonright [a]^r$ is constant is called *homogeneous*, and the unique $i \in k$ such that f(b) = i for all $b \in [a]^r$ is called the *homogeneous color* or *homogeneous value*. The *arrow notation* is often used for Ramsey theorems of this kind. A typical arrow notation expression is of the form $\chi \to (\lambda)_{\mu}^{\kappa}$ where $\chi, \lambda, \kappa, \mu$ are cardinals (often natural numbers). This expression means the following: whenever A is a set of cardinality χ and $f: [a]^{\kappa} \to \mu$ is a function then there is a homogeneous set of size λ . So for example, the above theorem can be restated as $\omega \to (\omega)_k^r$ for all $r, k \in \omega$.

Proof. Induce on r. The base case r = 1 is immediate: the number k is finite and so there must be $i \in k$ such that the set $a = \{n \in \omega : f(\{n\}) = i\}$ is infinite. The set a is then homogeneous, with homogeneous value i.

Suppose that we have proved the theorem for some r. To argue for r + 1, suppose that $f: [\omega]^{r+1} \to k$ is a coloring. A piece of terminology will be useful: a set $a \subset \omega$ is *end-homogeneous* for f if for $b \in [\omega]^{r+1}$, the value f(b) does not depend on the largest number in the set b.

Claim 0.2. There is an infinite end-homogeneous set for f.

Proof. By induction on $n \in \omega$, construct numbers i_n and infinite sets $c_n \subset \omega$ such that

- $i_0 < i_1 < i_2 < \dots$ and $c_0 \supset c_1 \supset c_2 \supset \dots$;
- $i_n < \min(c_n)$ and $i_{n+1} \in c_n$;
- for every set $b \subset \{i_m : m \leq n\}$ of size r and numbers $k, l \in c_{n+1}, f(b \cup \{k\}) = f(b \cup \{l\}).$

Suppose that the induction has been performed; then the set $\{i_n : n \in \omega\}$ is end-homogeneous by the last induction demand.

To perform the induction, let $i_0 = 0$ and $c_0 = \omega \setminus \{0\}$. This satisfies the induction hypotheses since the last item is void. Now suppose that the numbers i_m for $m \leq n$, as well as the set c_n have been constructed. We will first thin out c_n to c_{n+1} to satisfy the last item. List all subsets of $\{i_m : m \leq n\}$ of size r in some finite list $b_j : j \in J$. Use a counting argument repeatedly to find infinite sets $d_j \subset \omega$ so that $c_n = d_0 \supset d_1 \supset \ldots$ such that for all $j \in J$ and all numbers $k, l \in d_j, f(b_{j+1} \cup \{k\}) = f(b_{j+1} \cup \{l\})$. Clearly, the set $c_{n+1} = b_J$ will satisfy the last item. Then, let $i_{n+1} \in c_{n+1}$ be some number larger than i_n . The induction step is complete!

Now, use the claim to find an infinite end-homogeneous set $c \subset \omega$ for the partition f. Let $g: [c]^r \to k$ be the function defined by g(b) =the unique value of $f(b \cup \{k\})$ for $k \in a, k > \max(b)$. This is a well-defined function since the set c is end-homogeneous. By the induction hypothesis, there is an infinite homogeneous set $a \subset c$ for the partition g. An inspection of the definitions shows that the set a is homogeneous for the partition f as well. This concludes the induction step and the whole argument.

The infinite Ramsey theorem allows for finite "miniaturizations".

Theorem 0.3. For all natural numbers n, k, r there is a natural number m such that $m \to (n)_r^k$ holds.

Proof. Suppose towards contradiction that this fails for some n, k, r. For each $m \in \omega$ let $f_m : [m]^r \to k$ be a coloring with no homogeneous set of size n. Let U be a non-principal ultrafilter on ω . (There is a simple proof which uses no ultrafilters or the Axiom of Choice.) Define a function $g : [\omega]^r \to k$ be setting g(b) = i if the set $d_b = \{m \in \omega : f_m(b) = i\}$ belongs to the ultrafilter U. By the infinite Ramsey theorem, there has to be an infinite set $a \subset \omega$ homogeneous for the partition g. Let $c \subset a$ be the finite set of the first n elements of the set c. Consider the intersection $\bigcap\{d_b : b \in [c]^r\} \subset \omega$. This is an intersection of finitely many sets in the ultrafilter U and so it is nonempty. Let m be a number in the intersection. By the definition of the function $g, f_m \upharpoonright [c]^r = g \upharpoonright [c]^r$ and so c is a homogeneous set for the partition f_m of size n. This contradicts the choice of the partition $f_m!$

1 Negative results

Theorem 1.1. For no set $A, A \to (\omega)_2^{\omega}$.

In other words, for every set A there is a map f assigning each infinite countable subset of A color 0 or 1 such that there is no homogeneous infinite set for f.

Proof. Let E be the equivalence relation on $\mathcal{P}(A)$ defined by $b \in c$ if $b\Delta c$ is finite. Use the Axiom of Choice to find a set S which visits each E-equivalence class in exactly one element. Define the function $f: \mathcal{P}(A) \to 2$ by f(a) =parity of the number $|a\Delta b|$ where b is the unique element of S such that $a \in b$.

Suppose that $c \subset A$ is an infinite set; we must show that it is not homogeneous for the partition f. To see this, let $a \subset c$ be an infinite countable set. Let $b \in S$ be the unique element of S which is E-equivalent to a. The set $a \cap b$ is infinite, so choose an element i in the intersection, and let $a' = a \setminus \{i\}$. Then the set $a'\Delta b$ differs from $a\Delta b$ exactly by this element i, so one of these sets has even size, while the other has an odd size. Thus $f(a) \neq f(a')$ and the set c is not homogeneous.

Theorem 1.2. $\mathbb{R} \to (uncountable)_2^2$ fails.

In other words, there is a partition $f: [\mathbb{R}]^2 \to 2$ such that no uncountable subset of reals is homogeneous for f.

Proof. Use the Axiom of Choice to find a well-ordering \prec on \mathbb{R} . Let < be the usual ordering of \mathbb{R} . Define f(x, y) = 0 if $x < y \leftrightarrow x \prec y$ (meaning that < and \prec order the set $\{x, y\}$ in the same way) and f(x, y) = 1 otherwise.

Suppose that $c \subset \mathbb{R}$ is a homogeneous set in color 0; we will show that c is countable. To see this, note that c is well-ordered by \prec and (since \prec and < agree on c) it is well-ordered by <. Thus, for every real $r \in c$ except the largest element of c, the set $\{s \in c : s > r\}$ has a smallest element; call it r^+ . Let $g: c \to \mathbb{Q}$ be a function which, to each $r \in c$, assigns a rational between r and r^+ . Then g is an injection from c to a countable set, showing that c is countable.

Suppose that $c \subset \mathbb{R}$ is a homogeneous set in color 1; we again must show that c is countable. The proof is similar as in the previous case observing that c is well-ordered by the reverse of <.

2 Canonical Ramsey theorem

Given a natural number r and a set $a \subset r$, define the equivalence relation E_a on $[\omega]^r$ in the following way. Given sets $b, c \in [\omega]^r$, put $b \ E_a \ c$ if, fixing the increasing enumerations $b = \{n_i : i \in r\}$ and $c = \{m_i : i \in r\}$, it is the case that $\forall i \in a \ n_i = m_i$.

Theorem 2.1. For every $r \in \omega$ and every equivalence relation E on $[\omega]^r$ there is an infinite set $c \subset \omega$ and a set $a \subset r$ such that the equivalence relations E and E_a coincide on $[c]^r$.

Proof. We will prove the theorem in the case r = 2. Fix the equivalence relation E on $[\omega]^2$; we will find the set c by a multiple application of the basic Ramsey theorem. For a set $b \in [\omega]^4$, write $b = \{b(0), b(1), b(2), b(3)\}$ for the increasing enumeration of the set b.

The first partition $f_0: [\omega]^4 \to 2$ is defined by $f_0(b) = 0$ if $\{b(0), b(1)\} E \{b(2), b(3)\}$. Let $c_0 \subset \omega$ be an infinite homogeneous set for f_0 .

Claim 2.2. If the homogeneous color is 0 then any two pairs $d_0, d_1 \in [c_0]^2$ are *E*-equivalent.

Proof. Let e be a pair of natural numbers in c_0 which are bigger than all numbers in d_0, d_1 . Then, by the homogeneity of the set c_0 , it must be the case that $d_0 E e$ and $d_1 E e$ holds. By the transitivity of the equivalence relation $E, d_0 E d_1$ holds.

So, if the homogeneous color is 0 then we are done-E on $[c_0]$ is equal to E_0 . Now assume that the homogeneous color for f_0 is 1. The next couple of partitions are designed to produce an an infinite set in which disjoint pairs are necessarily E-unrelated.

The second partition $f_1: [c_0]^4 \to 2$ is defined by $f_1(b) = 0$ if $\{b(0), b(3)\} \in \{b_1, b_2\}$. Let $c_1 \subset c_0$ be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.3. The homogeneous color for f_1 is 1.

Proof. If the homogeneous color is 0, then choose numbers $n_0 < n_1 < n_2 < n_3 < n_4 < n_5$ in c_1 . By the homogeneity for the partition f_1 , $\{n_0, n_5\}$ is *E*-related to both $\{n_1, n_2\}$ and $\{n_3, n_4\}$. By the transitivity of the relation E, $\{n_1, n_2\} \in \{n_3, n_4\}$ holds. This contradicts the homogeneity for partition f_0 .

The third partition $f_2: [c_1]^4 \to 2$ is defined by $f_2(b) = 0$ if $\{b(0), b(2)\} \in \{b(1), b(3)\}$. Let $c_2 \subset c_1$ be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.4. The homogeneous color for f_2 is 1.

Proof. If the homogeneous color is 0, then choose numbers $n_0 < n_1 < n_2 < n_3 < n_4 < n_5$ in c_2 . By the homogeneity for the partition f_2 , $\{n_0, n_3\}$ is *E*-related to both $\{n_2, n_4\}$ and $\{n_1, n_5\}$. By the transitivity of the relation *E*, $\{n_2, n_4\} \in \{n_1, n_5\}$ holds. This contradicts the homogeneity for partition f_1 .

A brief analysis of all possible configurations of disjoint pairs of natural numbers shows now that any two disjoint pairs of natural numbers in the set c_2 are *E*-unrelated. Now we start dealing with pairs that have nonempty intersection. Let $f_3: [c_2]^3 \rightarrow 2$ is defined by $f_3(b) = 0$ if $\{b(0), b(1)\} E\{b(1), b(2)\}$. Let $c_3 \subset c_2$ be an infinite homogeneous set guaranteed by the Ramsey theorem.

Claim 2.5. The homogeneous color for f_3 is 1.

Proof. If the homogeneous color is 0, then choose numbers $n_0 < n_1 < n_2 < n_3$ in c_3 . By the homogeneity for the partition f_3 , $\{n_0, n_1\}$ is *E*-related to both $\{n_1, n_2\}$ which is in turn *E*-related to $\{n_2, n_3\}$. By the transitivity of the relation E, $\{n_0, n_1\} \in \{n_2, n_3\}$ holds. This contradicts the homogeneity for partition f_0 .

Finally, consider partitions f_4 and $f_5: [c_3]^3 \to 2$ defined as follows: $f_4(b) = 0$ if $\{b(0), b(1)\} \in \{b(0), b(2)\}$ and $f_5(b) = 0$ if $\{b(1), b(2)\} \in \{b(0), b(2)\}$. Let $c_4 \subset c_3$ be an infinite set homogeneous for both of these partitions. The analysis of possible configurations of pairs of natural numbers gives the following:

- if the homogeneous colors for both f_4, f_5 are 1, then no two distinct pairs of numbers in the set c_4 are *E*-related. Therefore, $E = E_{\{0,1\}}$ on c_4 ;
- if the homogeneous color for f_4 is 0 while the homogeneous color for f_5 is 1, then $E = E_{\{0\}}$ on c_4 ;

- if the homogeneous color for f_4 is 1 while the homogeneous color for f_5 is 0, then $E = E_{\{1\}}$ on c_4 ;
- the homogeneous colors for both f_4 and f_5 cannot be both 0. To see this, choose numbers $n_0 < n_1 < n_2$, and argue that $\{n_0, n_1\} E \{n_0, n_2\}$ (homogeneity for f_4), $\{n_0, n_2\} E \{n_1, n_2\}$ (homogeneity for f_5) $\{n_0, n_1\} E \{n_1, n_2\}$ (transitivity of E), and now this contradicts the homogeneity for f_3 .

The proof of the theorem for r = 2 is complete.

3 Applications

Theorem 3.1. Every infinite sequence of reals contains an infinite monotone subsequence.

Proof. Let $\langle x_i : i \in \omega \rangle$ be an infinite sequence of real numbers. Let $f : [\omega]^2 \to 2$ be a function defined by f(i, j) = 0 if $i < j \leftrightarrow x_i < x_j$. Ramsey theorem provides a homogeneous infinite set c. It is clear that if the homogeneous color is 0 then the sequence $\langle x_i : i \in c \rangle$ is increasing, and if the homogeneous color is 1 then the sequence $\langle x_i : i \in c \rangle$ is nonincreasing.

One interesting application is a simple proof of the Bolzano–Weierstrass theorem: a bounded infinite sequence of reals contains a convergent subsequence. To see this, use the theorem to find a monotone subsequence. Such a subsequence must be converging: if it is nonincreasing then its infimum is the limit, if it is nondecreasing then its supremum has a limit.

Theorem 3.2. For every $n \in \omega$ there is $m \in \omega$ such that among any m many points in the plane, no three of which are colinear, there are vertices of convex *n*-gon.

Proof. Then, assume without loss that $n \ge 5$ and let m be such that $m \to (n)_2^4$; we claim that m works. Suppose that $\{x_i: i \in m\}$ are points in the plane, no three of which are collinear. Let $f: [m]^4 \to 2$ be the functions defined by f(a) = 0 if the points x_i for $i \in a$ form a convex quadrilateral, and f(a) = 1otherwise. Let $c \subset m$ be a homogeneous set of size n. We will show that the homogeneous color must be 0 and that the points $\{x_i: i \in c\}$ are vertices of a convex n-gon.

First of all, the homogeneous color cannot be 1, because a simple analysis of possible configurations show that among any 5 points, no three of which are colinear, there are vertices of convex quadrilateral. So, the homogeneous color is 0. To see that the points $\{x_i: i \in c\}$ form vertices of a convex *n*-gon, note that if they do not, then there must be a number $i \in c$ such that the point x_i is inside the triangle with vertices x_{j_0}, x_{j_1} and x_{j_2} for some numbers $j_0, j_1, j_2 \in c$. This would mean that f(a) = 1 where $a = \{i, j_0, j_1, j_2\}$. This contradicts the assumption that the set *c* is homogeneous for the partition *f* with homogeneous color 0.