
In this chapter, we will discuss the structure of the real line from the set
theoretic point of view. We will show that the ordering and algebraic structure
of the real line are uniquely given by some natural demands. The hierarchy of
Borel sets is constructed as well.

1 The order structure of the real numbers

Definition 1.1. Let 〈P,≤〉 be a linearly ordered set. The ordering is dense if
for every p < q in P there is r ∈ P such that p < r < q.

For example, the usual ordering of natural numbers is dense, while the usual
ordering of integers is not. The following theorem shows that there is really only
one countable dense linear ordering up to isomorphism. Clearly, this unique rep-
resentative then must be isomorphic to the usual ordering of rational numbers.

Theorem 1.2. Any two dense countable linear orders without endpoints are
isomorphic.

Proof. The trick used is known as a “back-and-forth argument”. Suppose that
〈P,≤P 〉 and 〈R,≤R〉 are two dense countable linear orders without endpoints.
We must construct an isomorphism. Let 〈pn : n ∈ ω〉 and 〈rn : n ∈ ω〉 are
enumerations of P and Q respectively. By recursion on n ∈ ω, build partial
functions hn : P → R such that

• 0 = h0 ⊂ h1 ⊂ h2 ⊂ . . . ;

• all maps hn are finite injections;

• pn ∈ dom(h2n+1) and rn ∈ rng(h2n+2) for every n ∈ ω;

• the maps hn preserve the ordering: whenever x <P y are elements of
dom(hn) then hn(x) <R hn(y).

Once the recursion is performed, let h =
⋃
n hn. This is a function from P to

Q which preserves the ordering, and dom(h) = P and rng(h) = Q. That is, h
is the requested isomorphism of the orderings P and Q.

To perform the construction, suppose that h2n has been found. In the con-
struction of h2n+1, it is just necessary to include pn in the domain of h2n+1. If
pn ∈ dom(h2n) then let h2n+1 = h2n and proceed with the next stage of the
recursion. If pn /∈ dom(h2n), then the construction of h2n+1 divides into several
cases according to how pn relates to the finite set dom(h2n) ⊂ P :

• if pn is ≤P -greater than all elements of dom(p2n), then pick a point r ∈ R
≤R-larger than all elements of rng(h2n)(possible as the ordering R does
not have a largest point) and let h2n+1(pn) = r;

• if pn is ≤P -smaller than all elements of dom(p2n), then pick a point q ∈ Q
≤R-smaller than all elements of rng(h2n) (possible as the ordering R does
not have a smallest point) and let h2n+1(pn) = r;
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• if neither of the above two items holds, then there must be a ≤P -largest
point p′ ∈ dom(h2n) smaller than pn, and a ≤P -smallest point p′′ ∈
dom(h2n) which is larger than pn. Let r ∈ R be any point strictly be-
tween h2n(p′) (it exists as the ordering R is dense) and h2n(p′′) and let
h2n+1(pn) = r.

The induction step from h2n+1 to h2n+2 is performed similarly.

Definition 1.3. A linear ordering 〈P,≤〉 is complete if every bounded subset
of P has a supremum. That is, whenever A ⊂ P is a set such that the set
B = {p ∈ P : ∀q ∈ A q ≤ p} is nonempty, then the set B has a ≤-smallest
element.

Definition 1.4. Let 〈P,≤P 〉 be a linear ordering. A completion of P is a
order-preserving map c : P → R to a complete linear ordering 〈R,≤R〉 such
that c′′P ⊂ R is dense.

Theorem 1.5. Every linear ordering has a completion. The completion is
unique up to isomorphism.

Proof. For simplicity of notation, we will consider only the case of dense linear
ordering 〈P,≤P 〉. First, construct some completion of P . Call a pair 〈A,B〉 a
Dedekind cut if A∪B = P , A∩B = 0, for every p ∈ A and every q ∈ B p <P q,
and A does not have a largest element. Let R be the set of all Dedekind cuts,
and define 〈A0, B0〉 ≤R 〈A1, B1〉 if A0 ⊆ A1.

Claim 1.6. 〈R,≤R〉 is a complete linear ordering.

Proof. It is immediate that ≤R is an ordering. The first challenge is its linearity.
Suppose that 〈A0, B0〉 and 〈A1, B1〉 are Dedekind cuts. We must show that
either A0 ⊆ A1 or A1 ⊆ A0 holds. If A0 = A1 then this is clear. Otherwise,
one of the sets A1 \ A0 or the set A0 \ A1 must be nonempty. Suppose for
definiteness it is the set A1 \ A0, and choose an element q ∈ A1 which is not
in A0. As 〈A0, B0〉 is a Dedekind cut, it must be the case that q ∈ B0 and
all elements of A0 are <P -smaller than q. As 〈A1, B1 is a Dedekind cut, every
element p <P q must belong to A1. Therefore, A0 ⊆ A1. This confirms the
linearity of ≤R.

Now, we have to prove that ≤R is complete. Suppose that S ⊂ R is a
bounded set. Its supremum is defined as the pair 〈A,B〉 where A =

⋃
{A′ :

∃B′ 〈A′, B′〉 ∈ S} and B =
⋂
{B′ : ∃A′ 〈A′, B′〉 ∈ S}.

Now, we have to produce an order-preserving map c : P → R such that
c′′P ⊂ R is dense. Just let c(p) = 〈A,B〉 where A = {q ∈ P : q <P p} and
B = {q ∈ P : p ≤P q}. ???

Thus, the map c : P → R is a completion of the ordering P . The final task
is to show that any other completion of P is isomorphic to R. ???

Now it makes sense to define 〈R,≤〉 as the completion of 〈Q,≤〉, which is
unique up to isomorphism. This is again a linear ordering which has some
uniqueness features.
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Theorem 1.7. Every linear ordering which is dense with no endpoints, com-
plete, and has a countable dense subset, is isomorphic to 〈R,≤〉.

At this point, it is possible to introduce a problem which, together with
the Continuum Hypothesis, shaped modern set theory. Note that the real line
has the following remarkable property: if A is a collection of pairwise disjoint
open intervals, then A is countable. To see this, for every interval I ∈ A pick
a rational number f(I) ∈ I. The function f is then an injection from A to the
rationals, showing that A is countable. One can now ask whether this property
can be used to characterize the real line similarly to Theorem 1.7.

Question 1.8. (Suslin’s problem) Suppose that a linear ordering is dense with
no endpoints, complete, and any collection of its pairwise disjoint open intervals
is countable. Is it necessarily isomorphic to 〈R,≤〉?

It turns out that the answer to the Suslin’s problem cannot be decided within
ZFC set theory.

2 The algebraic structure of the real numbers

I n this section we will show that the algebraic structure of the real line is in
some way uniquely determined by the natural demands on the operations and
the ordering.

Definition 2.1. A field is a tuple 〈F, 0, 1,+, ·〉 such that F is a set, 0, 1 ∈ F
and +, · are binary operations on F such that the following hold:

1. +, · are associative and commutative;

2. 0 + a = a, 0 · a = 0 and 1 · a = a holds for all a ∈ F ;

3. for every a ∈ F there is b such that a+ b = 0, and if a 6= 0 then there is b
such that a · b = 1;

4. a · (b+ c) = a · b+ a · c holds for all a, b, c ∈ F .

Example 2.2. The rational numbers, the real numbers, and the complex num-
bers with their usual operationas are all fields.

Example 2.3. If p is a prime, then Zp, the set of all natural numbers smaller
than p with addition and multiplication modulo Z is a (finite) field.

Definition 2.4. An ordered field is a tuple 〈F, 0, 1,+, ·,≤〉 where F is a field
and ≤ is a linear ordering on F such that b ≤ c implies a + b ≤ a + c, and if
a > 0 then ab ≤ ac. A field 〈F, 0, 1,+, ·〉 is orderable if there is an ordering on
F which makes it inot ordered field.

Example 2.5. R with the usual operations and ordering is an ordered field.
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Example 2.6. The field of rational functions on R, with the usual operations,
is orderable. To see one of the possible orderings, let f ≤ g if for some number
r, for all real numbers s > r f(s) ≤ g(s) holds. One has to verify that this in
fact is a linear field ordering.

Basic rules about field orders are the following:

• if a 6= 0 then either a > 0 or −a > 0 and not both;

• if a 6= 0 then a2 > 0;

• if a, b > 0 then a+ b > 0.

To see the first item, if a < 0 then we can add −a to both sides of this inequality
to yield 0 < −a. To see why a > 0 implies 0 > −a just add −a to both sides
of the inequality, To see the second item, the first item shows that it is enough
to consider two cases: a > 0 and −a > 0. In the first case, multiply both sides
of the inequality by a to get a2 > 0; in the second case, multiply both sides of
the inequality by −a to get a2 > 0 as well. To see the third item, look at the
inequality a > 0, add b to both sides, and use the transitivity of the ordering to
see that a+ b > b > 0.

These rules show that some fields are not orderable:

Example 2.7. No finite field is orderable. To see this, note that the unit is
a square and therefore has to be greater than 0 in every ordered field. Thus
0 < 1 < 1 + 1 < 1 + 1 + 1 < . . . must hold, where each successive identity is
obtained from the previous one by adding 1 to both sides. This produces an
infinite collection of distinct elements of the ordered field.

Example 2.8. The field of complex numbers is not orderable. To see this, note
that in this field both 1 and −1 are squares, so in the ordering they would have
to be both greater than 0 by the second item, but this would contradict the first
item.

Theorem 2.9. (Artin–Schreier) A field F is orderable just in case 0 is not a
sum of nonzero squares in F .

Proof. For the left-to-right direction, observe that in a field ordering, nonzero
squares are always bigger than zero, and so is their sum. The right-to-left
direction is harder and uses the axiom of choice.

Define a cone to be a subset of F which is closed under addition and multi-
plication and does not contain 0. We will use Zorn’s lemma to show that there is
a cone C ⊂ F such that for every element a ∈ F , either a ∈ C or −a ∈ C. With
such a cone C, define the relation < on F by a < b if b− a ∈ C. The following
claim shows that this relation will witness the statement of the theorem.

Claim 2.10. < is a linear order compatible with the field structure of F .
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Proof. The linearity of < is the main issue. Given a 6= b ∈ F , by the maximality
of C it is the case that a − b ∈ C or b − a ∈ C; consequently, either a < b or
b < a must hold. The relation < is transitive, since the cone C is closed under
addition: if a < b and b < c, then a < c holds because c− a = (c− b) + (b− a)
and the two parenthesised differences belong to the set C.

For the construction of a cone with the desired property, first argue that
the set C0 of all sums of nonzero squares is a cone; it is clearly closed under
addition and multiplication, and it does not contain 0 by the assumption on the
field F . Now let C be the collection of all cones on F extending C0, ordered by
inclusion. It is not difficult to verify that every linearly ordered subset D ⊂ C
has an upper bound in C–the union

⋃
D is a cone and therefore an upper bound

of D. An application of Zorn’s lemma yields an inclusion maximal cone C ∈ C.
Now, we have to argue that the maximal cone C has the desired property:

if a ∈ F then either a ∈ C or −a in C. Suppose that both of these two fail for
some a ∈ F . Let Da = D∪{ba+c : b, c ∈ D} and D−a = D∪{−ba+c : b, c ∈ D}.

Claim 2.11. Both sets Da and D−a are closed under addition and multiplica-
tion.

Proof. To show for example that Da is closed under multiplication, suppose
that b0, c0, b1, c1 ∈ C are arbitrary elements and consider the product (b0a +
c0)(b1a+ c1), This is equal to b0b1a

2 + (c0b1 + b0c1)a+ c0c1. In this expression,
the first term belongs to C because b0, b1 ∈ D and a2 ∈ C0 ⊂ C. Thus, the
product is again of the form b2a + c2 for suitable coefficients b2, c2 ∈ C and
therefore belongs to Da.

The sets Da, D−a are both larger than C and so they cannot be cones by
the maximality of C. This means that both of them must contain 0. So, choose
b0, b1, c0, c1 ∈ C such that b0a+ c0 = 0 and −b1a+ c1 = 0. The first equation,
multiplied by b1, yields b0b1a + b0c0 = 0. The second equaltion, multiplied by
b0, yields −b0b1a+b0c1 = 0. Adding these two, we get b0c0+b0c1 = 0. However,
this contradicts the assumption that C is a cone and so multiplying and adding
some of its elements cannot yield a zero result.

Theorem 2.12. R is, up to isomorphism, the unique ordered field whose or-
dering is complete.

Proof. Let 〈F, 0, 1,+, ·,≤〉 be an ordered field and assume that ≤ is a complete
ordering. We will show that there is a unique isomorphism between R and F .
For each natural number n, let nF denote the field element obtained by adding
1F to itself n many times. The following is the key observation:

Claim 2.13. For every a ∈ F there is n ∈ ω such that a ≤ nF holds.

The fields whose ordering satisfies the statement of the claim are called archimedean.
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Proof. Suppose this fails for some a ∈ F ; so a > nF for all n ∈ ω. Thus, the
set {nF : n ∈ ω} is bounded from above by a and so by the completeness of the
ordering it has the least upper bound, call it b. Then b− 1 < b, b− 1 is not an
upper bound of the set {nF : n ∈ ω}, and so there must be a number n ∈ ω such
that b−1 < nF . But then, b < nF +1 = (n+1)F , contradicting the assumption
that b is an upper bound of the set {nF : n ∈ ω}.

For every rational number q = n/m, define qF ∈ F to be the field element
equal to nF /mF .

Claim 2.14. Whenever a < b are field elements then there is a rational number
q such that a < qF < b.

Proof. For simplicity assume that 0 < a < b. Let m ∈ ω be a natural number
such that mF >

1
b−a ; such a number exists by the previous claim. We will show

that there is a natural number n such that nF /mF is between a and b. ???

Now let π : Q→ F be the function mapping each rational q to qF . This is a
bijection between a dense subset of R and a dense subset of F by the previous
claim. By the completion theorem ??? it has a unique extension to a bijection
between R and F . It is not difficult to see that this extension must transport
the algebraic structure of R to the algebraic structure of F .

3 The Borel hierarchy

In this section, we will define the Borel hierarchy on the space of real numbers.
The construction transfers without change to other similar topological spaces,
such as the Euclidean spaces Rn for n ∈ ω.

Definition 3.1. A set O ⊂ R is open if it is union of some collection of intervals
(p, q) where p, q are rational numbers.

Definition 3.2. Let X be a set. A σ-algebra of subsets of X is a set A ⊂ P(X)
such that 0 ∈ A and A is closed under countable union, countable intersection,
and complement.

Theorem 3.3. Let X be a set and B ⊂ P(X) be a set. Among all σ-algebras
of subsets of X containing B as a subset, there is an inclusion-smallest one.

Proof. Let C = {C ⊂ P(X) : C is a σ-algebra of subsets of X and B ⊂ C}, and
let A =

⋂
C. We will show that A is a σ-algebra of subsets of X and B ⊂ A. By

the definition of A then, it has to be the inclusion-smallest σ-algebra containing
B.

It is clear that 0 ∈ A since 0 ∈ C for all C ∈ C. Similarly, B ⊂ A since for
every C ∈ C, B ⊂ C. Now for the closure under countable unions, suppose that
a ⊂ A is a countable set; I need to show that

⋃
a ∈ A holds. To see this, note

that for all C ∈ C, a ⊂ C must hold. Since every C ∈ C is a σ-algebra, it must
be the case that

⋃
a ∈ C. Thus, ∀C ∈ C

⋃
a ∈ C and so

⋃
a ∈ A =

⋂
C. The

closure on the other operations is proved in the same way.
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Definition 3.4. The σ-algebra of Borel sets is the inclusion-smallest σ-algebra
of subsets of R which contains all open sets.

There is a different way of presenting the σ-algebra of Borel sets, which also
stratifies it into levels indexed by countable ordinals.

Definition 3.5. By transfinite recursion on a countable ordinal α > 0 define
the sets Σ0

α and Π0
α in the following way:

1. Σ0
1 is the collection of all open subsets of R;

2. Π0
α is the set of complements of all sets in Σ0

α;

3. Σ0
α is the set of all countable unions of sets in

⋃
β∈α Π0

α, if α > 1.

Σ0
2 sets are often referred to as the Fσ-sets, while Π0

2 sets are referred to as the
Gδ-sets.

Thus, all sets Σ0
α and Π0

α are collections of sets of reals. The sets in Σ0
2 are

commonly called Fσ-sets, and the sets in Π0
2 are commonly called Gδ sets.

Theorem 3.6. For every ordinal α > 0, both Σ0
α and Π0

α contain Σ0
β and Π0

β

as subsets for all β < α.

Since the sets Σ0
α form a transfinite inclusion-increasing sequence of subsets

of P(R), by Theorem ??? there must be a an ordinal α at which they stop
growing. The next theorem identifies the fixed point.

Theorem 3.7. Σ0
ω1

= Σ0
ω1+1 = Π0

ω1
is the σ-algebra of Borel sets.

4 Examples of non-Borel sets

By far not every set of reals is Borel. In this section, we will provide several
ways of producing a non-Borel set of reals.

Definition 4.1. Let X be a set and A a σ-algebra of subsets of X. A σ-additive
measure on A is a function µ defined on A such that

1. the functional values of µ are non-negative real numbers or possibly infin-
ity;

2. µ(0) = 0;

3. if B0, B1 ∈ A are sets such that B0 ⊂ B1, then µ(B0) ≤ µ(B1);

4. if a ⊂ A is a countable set then µ(
⋃
a) ≤ ΣB∈aµ(B);

5. if a ⊂ A is a countable set consisting of pairwise disjoint sets, then
µ(
⋃
a) = ΣB∈aµ(B).
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Example 4.2. Let X be a set and A a σ-algebra on it. The following are
σ-additive measures on A:

1. µ(B) = 0 for all B ∈ A;

2. µ(0) = 0 and µ(B) =∞ for every set B ∈ A distinct from 0;

3. µ(B) = |B| if B is finite, and µ(B) =∞ if B is infinite.

Theorem 4.3. (Caratheodory) The function (p, q) 7→ q − p defined on basic
open intervals extends in a unique way to a σ-additive measure on the σ-algebra
of Borel sets.

The resulting σ-additive measure on Borel subsets of reals is called the
Lebesgue measure. Observe that the Lebesgue measure is translation invari-
ant: if B ⊂ R is a Borel set and r ∈ R is a number then µ(B) = µ(r + B). To
see this, consider the function λ on Borel sets defined by λ(B) = µ(r+B). It is
not difficult to see that this is a σ-additive measure. Moreover, it extends the
function (p, q) 7→ q−p. By the uniqueness part of the Caratheodory theorem, it
must be the case that µ = λ, which says precisely that µ is translation-invariant.

5 A set which is Fσ but not Gδ

It turns out that for each countable ordinal α, there is a set in Σ0
α which is

not in Π0
α; in other words, the Borel hierarchy keeps growing at all countable

stages. We will prove only the most basic theorem of this kind. The argument
uses a basic mathematical tool, the Baire category theorem. We state it only
for the real numbers; it can be immediately generalized to much wider classes
of spaces, including all Euclidean spaces.

Theorem 5.1. (Baire category theorem) Let On ⊂ R be dense open sets for
each n ∈ ω. Then

⋂
nOn 6= 0.

Proof. By induction on n ∈ ω build rational numbers pn, qn such that pn <
pn+1 < qn+1 < qn and (pn, qn) ⊂ On holds for every number n ∈ ω. If the
induction succeeds, use the completeness of the real numbers to let r = supn pn.
By the first part of the induction hypothesis, r ∈ (pn, qn) and by the second
part of the induction hypothesis r ∈ On holds. In other words, r ∈

⋂
nOn and

so
⋂
nOn 6= 0.

To perform the induction, start with any open interval (p0, q0) ⊂ O0 with
rational endpoints. For the induction step, if the interval (pn, qn) has been
constructed, use the density of the set On+1 to find a real number s ∈ (pn, qn)
in the set On+1 and then use the openness of the set On+1 to find an open
interval (pn+1, qn+1) around s which is a subset of O. Shrinking the interval if
necessary, one can achieve pn < pn+1 < s < qn+1 < qn and make the endpoints
rational. This completes the induction step and the proof.
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Theorem 5.2. Let A ⊂ R be a countable dense set. The set A is Fσ and not
Gδ.

Proof. The set A, as any countable set, is a countable union of sets each of
which contain just one element. One element sets are closed, and so A is Fσ.
The harder part of the theorem is showing that A is not Gδ.

Suppose towards contradiction that A =
⋂
nOn is an intersection of dense

sets. Since A is dense, each set On is dense as well. Now, use the countability
of the set A to list its elements, A = {rn : n ∈ ω}. Let Pn = On \ {rn}; the set
Pn is still both open and dense, since it results from a removal of a single point
from the open dense set On. Now, look at the intersection

⋂
n Pn.

Since Pn ⊂ On, it must be the case that
⋂
n Pn ⊆

⋂
nOn = A. However,

for each point r ∈ A, there is n ∈ ω such that r = rn and so r = rn /∈ Pn
and r /∈

⋂
n Pn. It follows that

⋂
n Pn 6= 0. This contradicts the Baire category

theorem applied to the intersection
⋂
n Pn.
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